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Abstract. These are notes on various topics in Lie Theory, taken during my graduate course
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2 JUNAID AFTAB

Part 1. Lie Groups & Lie Algebras

1. Lie Groups

A (real) Lie group is a group endowed with the structure of a smooth manifold. In fact,
a (real) Lie group is a group object in the category of smooth manifolds. Lie groups are
the objects that describe continuous symmetries, which is why they are considered to be
important.

1.1. Definitions & Examples.

Definition 1.1. A (real) Lie group is a smooth manifold, G , that is also a group such that
multiplication map m : G ×G → G and inversion map i : G → G , given by

m(g,h) = gh, i(g) = g−1

are both smooth. A Lie group is abelian if the underlying group is an abelian group.

Remark 1.2. A complex Lie group is a complex manifold that is also a group such that the
multiplication and inversion maps are holomorphic. We shall be mostly working with smooth
manifolds and (real) Lie groups. We shall omit the phrase ’real’ when it is clear from context. If
we consider complex manifolds or complex Lie groups, we shall use the phrase ’complex.’

Example 1.3. The following are examples of Lie groups.

(1) Every 0-dimensional smooth manifold, which is a countable set of isolated points,
is a countable group G with the manifold structure as a discrete 0-dimensional
Lie group, because the multiplication and inversion maps are locally constant and
hence are smooth maps. For example, � and �n for n ≥ 1 are Lie groups.

(2) �
n and �

n are abelian Lie groups since addition and subtraction are smooth func-
tions1.

(3) �
1 is a Lie group. Identifying �

1 with complex numbers of norm one, we have that
�
1 inherits a group structure, given by

(x,y) · (x′ ,y′) := (xx′ − yy′ ,xy + x′y), (x,y)−1 = (x,−y).

Using the smooth manifold structure on �
1, it is easy to now verify that �1 is a Lie

group2.
(4) Let GL(n,�) denote the general linear group of invertible n × n over �. Consider

the map

det :�n2
→�, det(A) =

¼
ã∈Sn

sgn(ã)a1,ã(1) · · ·an,ã(n),

Since det is a polynomial map, det is a smooth function. Note that GL(n,�) =
det−1(�×), Hence, GL(n,�) is an open subset of �n2

, and hence is a smooth man-
ifold of dimension n2. Clearly, GL(n,�) is a group. Matrix multiplication is a
smooth map (given by polynomials) and matrix inverse is a smooth map (by Cramer’s

1Note that �n is also a complex Lie group.
2We have �

1 � U(1). So this claim also follows from results mentioned later in the section.
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rule). Hence GL(n,�) is a Lie group. Note that GL(n,�) is a non-abelian Lie group
for n ≥ 2.

(5) Similarly, GL(n,�) is a (real) Lie group of dimensions 2n2. It is non-abelian for
n ≥ 2.

(6) A direct product of Lie groups is a Lie group. This can be easily checked. In
particular,

�
n := �

1 × · · · ×�1

is an abelian Lie group.
(7) If G is Lie group and H ⊆ G is an open subgroup then, H is a Lie group with

the inherited group structure and smooth manifold structure. H is called a Lie
subgroup of G . For example, note that GL+(n,�), the open subgroup of GL(n,�)
consists of invertible matrices with positive determinant, is a Lie group.

Remark 1.4. More generally, if G is a Lie group and H ⊆ G is a closed subgroup, then H is a
Lie subgroup of G . This is Cartan’s Closed Subgroup Theorem which is non-trivial to prove.

We can play off the group and smooth manifold structure of a Lie group to define the
notion of a ”smooth group homomorphism.”

Definition 1.5. Let G ,H be Lie groups. A Lie group homomorphism is a smooth map
F : G → H that is also a group homomorphism. A Lie group isomorphism is a Lie group
homomorphism that is also a diffeomorphism.

It is easy to verify Lie groups form a subcategory of the category of smooth manifold.
We denote this category as LieGrp.

Example 1.6. The following are examples of Lie group homomorphisms:

(1) The map exp : �→ �
×3 given by exp(t) = et is smooth, and is a Lie group homo-

morphism because es+t = es · et . The image of exp is the open Lie subgroup �
+,

and exp :�→�
+ is a Lie group isomorphism with inverse log :�+→�.

(2) Similarly, exp :�→�
×4 given by exp(z) = ez is a (real) Lie group homomorphism.

It is not a Lie group isomorphism because its kernel consists of the complex num-
bers of the form 2áik, where k ∈�.

(3) Let G be a Lie group, and let g ∈ G . The inner automorphism of G is the map
Cg : G → G given by Cg(h) = ghg−1 (conjugation by g). Because multiplication
and inversion are smooth, Cg is smooth; inner automorphisms are group isomor-
phisms, so this is a Lie group isomorphism.

Remark 1.7. The group and smooth manifold structure of a Lie group can be conveniently
played off of each other. For instance, the multiplication map gives rise to two all-important
families of diffeomorphisms of G : the left-translation and right-translation maps Lg ,Rg : G → G
for g ∈ G :

Lg(h) = gh,

Rg(h) = hg.

3
�
× � GL(1,�). Hence, �× is a Lie group

4
�
× � GL(1,�). Hence �

× is a Lie group.
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It is easily seen that both maps are diffeomorphisms. For example, letting Ûg : G → G ×G be the
map Ûg(h) = (g,h) which is clearly smooth, note that Lg = m ◦ Ûg is smooth as well. Since Lg is
a bijection such that the inverse is Lg−1 , Lg is a diffeomorphism for all g ∈ G . Similarly, Rg is a
diffeomorphism for all g ∈ G . Many of the important properties of Lie groups follow from the fact
that we can systematically map any point to any other point by such a global diffeomorphism.

As an application of the comments made in Remark 1.7, we can show that every Lie
group homomorphism is of constant rank:

Proposition 1.8. Every Lie group homomorphism is of constant rank.

Proof. Let G ,H be Lie groups, and let F : G → H be a Lie group homomorphism. Let
g0 ∈ G , and denote the identity of G as eG (and the identity of H as eH ). Since F is a
homomorphism, we have, for all g ∈ G ,

F (Lg0(g)) = F (g0g) = F (g0)F (g) = LF (g0)(F (g)).

That is: F ◦ Lg0 = LF (g0) ◦ F . Taking differentials of both sides at the identity, the chain rule
then tells us

dFg0 ◦ d(Lg0)eG = d(LF (g0))eH ◦ dFeG ,
Since Lg0 and LF (g0) are diffeomorphisms, their differentials at any points are isomor-
phisms. It follows, therefore, that dFg0 has the same rank as FeG . As this holds true for
any g0, we see that dFg0 has constant rank. □

1.2. Lie Group Actions. Lie groups are group objects in the category of smooth manifolds.
Therefore, we can define the notion of a smooth group action on a manifold, which will in
turn allow us to study manifolds using tools from group theory.

Definition 1.9. Let G be a Lie group and let M be a smooth manifold. A smooth left action
of G on M is a smooth map

Ú : G ×M→ M Ú(g,p) := Úg(p) := g · p,

which satisfies the following two group laws:

g1 · (g2 · p) = (g1g2) · p, for all g1,g2 ∈ G and p ∈ M,

and
e · p = p, for all p ∈ M.

Remark 1.10. We can also talk about smooth right actions which are defined similarly. All
remarks made below above equally well to smooth right actions.

Definition 1.11. Let G be a Lie group and let M be a smooth manifold and Ú be a smooth
group action.

(1) For p ∈ M, the orbit of P of p is the set

G · p = {g · p : g ∈ G }

(2) For p ∈ M, the stabilizer of p is the set

Gp = {g ∈ G : g · p = p}
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That is, it is the set of group elements that fix p Note that Gp is a subgroup.
(3) An action is said to be transitive for each pair p,q ∈ M, there is some g ∈ G with

g · p = q.
(4) An action is said to be free if all stabilizers are trivial: Gp = {e} for all p. In other

words, only the group unit fixes any element.

Example 1.12. Here are some examples of Lie group actions on manifolds.

(1) If G is any Lie group and M is any smooth manifold, the trivial action of G on M is
defined by g · p = p for all g ∈ G , p ∈ M. It is smooth5, each orbit is a single point
and Gp = G for each p ∈ M.

(2) If G is a connected Lie group, then any smooth action on a discrete manifold, M, is
the trivial action. Indeed, Consider G · p, the orbit of p ∈ M. G · p is connected, so
it must be a singleton, as the only connected non-empty subsets of a discrete space
are singletons. Hence, the action must be the trivial action.

(3) Let G = GL(n,�) and M = �
n. G acts on M by matrix multiplication. It is clearly a

smooth action. Note that A ·0 = 0 for all A ∈ G , so the orbit of 0 is just {0}. For any
two non-zero vectors x, y, there is some invertible matrix A with Ax = y. Hence,
there is only one other orbit, �n \ {0}.

(4) Let �2n+1 ⊆�
n+1. Define the action of �1 on �

2n+1 as:

z · (w1, . . . ,wn+1) = (zw1, . . . ,zwn+1)

This action is smooth.We have

�
1 ·w = {(eiÚw1, . . . ,e

iÚwn+1) : Ú ∈ [0,2á]}

which is a unit circle in �
n+1 because |w| = 1. Any two distinct orbits are disjoint,

because if they share a point then the orbit generated by this point contains both
orbits. Furthermore, there is such a unit circle orbit through any point in �

2n+1.
Hence, �2n+1 into a union of disjoint unit circle. This action is called the Hopf
action.

Group actions allow is to impart some nice properties of Lie groups to the manifolds
they act on. This can be described through a property called equivariance.

Definition 1.13. Let M,N be smooth manifolds, and let F : M→ N be a smooth map. Sup-
pose that M,N both possess smooth (left) actions by some Lie group G . F is an equivariant
smooth map under the actions of G if

F (g · p) = g · F (p), for all g ∈ G ,p ∈ M.

This is often expressed as a commutative diagram:

M N

M N

F

Úg ïg

F

5(Ú is just the projection map G ×M→ M)
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We know that all Lie group homomorphisms have constant rank by Proposition 1.8.
This property extends to the much wider class of equivariant maps under transitive ac-
tions.

Proposition 1.14. (Equivariant Rank Theorem) Let F : M → N be a smooth map between
manifolds. Let G be a Lie group that acts smoothly on both M and N, and suppose the action on
M is transitive. If F is equivariant with respect to these actions, then F has constant rank.

Proof. Denote the action on M by Ú and the action on N by ï. Let p,q ∈ M. By the transitiv-
ity assumption, there is some g ∈ G with Úg(p) = q. The equivariance of F is the statement
that

F ◦Úg = ïg ◦ F
We now apply the chain rule at the point p:

dFq ◦ (dÚg)p = (dïg)F (p) ◦ dFp
Since Úg and ïg are diffeomorphisms, the differentials (dÚg)p and (dïg)F (p) are linear
isomorphisms, and it follows that dFp and dFq have the same rank.

TpM TF (p)M

TqM TF (q)N

dFp

d(Úg )p d(ïg )F (q)
dFq

This completes the proof. □

Example 1.15. Let �{1, i , j ,k} be the free �-vector space on the set {1, i , j ,k}. Let I be the
ideal generated by the relations

i2 = j2 = k2 = −1, i j = k, jk = i , ki = j

� is defined as
� :=�{1, i , j ,k}/ I

It is a simple but tedious matter to check that � is a division algebra. If x = a+bi+cj+dk ∈
�, we define x = a − bi − cj − dk. It can be checked that the map x 7→ xx := |x|2 defines a
norm on �. It turns out to be much more convenient to work with a matrix representation
of �. Let I , i ′ , j ′ , and k′ be the following matrices:

I =

(
1 0
0 1

)
, i ′ =

(
i 0
0 −i

)
, j ′ =

(
0 1
−1 0

)
, k′ =

(
0 i
i 0

)
.

It is easily seen that the matrices satisfy the relations mentioned above. Hence, the map

1→ I , i → i ′ , j → j ′ , k→ k′ ,

defines a matrix representation of �. From now on we identify � with its matrix repre-
sentation. A simple derivation shows that every matrix in � is of the form

A =

(
Ó Ô
−Ô Ó

)
,
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where Ó,Ô ∈�. Hence the conjugate of a quaternions is now identified with the matrix con-
jugated transpose. Moreover, the norm of a quaternion is now defined as the determinant
of the associated matrix6. A simple argument then shows that A ∈ GL2(�) is identified
with a non-zero quaternion if and only if A∗A = det(A)I2. Let �

× denote the non-zero
quaternions. We have a map

Ð : GL(2,�)→ M(2,�), X 7→ det(X)−1X∗X

Clearly, �× = Ð−1(I2). As before, it can be checked that Ð is a smooth equivariant map
under suitable right and left actions of GL(2,�). By Proposition 1.14, Ð is of constant
rank. By the constant rank theorem, �× is an embedded submanifold of GL(2,�). This
allows us to immediately conclude that �× is a Lie group.

The unit quaternions, �u , consist of all A ∈ � with determinant one. �u is also a Lie
group7. Simply consider the map

Ð : GL(2,�)→ M(2,�), X 7→ X∗X

and apply the argument as above. Note that we can identity �u with �
3. This also shows

that �3 as a Lie group structure.

Remark 1.16. Note that GL(n,�) is a (real) Lie group of dimensions 4n2. It is non-abelian for
n ≥ 1.

1.3. Matrix Lie Groups. The most famous example of a Lie group is the general linear
groups GL(n,k), where k = �,�,�. A closed subgroup of GL(n,k) is called a matrix Lie
group. In this section, we discuss some important examples of the so-called classical Lie
groups, which are well-known examples of matrix Lie groups.

Remark 1.17. In the following examples, we will not explicitly verify that the given Lie groups
are indeed groups, as this verification is straightforward.

1.3.1. Special Linear group. As an application of the constant rank theorem, we can furnish
further examples of Lie group by appealing to the constant rank theorem. Let

SL(n,�) = det−1{1} det : GL(n,�)→�
×

det is a smooth map. We show that det has constant rank 1. Let X ∈ TInGL(n,�) ��
n2

and
consider the curve Õ(t) = In + tX in �

n28 We compute

d
dt

∣∣∣∣∣
t=0

det(I + tX)

6THis association easily implies that xy = yx and |xy| = |x||y|.
7It is indeed a group as it can be easily verified.
8For small enough t, Õ(t) is contained in GL(n,�) since GL(n,�) is an open subset of �n2 so the map is well-
defined for small enough t.
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Note that to first order:

det(I + tX) =
¼
ã∈Sn

sgn(ã) · (I + tX)1,ã(1) · (I + tX)2,ã(2) · · · · · (I + tX)n,ã(n)

=
n½
i=1

(1 + tXi i ) +O(t2) = 1+ t
n¼
i=1

Xi i +O(t2)

Therefore,
d
dt

∣∣∣∣∣
t=0

det(I + tX) =
n¼
i=1

Xi i = TrX

Clearly, the linear map X 7→ TrX is surjective. More generally, if X ∈�n2
, we have:

d(det)In (X) = Tr(X)

More generally, we can easily compute the differential of the det map at any A ∈ GL(n,�).
Indeed, for A ∈ consider the path Õ(t) = A + tX which is well-defined for small enough
values of t. Then

d(det)A(X) =
d
dt

∣∣∣∣∣
t=0

det(A + tX)

=
d
dt

∣∣∣∣∣
t=0

det(A)det
(
I + tA−1X

)
= det(A)

d
dt

∣∣∣∣∣
t=0

det
(
I + tA−1X

)
= det(A)Tr(A−1X)

Clearly, the linear map X 7→ det(A)Tr
(
A−1X

)
is surjective. This shows that det has constant

rank. By the constant rank theorem SL(n,�) is an embedded subamanifold such that

dimSL(n,�) = n2 −1

Clearly, SL(n,� is group. Hence, SL(n,� is a Lie group.

Remark 1.18. Similarly, SL(n,�) is (real) Lie group of dimension 2n2 −2.

Remark 1.19. Since � is a non-commutative ring, multilinearity and alternating properties are
incompatible in GL(n,�) for n ≥ 2. Hence, there is no canonical way to define a determinant of
a matrix in GL(n,�) for n ≥ 2.

1.3.2. Orthogonal & Unitary Groups. As an application of Proposition 1.14, we can furnish
further examples of Lie group by appealing to the equivariant rank theorem.

Example 1.20. Let O(n,�) be the group of n×n real orthogonal matrices that preserve the
Euclidean inner product:

O(n,�) = {A ∈ GL(n,�) | ATA = In}

Define
Ð : GL(n,�)→�

n2
Ð(A) = ATA
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Clearly, O(n,�) = Ð−1(In). By defining suitable group actions on GL(n,�) and �
n2

and
appealing to Proposition 1.14, we can show that Ð is of constant rank: Let G = GL(n,�)
act on GL(n,�) by matrix multiplication. This action is clearly transitive. Define a right
action of GL(n,�) on �

n2
by

X · B = BTXB X ∈�n2
B ∈ GL(n,�)

It is easy to check that this is a smooth action, and · is equivariant because

Ð(AB ) = (AB )T (AB ) = BTATAB = BTÐ(A)B = Ð(A) · B

Appealing to Proposition 1.14, O(n,�) is an embedded submanifold of GL(n,�). We com-
pute its dimension by computing the rank of the differential of Ð at In. Fix any A ∈ �n2

.
For any small enough ê > 0, consider a curve Õ : (−ê,ê)→ O(n,�) such that Õ(0) = In and
Õ′(0) = A. We have:

dÐIn (A) = (Ð ◦Õ)′(0) = d
dt

Õ(t)TÕ(t)

∣∣∣∣∣∣
t=0

= Õ′(0)TÕ(0) +Õ(0)TÕ′(0) = A +AT

Since A + AT is symmetric, the image of dÐIn is contained in the vector space of n-by-n
symmetric matrices. In fact, it is equal to this vector space. This is because for any

dÐIn (B /2) =
B + BT

2
= B

for any n-by-n symmetric matrix, B . Therefore,

dimO(n,�) = n2 − n(n +1)
2

=
n(n −1)

2

Example 1.21. Consider the special orthogonal group,

SO(n,�) :=O(n,�)∩SL(n,�)

It is easy to show that every matrix in O(n,�) has determinant ±1. Hence, SO(n,�) is the
subset of those matrices in O(n,�) having determinant 1. In fact it is an open subset of
O(n,�) since the det map restricts to a map

det :O(n,�)→ {±1}

and SO(n,�) = det−1(+1). Hence, SO(n,�) is a Lie group of dimension n(n − 1)/2. Note
that O(n,�) and SO(n,�) fit into a short exact sequence:

1→ SO(n,�)→O(n,�)
det−−−→ {±1} → 1

Example 1.22. Let U(n,�) be the group of n by n complex orthogonal matrices that pre-
serve the Hermitian inner product:

U(n,�) = {A ∈ GL(n,�) | A∗A = In}

Define
Ð : GL(n,�)→�

n2
Ð(A) = A∗A
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Clearly, U(n,�) = Ð−1(In). Let G = GL(n,�) act on GL(n,�) by matrix multiplication. This
action is clearly transitive. Define a right action of GL(n,�) on �

n2
by

X · B = B ∗XB X ∈�n2
B ∈ GL(n,�)

It is easy to check that this is a smooth action, and · is equivariant because

Ð(AB ) = (AB )∗(AB ) = B ∗A∗AB = B ∗Ð(A)B = Ð(A) · B

Appealing to the Appealing to Proposition 1.14, U(n,�) is an embedded submanifold of
GL(n,�). We compute its dimension by computing the rank of the differential of Ð at In.
Fix any A ∈ �n2

. For any small enough ê > 0, consider a curve Õ : (−ê,ê)→ GL(n,�) such
that Õ(0) = In and Õ′(0) = A. We have:

dÐIn (A) = (Ð ◦Õ)′(0) = d
dt

Õ(t)∗Õ(t)

∣∣∣∣∣∣
t=0

= Õ′(0)∗Õ(0) +Õ(0)TÕ′(0) = A +A∗

Since A + A∗ is self-adjoint, the image of dÐIn is contained in the vector space of n-by-n
self-adjoint matrices. In fact, it is equal to this vector space. This is because for any

dÐIn (B /2) =
B + B ∗

2
= B

for any n-by-n self-adjoint matrix, B . We have:

dimU(n,�) = 2n2 − n2 = n2

This is because the vector of all matrices of the form A = A∗ has dimension n+4n(n−1)/2 =
n2.

Example 1.23. Consider the special unitary group, Consider

SU(n,�) := U(n,�)∩SL(n,�)

It is easy to show that every matrix in U(n,�) has determinant of absolute value 1. As
above, the det map restricts to a map

det : U(n,�)→ �
1

and SU(n,�) = det−1(�1). Clearly, det is of full rank as before. The constant rank theorem
then implies that

dimSU(n,�) = n2 −1
Thus SU(n,�) is a (real) Lie group of dimension n2. Note that U(n,�) and SU(n,�) fit into
a short exact sequence:

1→ SU(n,�)→ U(n,�)
det−−−→ �

1→ 1

Remark 1.24. U(n,�) and SU(n,�) are not complex Lie groups! We verify this later.

Remark 1.25. Let U(n,�) be the group of n by n quarternionic orthogonal matrices that pre-
serve the quarternionic inner product:

U(n,�) = {A ∈ GL(n,�) | AHA = In}
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Here AH is the quarterionic conjugate transpose. It can checked that U(n,�) is a (real) Lie group
of dimension n(2n + 1). The argument is the same as in Example 1.22. Indeed, the analog of
the differential of the map in Example 1.22 has image the set of all matrices of the form A = AH .
Therefore,

dimU(n,�) = 4n2 − n(2n −1) = n(2n +1)

This is because the vector of all matrices of the form A = AH has dimension n + 4n(n − 1)/2 =
n(2n −1).

1.3.3. Symplectic Groups. Consider the skew-symmetric bilinear form é on �
2n defined as

follows:

é(x,y) =
n¼
j=1

(xn+jyj − xjyn+j ) = xT
(
0n −In
In 0n

)
y := xTJy = ⟨x,Jy⟩

�
n

The set of all 2n×2n real matrices A which preserve é is the real symplectic group Sp(n,�)

Sp(n,�) = {A ∈ GL(2n,�) |é(Ax,Ay) = é(x,y)}

It is easily shown that
Sp(n,�) = {A ∈ GL(2n,�) | ATJA = J}

Define
Ð : GL(2n,�)→�

(2n)2 Ð(A) = ATJA

Clearly, Sp(n,�) = Ð−1(J). Let G = GL(2n,�) ct on GL(2n,�) by matrix multiplication.
Moreover, let · denote the corresponding action in Example 1.20.· is equivariant because

Ð(AB ) = (AB )TJ(AB ) = BTATJAB = BTÐ(A)B = Ð(A) · B

Appealing to Proposition 1.14, Sp(n,�) is an embedded submanifold of GL(n,�). Since
Sp(n,�) is clearly a group, we have that Sp(n,�) is a Lie group.

Similarly, we can define the complex symplectic group:

Sp(n,�) = {A ∈ GL(2n,�) |é(Ax,Ay) = é(x,y)}

= {A ∈ GL(2n,�) | ATJA = J}

As above, Sp(n,�) is a Lie group. We will derive the dimension of these Lie groups by
computing the dimension of the associated Lie algebras in the next section.

1.3.4. Indefinite Orthogonal Group. Let p,q ∈� such that p+q = n. Consider the indefinite
bilinear form Ôp,q on �

n defined as follows:

Ôp,q(x,y) =
p¼
j=1

xjyj −
q¼
j=1

xp+jyp+j = xT
(
Ip 0
0 −Iq

)
y := xTgp,qy = ⟨x,gp,qy⟩�n

The set of all n × n real matrices A which preserve Ôp,q is the indefinite orthogonal group
O(p,q) ⊆ GL(n,�)

O(p,q) = {A ∈ GL(n,�) | Ôp,q(Ax,Ay) = Ôp,q(x,y)}

It is easily shown that

O(p,q) = {A ∈ GL(n,�) | ATgp,qA = gp,q}
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Clearly, O(p,q) is a group. An argument as in Section 1.3.3 shows that O(p,q) is a Lie
group. Of particular interest in physics is the Lorentz group O(3,1).

It is easily verified that if A ∈O(p,q), then detA = ±1. Hence, we can also define

SO(p,q) =O(p,q)∩SL(n,�)

It is also a Lie group. We will derive the dimension of these Lie groups by computing the
dimension of the associated Lie algebras in the next section.

1.4. Topological Properties. We discuss topological properties of the classical Lie groups.

1.4.1. Compactness. We determine which classical Lie groups discussed above are com-
pact.

Proposition 1.26. The following statements are true:

(1) GL(n,�) and GL(n,�) are not compact for n ≥ 1.
(2) SL(n,�) and SL(n,�) are not compact for n ≥ 2.
(3) O(n,�) and U(n,�) are compact for n ≥ 1.
(4) SO(n,�) and SU(n,�) are compact for n ≥ 1.
(5) O(p,q) is not compact for all n ≥ 1 such that p+ q = n and q , 0.

Proof. The proof is given below:

(1) Clearly, GL(n,�) is not compact for n ≥ 1. Otherwise, the image of GL(n,�) under
the determinant map,

det :�n2
→�, A 7→ det(A)

would be a compact set. However, det(GL(n,�)) = �
× which is not compact. Simi-

larly, GL(n,�) is not compact for n ≥ 1.
(2) If m = 1, we have that SL(n,�) � {±1} which is compact. Similarly, SL(n,�) � �

1

which is compact. Let n ≥ 2. Consider the set,

A = {Am ∈ GL(n,�) |m ∈�×}, Am =



m 0 0 · · · 0
0 1/m 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


We have9 ∥Am∥∞ = m for m ≥ 1 and ∥Am∥∞→∞ as m→∞. Hence, SL(n,�) is not
a bounded set for n ≥ 2. Therefore, SL(n,�) is not compact for n ≥ 2. Similarly,
SL(n,�) is not compact for n ≥ 2.

(3) O(n,�) is clearly a closed subset. Moreover, if A ∈ O(n,�), then |Ajk | ≤ 1 for each
j ,k = 1, · · ·n since the columns of A ∈ G are required to be unit vectors. Hence,
∥A∥∞ ≤ 1 for each A ∈ O(n,�). Hence, O(n,�) is compact for n ≥ 1. Similarly,
U(n,�) is compact for n ≥ 1.

9Here ∥ · ∥∞ is the infinity norm. Recall that all norms on finite-dimensional vector spaces are equivalent.
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(4) SO(n,�) is a closed subset of O(n,�) for n ≥ 1. Hence, SO(n,�) is compact for
n ≥ 1. Similarly, SU(n,�) is compact for n ≥ 1.

(5) WLOG, let n = 2 and p,q = 1. A similar argument applies in the general case. Note
that (

1 x
0 y

)
∈O(1,1) ⇐⇒ x2 − y2 = −1

The set of solutions of x2 − y2 = −1 is an unbounded set. This is sufficient to con-
clude that O(1,1) is not compact. An entirely similar argument shows that O(p,q)
is not compact as long as q , 0.

This completes the proof. □

Remark 1.27. Let G be a Lie group. The previous proposition shows that G is not necessarily
a compact group. However, G is always a locally compact group. This is a general fact about
smooth manifolds.

1.4.2. Connectedness. We determine which classical Lie groups discussed above are con-
nectedness.

Remark 1.28. Recall that a smooth manifold is connected if and only if it is path-connected.
We shall make use of this characterization of connectedness below.

Proposition 1.29. The following statements are true:

(1) GL(n,�) is connected for n ≥ 1. However, GL(n,�) is not connected for n ≥ 1.
(2) SO(n,�) is connected for n ≥ 1. However, O(n,�) is not connected for n ≥ 1 and it has

two connected components.
(3) GL±(n,�) is connected for n ≥ 1. Hence, GL(n,�) has two connected components.
(4) SL(n,�) and SL(n,�) are connected for n ≥ 1.
(5) U(n,�) and SU(n,�) are connected for n ≥ 1.
(6) SO(p,q) is not connected for all n ≥ 1 such that p + q = n and q , 0. In fact, SO(p,q)

has two connected components.
(7) O(p,q) is not connected for all n ≥ 1 such that p+ q = n and q , 0. In fact, O(p,q) has

four connected components.

Proof. The proof is given below:

(1) GL(n,�) is not connected for n ≥ 1. Otherwise, the image of GL(n,�) under the
determinant map,

det :�n2
→�, A 7→ det(A)

would be a connected set. However, det(GL(n,�)) =�
× which is not connected. On

the other hand, GL(n,�) is connected. To see this fact, recall that every matrix in
�

n2
is similar to an upper triangular matrix. That is, we can express any A ∈ Mn(�)

in the form
A = CBC−1,
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where

B =


Ý1 · · · ∗
...

. . .
...

0 · · · Ýn

 .
If A ∈ GL(n,�) in particular, each Ýi must be nonzero. Let B(t) be obtained by
multiplying the part of B above the diagonal by (1− t), for 0 ≤ t ≤ 1, and let A(t) =
CB(t)C−1. Then A(t) is a continuous path lying in GL(n,�) which starts at A and
ends at CDC−1, where D is the diagonal matrix with diagonal entries Ý1, . . . ,Ýn. We
can now define paths Ýj (t) connecting Ýj to 1 in � as t goes from 1 to 2, and we can
define A(t) on the interval 1 ≤ t ≤ 2 by

A(t) = C


Ý1(t) 0 · · · 0
0 Ý2(t) · · · 0
...

...
. . .

...
0 0 · · · Ýn(t)

C
−1.

Then A(t), for 0 ≤ t ≤ 2, is a continuous path in GL(n,�) connecting A to I . Hence,
GL(n,�) is connected for n ≥ 1.

(2) O(n,�) is not connected for n ≥ 1 since +In and −In cannot be connected by a
continuous path by the continuity of the determinant function. Moreover, we have

O(n,�) =O
+(n,�)

Å
O
−(n,�) := SO(n,�)

Å
SO
−(n,�)

We show that SO(n,�) is connected. An entirely similar argument shows that
SO−(n,�). It follows that O(n,�) has two connected components.

We show that SO(n,�) is connected for n ≥ 1. We show every A ∈ SO(n,�) can
be connected to In. First, we argue that given any two unit vectors v,w ∈ �n, there
is a path Õ(t) ∈ SO(n,�) such that:

Õ(0)v = v, Õ(1)v = w

That is, any two unit vectors in �
n can be continuously rotated. Choose a u ∈ �n as

follows:
(a) If v and w are linearly independent, apply the Gram-Schmidt algorithm and

choose u such that u ⊥ v and u ∈ span{v,w}.
(b) If v and w are linearly dependent (w = −v), then take u to be any unit vector

in v⊥.
Let V = span{v,u}. One can then consider a one-parameter family of rotations,
Ræ ∈ SO(2,�) that act on V . Since w ∈ V , there is an angle æ0 such that (in the
above constructed basis):

w =

[
Ræ0

0
0 In−2

]
v.

Define the path

Õ(t) :=

[
Rtæ0

0
0 In−2

]
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The image of Õ is clearly contained in SO(n,�) and is such that

Õ(0) = R(0)v = v

Õ(1) = R(1)v = w

Any A ∈ SO(n,�) is represented by an orthonormal basis (a1, . . . ,an) over vectors
in �

n. Apply the above procedure recursively: find a path Õ1(t) ∈ SO(n,�) such
that

Õ1(t)a1 = e1
Then choose a path Õ2 taking Õ1(1)a2 to e2. Note that any such Õ2 leaves e1 in-
variant. Indeed e1 ⊥ e2,Õ1(1)a2

10. So, e1 is in the complement of the subspace
in which the rotation happens and is thus left invariant. Proceed recursively now
and consider the paths Õ1(t), · · · ,Õn(t). Consider

Õ = Õn ◦ · · · ◦Õ1
Based on the above remarks, it is clear that

Õ(0)ai = ai
Õ(1)ai = ei

for i = 1, · · · ,n. Hence, SO(n,�) is path-connected and hence connected since
SO(n,�) is a smooth manifold.

(3) It suffices to show that GL+(n,�) is connected since GL−(n,�) is diffeomorphic to
GL+(n,�). We use the singular value decomposition. Let

A = UÎV

be the singular value decomposition of A. Here U and V are unitary matrices and
Î is a diagonal matrix consisting of the singular values of A which are all non-
negative11. Since A has positive determinant, the singular values of A are all posi-
tive real numbers.

Since detA > 0, detU = detV . Therefore, both U and V are in the same compo-
nent of O(n,�). WLOG, assume that both matrices are contained in SO(n,�). Since
SO(n,�) is connected, there exist paths Õ1(t) and Õ2(t) in SO(n,�) such that

Õ1(0) = U Õ1(1) = In

Õ1(0) = V Õ1(1) = In
Consider the path

Õ(t) = Õ1(t)ÎÕ2(t)

Clearly, Õ(t) is in SO(n,�) such that

Õ1(0) = A Õ1(1) = Î

10Applying Õ1 to an orthonormal basis results in an orthonormal basis
11This is crucial in this proof.
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Since È has positive entries, there exists a smooth curve Ô such that Ô(s) ∈ SO(n,�)
and that

Ô1(0) = Î Ô(1) = In
Simply consider Ô ◦Õ. This shows that GL+(n,�) is connected. This clearly implies
that GL(n,�) has two connected components.

(4) Consider the continuous surjective map

Ñ : GL+(n,�) 7→ SL(n,�), A 7→ A

det(A)1/n

Since Ñ is surjective and GL+(n,�) is connected for n ≥ 1, SL(n,�) is connected for
n ≥ 1.

SL(n,�) is connected for n ≥ 1. The proof is almost the same as for GL(n,�) in
(a), except by choosing Ýn(t), in the second part of the preceding proof, to be equal
to (Ý1(t) · · ·Ýn−1(t))

−1, we can ensure that the path is contained in SL(n,�).
(5) Every A ∈ U(n,�) unitary matrix has an orthonormal basis of eigenvectors, with

eigenvalues having absolute value 1. Thus, each U ∈ U(n,�) can be written as U =
U1DU−11 , where U1 ∈ U(n,�) and D is diagonal with diagonal entries eiÚ1 , . . . ,eiÚn .
We may then define

U(t) = U1


ei(1−t)Ú1 0 · · · 0

0 ei(1−t)Ú2 · · · 0
...

...
. . .

...
0 0 · · · ei(1−t)Ún

U
−1
1 , 0 ≤ t ≤ 1.

It is easy to see that U(t) ∈ U(n,�) for all t, and U(t) connects U to In. Hence,
U(n,�) is connected for n ≥ 1. Similarly, SU(n,�) is connected for n ≥ 1.

(6)
(7)

This completes the proof. □

Remark 1.30. The previous proposition shows that a Lie group is not necessarily connected.
However, a Lie group is always locally path-connected. This is a general fact about smooth
manifolds.

We end this section with some properties of the connected component of a Lie group.

Proposition 1.31. Let G be a Lie group. Let G0 be the connected component of the identity.

(1) G0 is open.
(2) G0 is a normal subgroup of G .
(3) G /G0 is a discrete group.
(4) If G is connected, then G is generated by every neighborhood of the the identity.
(5) If G is connected, a discrete normal subgroup, È , of G must be contained in the center of

G .

Proof. The proof is given below:
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(1) This is a general fact about topological manifolds.
(2) For all g ∈ G0, we have that gG0 is connected, open, and closed since G0 has these

properties and Lg is a diffeomorphism. Since g ∈ gG0, we have that gG0 = G0.
Similarly, G−10 is connected, open, and closed containing e, so that G−10 = G0. It
follows that G0 is a subgroup of G . Similarly, for all g ∈ G , we have that gG0g−1 is
connected, open, and closed. Since e ∈ gG0g−1, we have that gG0g−1 = G , i.e., G0

is normal.
(3) Using the fact that Lg is a diffeomorphism for each g ∈ G , (2) implies that all con-

nected components of G are cl-open. Since each connected component is cl-open,
G /G0 is discrete.

(4) Let U be an open neighborhood of the identity. For each n ∈�, we denote by Un

the set of elements of the form u1 · · ·un, where each ui ∈ U . Let W :=
⋃

n∈�Un. Each
Un is an open set12. Hence, W is an open set. We now see check that W is a closed
set. Let g ∈W , the closure of W . Since gU−1 is an open neighborhood of g, it must
intersect W . Thus, let h ∈W ∩ gU−1. We have the following:
• Since h ∈ gU−1, then h = gu−1 for some element u ∈ U .
• Since h ∈W , then h ∈ Un for some n ∈�, i.e., h = u1 · · ·un with each ui ∈ U .
We then have g = u1 · · ·unu, i.e., g ∈ Un+1 ⊆ W . Hence, W is closed. Since G is

connected, we must have W = G . This means that G is generated by U .
(5) Let x ∈ È . Consider the map

C ′x : G → G , C ′x(g) = gxg−1

Since È is a normal subgroup, we have that C ′x(G ) ⊆ È . Since G is connected, C ′x(G )
is connected. Since È is discrete, C ′x(G ) is a singleton. Since x ∈ C ′x(G ), we have that
C ′x(G ) = {x}. This shows that x is in the center of G . Hence, È is contained in the
center of G .

This completes the proof. □

1.5. Low Dimensional Examples. We discuss some low dimensional examples.

Example 1.32. (Sp(1,�)) Note that

A =

(
a b
c d

)
∈ Sp(1,�) ⇐⇒

(
d c
b a

)(
0 −1
1 0

)(
a b
c d

)
=

(
0 −1
1 0

)
⇐⇒

(
0 −(ad − bc)

ad − bc 0

)
=

(
0 −1
1 0

)
.

Therefore, we have
Sp(1,�) = SL(2,�).

Example 1.33. Let A ∈ SO(2,�). Since the columns of A are orthonormal, it readily follows
that every matrix in SO(2,�) is of the form:

AÚ =

(
cosÚ −sinÚ
sinÚ cosÚ

)
12This hold by induction.
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Define a map F : U(1,�) � �
1→ SO(2,�) by

F (eiÚ) =

(
cosÚ −sinÚ
sinÚ cosÚ

)
F is clearly bijective. It can be easily checked that F is also smooth. Indeed, we can use
stereographic coordinates on �

1 and think of F as a map into �
4, since SO(2,�) is an

embedded submanifold of �4. We can then restrict the codomain accordingly. Using the
usual angle sum identities, we can check that F is a homomorphism. Hence, F is a bijective
Lie group homomorphism. Hence, F is a Lie group isomorphism13. Hence,

SO(2,�) � �
1

Example 1.34. Let’s now discuss in SU(2,�). Let A ∈ SU(2,�) and write A as

A =

(
Ó Õ
Ô Ö

)
Since A−1 = A∗ and det(A) = 1, we have

1
det(A)

(
Ö −Õ
−Ô Ó

)
=

(
Ó∗ Ô∗

Õ∗ Ö∗

)
⇒ A =

(
Ó −Ô∗
Ô Ó∗

)
Since the columns of A are orthonormal, we must also have that |Ó|2 + |Ô|2 = 1. Hence, any
A ∈ SU(2,�) is of the form

AÓ,Ô =

(
Ó −Ô
Ô Ó

)
, |Ó|2 + |Ô|2 = 1

This argument and Example 1.15 readily show that

SU(2,�) ��u � �
3.

Example 1.34 implies that every plane rotation AÚ by an angle Ú is represented by mul-
tiplication by the complex number eiÚ ∈ U(1,�) � �

1 in the sense that for all z,z′ ∈�,

z′ = âÚ(z) ⇐⇒ z′ = eiÚz.

In some sense, the quaternions generalize the complex numbers in such a way that ro-
tations of �

3 are represented by multiplication by quaternions of unit length. We will
explore this link now.

Example 1.35. (SO(3,�) and SU(2,�)) Consider �u . We can identify �
3 ⊆�u with unit

quarternions such that a = 0. Using our matrix representation, we can equivalently con-
sider the matrices,

Ax1,x2,x3 =

(
ix1 x2 + ix3

−x2 + ix3 −ix1

)
In what follows, instead identify (x1,x2,x3) ∈�3 with

Ax1,x2,x3 =

(
x1 x2 + ix3

x2 − ix3 −x1

)
13Here we use the fact that a bijective Lie group homomorphism is a Lie group isomorphism.
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We have simply factored i and replaced x2 by −x3. Such matrices clearly form a subspace.
Call it V . Note that V can be identified with 2×2 complex matrices which are self-adjoint
and have trace zero. If we identify V with �

3, the inner product on �
3 can be computed

as

⟨(x1,x2,x3), (x′1,x
′
2,x
′
3)⟩ =

1
2
Tr

(
Ax1,x2,x3Ax′1,x

′
2,x
′
3

)
.

This is a straightforward computation. For each U ∈ SU(2,�), define a linear map ÐU :
V → V by

ÐU (X) = UXU−1.

This is well-defined since Tr(ÐU (X)) = Tr(X) = 0 and

(UXU−1)† = (U−1)†X†U† = UXU−1,

showing that UXU−1 is again in V . Furthermore,

1
2
Tr

(
(UX1U

−1)(UX2U
−1)

)
=
1
2
Tr

(
UX1X2U

−1
)
=
1
2
Tr(X1X2),

Thus, each ÐU preserves the inner product on V ��
3. It follows that the we have a map

Ð : SU(2,�)→ SO(3,�)

A priori, Ð is only a map into O(3,�). Since SU(2,�) is connected Ð must actually lie in
SO(3,�) for all U ∈ SU(2,�). It is easy to see that Ð is a group homomorphism.

Here is an example computation. Suppose, for example, that U is the matrix

U =

(
eiÚ/2 0
0 e−iÚ/2

)
.

We obtain

U

(
x1 x2 + ix3

x2 − ix3 −x1

)
U−1 =

(
x′1 x′2 + ix′3

x′2 − ix
′
3 x′1

)
where x′1 = x1 and

x′2 + ix′3 = eiÚ(x2 + ix3) = (x2 cosÚ − x3 sinÚ) + i(x2 sinÚ + x3 cosÚ).

In this case, ÐU is a rotation by angle Ú in the (x2,x3)-plane.

Proposition 1.36. The map kerÐ is a 2-to-1 covering map.

Proof. We just have to check that kerÐ ��2 and that Ð is surjective. Details skipped. □

2. Lie Algebras

2.1. Linearizing a Lie Group. A Lie group can be quite difficult to understand. Fortu-
nately, since a Lie group is a smooth manifold, we can consider its linearized version by
looking at its tangent space at the identity, TeG , which should be thought of as a ”lin-
earized” version of G .

The multiplication and inversion maps are in general non-linear, smooth maps. How-
ever, we can take the differential of these maps which takes elements from Te(G × G ) (or



20 JUNAID AFTAB

TeG ) to TeG . Hence, the differential of the multiplication and inversion maps should be
thought of as linear approximations to to both multiplication and inverse maps on a Lie
group. We compute these differentials. The differential of m at e is

dm(e,e) : TeG ⊕TeG → TeG dm(e,e)(X,Y) = X + Y

where we have identified Te(G ×G ) � TeG ⊕TeG . Indeed, we have

dm(e,e)(X,Y) = dm(e,e)(X,0) + dm(e,e)(0,Y) = dm1
e(X) + dm2

e(Y)

where m1 : G → G is defined by x 7→m(x,e) , m2 : G → G defined by y 7→m(e,y). Since
m1 =m2 = IdG ,so

dm(e,e)(X,Y) = X + Y

The differential of i at e

die : TeG → TeG die(X) = −X

Consider the constant map
1G : G → G 1G (g) = e

d(1G )e is clearly the zero map. 1G can be thought of being given by the following compo-
sition:

g 7→ (g, i(g)) 7→m(g, i(g)) = e

Therefore, we have

0 = d(1G )e(X) = (X,die(X)) = X + die(X), ⇒ die(X) = −X

This shows that ‘near the identity’, multiplication behaves as addition and inversion be-
haves as subtraction.

Remark 2.1. It turns out that the smoothness of the inversion map in a Lie group follows form
the smoothness of the multiplication map. Let É = {(g,g−1) ∈ G × G }. Then É is an embedded
submanifold of G ×G14. Consider the diagram below:

G

G É G ×G

G

d Û

á1

á2

Here d is the map g 7→ (g,g−1), Û is the canonical embedding É in G × G and á1 and á2 are
projection maps. Clearly, Û,á1 and á2 are smooth maps. We claim d is smooth as well. Consider
á1 ◦ Û : É→ G × G → G , which maps (g,g−1) 7→ g. This is clearly a homeomorphism, and by
the inverse function theorem, a diffeomorphism as well. But d is its inverse, and is thus smooth.
But then the inversion map is just,

á2 ◦ Û ◦ d , g 7→ g−1,

which is the composition of smooth maps and is thus smooth.

14Consider the map m : G × G → G given by multiplication. This is a smooth map by assumption and É =
m−1(e). Since m is a Lie group homomorphism and m has constant rank, it suffices to show that for (e,e) ∈ É,
dm|(e,e) : T(e,e)(G ×G )→ Te(G ) is surjective. But this is actually clear from the remark above.
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However, this change of perspective has resulted in some loss of information about the
Lie group. Indeed, TpM can be computed for each p ∈ M where M is a smooth manifold.
If M = G is a Lie group, what is special about TeG? Can TeG be interpreted in a different
manner allowing us to further glean into the structure of G . For instance, G will in general
be a non-commutative group. Therefore, the multiplication and inversion maps will in
general be non-commutative. Is it possible to endow TeG an additional structure that
captures this non-commutativity? We explore this detail next.

2.2. Left-Invariant Vector Fields.

Definition 2.2. Let G be a Lie group. A vector field X on G is said to be left-invariant if
it is invariant under left translations. That is,

d(Lg)g0 ·Xg0 = Xgg0 ,

for all g,g0 ∈ G . We denote the set of left-invariant vector fields as X L(G ).

If X and Y are left-invariant vector fields, then we have

(dLg)g0(aXg0bYg0) = a(dLg)g0(Xg0) + b(dLg)g0(Yg0) = Xgg0 + Ygg0

for all g ∈ G and a,b ∈ �, we see that X L(G ) is a linear subspace of X (G ), the vector space
of all vector fields on G . We now show that X L(G ) is isomorphic to Tp(G ) as vector spaces.

Proposition 2.3. Let G be a Lie group and let X L(G ) denote the vector space of left-invariant
vector fields on G . Then TeG � X L(G ) as vector spaces via the map

ê : X L(G )→ TeG ê(X) = Xe

Proof. Clearly, ê is linear over �. Moreover, ê is injective. Indeed, if ê(X) = Xe = 0 for some
X ∈ X L(G ), then left-invariance of X implies that

Xg = d(Lg)e(Xe) = d(Lg)e(0) = 0

for every g ∈ G . So X = 0. Let v ∈ TeG be arbitrary. We can define a (rough) vector field vL

on G by
vL|g = d(Lg)e(v).

Clearly, if ê is surjective, then we must have that ê(vL) = v. Thus it suffices to show that vL

is a smooth, left-invariant vector field. We show vL is a left-invariant vector field.

d(Lh)g(v
L|g) = d(Lh)h · d(Lg)e(v)

= d(Lh ◦ Lg)e(v)

= d(Lhg)e(v) = vLhg

Hence, vL is a left-invariant vector field, vL ∈ X L(G ). The proof of smoothness of vL is
skipped. □

The proof of Proposition 2.3 once again relies on an astute application of the comment
made in Remark 1.7. We can go a step further. We now can use the multiplication operator
to see how integral curves transform under the action of the diffeomorphism generated by
left multiplication.
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Lemma 2.4. Let G be a Lie group.

(1) Every left-invariant vector field on G is complete, i.e. its corresponding integral curves
are defined for all t ∈�.

(2) If Õ is an integral curve of some left-invariant vector field, then

Õ(t + s) = Õ(t)Õ(s)

for each s, t ∈�.
(3) Conversely, if Õ :�→ G is a smooth curve such that

Õ(t + s) = Õ(t)Õ(s)

for s, t ∈�, then Õ is the integral curve of some left-invariant vector field.

Proof. The proof is given below:

(1) Let X ∈ XL(G ). There exists a maximal integral curve Õe : (−ê,ê) → G such that
0 ∈ (a,b), Õe(0) = e and Õ′e(t) = XÕe(t) and ê > 015. Since

d
dt

∣∣∣∣∣
t=0

Lg(Õ(t)) = d(Lg)e(XÕ(0)) = Xg ,

we have that Õg := Lg ◦Õe is an integral curve of X starting at g ∈ G for each g ∈ G .
Assume ê <∞ and let s = Õ(ê/2). Define a curve æ : (−ê,3ê/2)→ M by

æ(t) =

Õe(t), for − ê < t < ê,

Õg(t − ê/2), for − ê/2 < t < 3ê/2.

These two definitions agree on the overlap. Hence, æ(t) is an integral curve starting
at e. Since 3ê/2 > ê, this is a contradiction. Hence X is complete.

(2) Let s ∈ �. The map t 7→ Õ(s + t) is an integral curve16 with initial point g = Õ(s).
However by (1), t 7→ Lg ◦ Õ(t) is also an integral curve with initial point g = Õ(s).
By uniqueness,

Õ(s + t) = Lg ◦Õ(t) = Õ(s)Õ(t)

(3) Let Xe = dÕ(�t |0) and let X denote the corresponding left-invariant field. The as-
sumption,

Õ(t + s) = Õ(t)Õ(s)

for s, t ∈� implies that
Õ ◦ Lt = LÕ(t) ◦Õ

for each t ∈�. Therefore,

dÕ ◦ dLs = dLÕ(s) ◦ dÕ

For any t0 ∈�, we have

Õ′(t0) = dÕ

(
d
dt

∣∣∣∣∣
t0

)
= dÕ

(
dLt0(dÕ

(
d
dt

∣∣∣∣∣
0

)
)

)
= dLÕ(t0)

(
dÕ

(
d
dt

∣∣∣∣∣
0

))
= dLÕ(t0)(Xe) = XÕ(t0)

15WLOG, we have assumed the domain of the maximal integral curve is symmetric.
16This follows from the translation lemma.
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so Õ is an integral curve of X.

This completes the proof. □

Given X ∈ XL(G ), the integral curve Õ : � → G determined by X such that Õ(t + s) =
Õ(t)Õ(s) for each t,s ∈ � is called the one-parameter subgroup generated of G by X. Thus
there are one-to-one correspondences

{one-parameter subgroups of G } ←→ XL(G )←→ TeG .

Remark 2.5. Note that the correspondence set above is only a bijective correspondence. We only
have a vector space isomorphism between XL(G ) and TeG .

2.3. Lie Algebra of a Lie Group. We are now in a position to develop a measure of the
”non-commutativity” of a Lie group. Let X,Y ∈ XL(G ), and let æX ,æY be the corresponding
one-parameter subgroups (and hence maximal integral curves) of X and Y respectively
such that

æX (0) = e = æY (0) (æX )
′
(0) = Xe, (æY )

′
(0) = Ye

for e ∈ G . A heuristic argument suggests that for XY − YX might be able to measure the
non-commutativity of multiplication and inversion maps. If X and Y are (left-invariant)
smooth vector fields on G , then XY might not be a vector field. However, a remarkable
fact is that the difference

[X,Y] := XY − YX
is a vector field. We verify this claim. Recalling that vector fields are in one-to-one corre-
spondence with derivations of C∞(M), it suffices to check that [X,Y] is a derivation. Lin-
earity is clear. We verify the Leibniz rule. If f ,g ∈ C∞(M), then we have,

[X,Y](fg) = X(Y(fg))− Y(X(fg))
= X(fY(g) + Y(f )g)− Y(fX(g) +X(f )g)

= f (XYg) + (Xf )(Yg) + (XYf )g + (Yf )(Xg)

− (Yf )(Xg)− f (YXg)− (YXf )g − (Xf )(Yg)
= f (XYg − YXg) + (XYf − YXf )g
= f ([X,Y]g) + ([X,Y]f )g.

In fact, if X,Y are left-invariant vector fields, then [X,Y] is a left-invariant vector field. This
can be easily checked. It is useful to write [X,Y] in terms of its components in some chart.
Let (U ,ï) be a co-ordinate chart on G . We can write

X = X i�i and Y = Y j�j

Note that

[�i ,�j ]f = �i�j f −�j�i f =
�2

�x i�x j
(
f ◦ï−1

)
− �2

�x j�x i
(
f ◦ï−1

)
= 0.

Therefore, we have

[X,Y] = X i�iY
j�j − Y j�jX

i�i =
n¼

i ,j=1

(
X i�iY

j − Y i�iX
j
)
�j .
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In any case, we can define the notion of a Lie bracket which is a ‘measure this non-
commutativity’ of multiplication in a Lie group.

Definition 2.6. Let G be a Lie group. The Lie bracket of G is map bilinear map given by

[·, ·] : XL(G )×XL(G )→ XL(G ) [X,Y] = XY − YX

We can now make the above claim precise by showing that the Lie bracket measures the
extent to which the derivatives in directions X and Y do not commute.

Proposition 2.7. Let G be a Lie group. Let X,Y ∈ XL(G ), and let æX be the flow of X. Then

[X,Y]e =
d
dt

(
d(æX

−t)æX (t)YæX (t)

)∣∣∣∣∣
t=0

.

Here æX
−t denotes the map æX

−t : G → G generated by flowing along integral curve generated by
−X for t units of time.

Proof. Choose any chart æ for G about e. In this chart, we can write uniquely X = X j�j and
Y = Yk�k, where the coefficients X j and Yk are smooth functions on a neighborhood of e.
Working in co-ordinates, we have,

d
dt

(
d(æX

−t)æX (t)YæX (t)

)j ∣∣∣∣∣
t=0

= (�t�kæ
X,j
−t )

∣∣∣∣
t=0

Yk
e + (�kæ

X,j
−t )�tY

k
æX (t)

∣∣∣∣
t=0

= (�k�tæ
X,j
−t )

∣∣∣∣
t=0

Yk
e + ÖjkX

i
e�iY

k
e

= −Yk
e �kX

j
e +X i

e�iY
j
e

= X i
e�iY

j
e − Y i

e�iX
j
e

= [X,Y]je.

This completes the proof. □

Definition 2.8. Let G be a Lie group. The Lie algebra of G of G , denoted as g, is TeG
endowed with the Lie bracket as defined in Definition 2.6.

Note that
dimg = dimG

Example 2.9. Let G = GL(n,k). Then G is an open subset of kn
2
. Hence, the corresponding

Lie algebra is gl(n,k) = M(n,k).

2.4. Abstract Lie Algebras. Let X,Y ,Z ∈ XL(G ) and a,b ∈ �. We note that the Lie bracket
satisfies the following properties:

(1) [X,Y] = −[Y ,X]
(2) [aX + bY ,Z] = a[X,Z] + b[Y ,Z]
(3) [[X,Y],Z] + [[Y ,Z],X] + [[Z ,X],Y] = 0

The first two properties are immediate. The third (known as the Jacobi identity) can be
verified directly. First note that we have,

[[X,Y],Z]f = [X,Y]Zf − Z[X,Y]f = XYZf − YXZf − ZXYf + ZYXf
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As a result, we have:

[[X,Y],Z]f + [[Y ,Z],X]f + [[Z ,X],Y]f = XYZf − YXZf − ZXYf + ZYXf

+ YZXf − ZYXf −XYZf +XZYf

+ ZXYf −XZYf − YZXf + YXZf

= 0.

These observations motivate the following definition of an abstract Lie algebra.

Definition 2.10. A Lie algebra is a real vector space, g, together with a map [·, ·] : g×g→ g

called the Lie bracket with the following properties:

(1) [X,Y] is �-bilinear,
(2) [X,Y] = −[Y ,X] for all X,Y ∈ g, and
(3) (Jacobi Identity) [X, [Y ,Z]] + [Y , [Z ,X]] + [Z , [X,Y]] = 0 for all X,Y ,Z ∈ g.

A Lie algebra homomorphism is a linear map T : g→ h that preserves the Lie bracket.

Remark 2.11. If g is a Lie algebra and T1, . . . ,Tn is a vector space basis for g, then we can write

[Ta,Tb] =
n¼

c=1

f cabTc,

where the coefficients f cab ∈� are called the structure constants for the given basis {Ta}. Because
of bilinearity, the structure constants determine all commutators between elements of V . The
structure constants satisfy,

f cab = −f
c
ba,

fdab f
e
dc + fdbcf

e
da + fdcaf

e
db = 0.

Here we have used the Einstein summation convention and sum over d . Conversely, every set of
n3 numbers f cab ∈� satisfying these two conditions defines a Lie algebra structure on V = Kn.

Example 2.12. The following is a list of examples of Lie algebras.

(1) Let g = GL(n,k) Then g is a Lie algebra with bracket operation given by

[X,Y] = XY − YX

The bilinearity and skew symmetry of the bracket are evident. To verify the Ja-
cobi identity, note that each double bracket generates four terms, for a total of 12
terms. It can be verified that the product of X, Y , and Z in each of the six possible
orderings occurs twice, once with a plus sign and once with a minus sign.

(2) Let g =�
3 and let [·, ·] :�3 ×�3→�

3 be given by

[x,y] = x × y

where x × y is the cross product (or vector product). Then g is a Lie algebra. Once
again, the bilinearity and skew symmetry of the bracket are evident. Jacobi identity
can be verified using a tedious computation.
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Let LieAlg denote the category of (real) Lie algebras. We note that we have defined a
functor Lie from the category of Lie algebras, associating to each Lie group its Lie algebra:

Lie : LieGrp→ LieAlg

This is essentially because if F : G → H is a Lie group homomorphism and X,Y ∈ g, then

dFe[X,Y]g = [dFe(X),dFe(Y)]h.

Proposition 2.13. Let G ,H be Lie groups. If F : G → H is a Lie group homomorphism and
X,Y ∈ g, then

dFe[X,Y]g = [dFe(X),dFe(Y)]h.

Proof. □

Note that gl(n,k) can be thought of as a Lie algebra in two different ways. First, it is a
Lie algebra identified as the tangent space to GL(n,k), with the Lie bracket given by the
Lie bracket on vector fields. Second, it can be identified as an abstract Lie algebra with
the Lie bracket given by the commutator of matrices. A natural question arises: what
is the relationship between these two Lie algebra structures? In fact, these two notions
coincide in the sense that there is a Lie algebra isomorphism between these two Lie algebra
structures on gl(n,k). We prove the result below for k =�.

Proposition 2.14. The natural map

TIn GL(n,�)→ gl(n,�)

is a Lie algebra isomorphism.

Proof. The natural isomorphism takes the form

Ai
j
�

�X i
j

∣∣∣∣∣
In

7→ Ai
j .

Any matrix A = (Ai
j ) ∈ gl(n,�) determines a left-invariant vector field AL ∈ TIn GL(n,�)

AL
∣∣∣
X
= d(LX )In (A) = d(LX )In

(
Ai
j
�

�X i
j

∣∣∣∣∣
In

)
= X i

jA
j
k

�

�X i
k

∣∣∣∣∣
X
.

Given A,B ∈ gl(n,�), the Lie bracket of the corresponding left-invariant vector fields is
given by

[AL,BL] =

[
X i
jA

j
k

�

�X i
k
,Xp

qB
q
r

�

�Xp
r

]
= X i

jA
j
k

�

�X i
k

(
Xp
qB

q
r

) �

�Xp
r
−Xp

qB
q
r

�

�Xp
r

(
X i
jA

j
k

) �

�X i
k

= X i
jA

j
kB

k
r

�

�X i
r
−Xp

qB
q
r Ar

k
�

�Xp
k

=
(
X i
jA

j
kB

k
r −X i

jB
j
kA

k
r

) �

�X i
r
.
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Evaluating this last expression when X is equal to the identity matrix, we get

[AL,BL]
∣∣∣
In
=

(
Ai
kB

k
r − B i

kA
k
r

) �

�X i
r

∣∣∣∣∣
In

.

This is the vector corresponding to the matrix commutator bracket [A,B ]. Since the left-
invariant vector field [AL,BL] is determined by its value at the identity, this implies that

[AL,BL] = [A,B ]L,

which implies that the natural map is a Lie algebra isomorphism. □

We will discuss abstract Lie algebras in more detail later on.

3. Exponential Map

If we have a Lie group G and a Lie algebra TeG , we aim to find a method to map elements
of the algebra back onto the group. Let’s see how to do this in the case of matrix Lie groups.
Let G be a matrix Lie group over k = �,�,� with associated Lie algebra, g. If X ∈ g, the
corresponding one-parameter subgroup satisfies the initial value problem (IVP):

Õ(0) = In, Õ′(0) = X.

The solution to this IVP is given by the matrix exponential:

Õ(t) = etX :=
∞¼
n=0

tnXn

n!
, t ∈�.

Remark 3.1. It can be checked that eX converges for all X ∈ M(n,k) and that eX is a continuous
function of X.

Example 3.2. We compute the exponential map in some cases:

(1) We will see later on that the Lie algebra of U(1,�) is isomorphic i�. Hence, we
have

exp: i�→ U(1,�) � �
1,

ix 7→ eix .

(2) We will see later on that the Lie algebra of SO(2,�) is isomorphic � with generator

X =

(
0 −1
1 0

)
.

It is easy to see that

X2n = (−1)n I2, X2n+1 = (−1)nX.

Hence, we have

etX =
∞¼
n=0

tnXn

n!

=
∞¼
n=0

(−1)nt2n

(2n)!

(
1 0
0 1

)
+
∞¼
n=0

(−1)nt2n+1

(2n +1)!

(
0 −1
1 0

)
=

(
cos t −sin t
sin t cos t

)
∈ SO(2,�)
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More generally, we can define an exponential map for an arbitrary Lie group. The ex-
ponential map provides a natural way of mapping TeG onto G such that exp acts as a
homomorphism when restricted to any line in TeG .

Definition 3.3. Let G be a Lie group with Lie algebra g := TeG . The exponential map of
G is the map

exp : g→ G , exp(X) = Õ(1),

where Õ :�→ G is the integral curve associated with the left-invariant vector field, X.

We choose Õ(1) because we want exp to be its own derivative, similar to eX .

Proposition 3.4. Let G be a Lie group and let g be its Lie algebra. Let exp denote the exponential
map.

(1) For any X ∈ g, Õ(t) = exp(tX) is the one-parameter subgroup of G generated by X.
(2) exp is a smooth map.
(3) For any X ∈ g and s, t ∈�,

exp((s + t)X) = exp(sX)exp(tX), (exp(X))−1 = exp(−X)

(4) For any X ∈ g and n ∈�, (exp(X))n = exp(nX).
(5) The differential (d exp)0 : g � T0g→ TeG is the identity map.
(6) The exponential map restricts to a diffeomorphism from some neighborhood of 0 in g to

a neighborhood of e in G .
(7) If H is another Lie group with Lie algebra h and f : G → H is a Lie group homomorphism,

the following diagram commutes:

g h

G H

exp

f∗

exp

f

Here f∗ = d0f is the map induced by the Lie functor. This shows that exp defines a
natural transformation between the functors Lie and the identity functor.

Proof. The proof is given below:

(1) Let Õ :�→ G be the one-parameter subgroup generated by X. For any fixed s ∈�,
it follows that Õs(t) = Õ(st) is the integral curve of sX starting at e. Hence,

exp(sX) = Õs(1) = Õ(s)

(2) Define a map ï :� × (G × g)→ G × g by

ï(t,g,X) = (g · exp(tX),X),

Note that this is the flow of the left-invariant vector field (X,0) on G × g. Thus, it is
smooth as the flow of a smooth vector field. Now we can decompose exp as

exp = á1 ◦ï ◦ i = g
i−→� ×G × g

ï
−→ G × g

á1−−→ G ,

because

á1(ï(i(X))) = á1(ï(1,e,X)) = á1(exp(X),X) = exp(X)
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for every X ∈ g. We conclude that exp is smooth as a composition of smooth maps.
(3) This follows from (1) since Õ is group homomorphism.
(4) This follows from (3), and induction.
(5) Let X ∈ g and let Õ :�→ g be the curve Õ(t) = tX. Then Õ′(0) = X, and (1) implies

(d exp)0(X) = (d exp)0(Õ
′(0)) = (exp◦Õ)′(0) = d

dt

∣∣∣∣∣
t=0

exp(tX) = X.

This proves the claim.
(6) This follows from (5) and the inverse function theorem.
(7) We will show that for all t ∈�,

exp(tf∗(X)) = f (exp(tX)).

By (1), the left-hand side is the one-parameter subgroup generated by f∗(X). Thus,
if Õ(t) = f (exp(tX)), it suffices to show that Õ : � → H is a Lie group homomor-
phism satisfying Õ′(0) = f∗(X). It is a Lie group homomorphism because it is the
composition of the homomorphisms f and t 7→ exp(tX). Note that we have:

Õ′(0) =
d
dt

∣∣∣∣∣
t=0

f (exp(tX)) = df0

(
d
dt

∣∣∣∣∣
t=0

exp(tX)

)
= df0(X) = f∗(X).

This completes the proof. □

Remark 3.5. Note that Proposition 3.4(3) implies that exp(0) = eG .

The intuition behind Proposition 3.4(6) is that the exponential map can be used to re-
construct a Lie group from its Lie algebra, at least locally near the identity. We now make
precise this intuition.

Proposition 3.6. Let G be a Lie group with Lie algebra g. The exponential map generates G0,
the connected component of the identity. In particular, if G is connected, every g ∈ G can be
written as

g = exp(X1) · · ·exp(Xn)

for some X1, · · · ,Xn ∈ g.

Proof. Proposition 3.4(6) implies that there exists open neighbourhods 0 ∈ V ⊆ g and eG ∈
U ⊆ G such that U = exp(V) is a diffeomorphism. For any g ∈ G0, choose a continuous path
Õ : [0,1]→ G with Õ(0) = eG and Õ(1) = g. We can find some Ö > 0 such that if |s − t| < Ö,
then Õ(s)Õ(t)−1 ∈ U17. Divide [0,1] into m pieces, where 1/m < Ö. Then, for j = 1, . . . ,m, we
see that Õ((j −1)/m)−1Õ(j/m) belongs to U , so that

Õ((j −1)/m)−1Õ(j/m) = exp
(
X j

)
for some elements X1, . . . ,Xm of g. Thus,

A = Õ(0)−1Õ(1)

= Õ(0)−1Õ(1/m)Õ(1/m)−1Õ(2/m) · · ·Õ((m −1)/m)−1Õ(1)

= exp(X1) · · ·exp(Xn)

17This follows from a compactness argument.
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This completes the proof. □

However, it is not true that one can globally recover a Lie group from a Lie algebra via
the exponential map. This is because the exponential map need not be surjective.

Example 3.7. Let G = SL(2,�). Consider the matrix:

A =

−1 1

0 −1


We claim that we cannot find X ∈ sl(2,�) such that A = eX . Assume to the contrary that
there is a trace zero matrix X such that,

B =

−1 1

0 −1

 = eX = eX/2eX/2 = (eX/2)2

However, we show that A doesn’t have a square root in GL(2,R). Assume this is not the
case. Then we have,

A =

−1 1

0 −1

 =
a b

c d


2

=

a
2 + bc ab + bd

ac + cd bc + d2

 , ad − bc , 0.

Comparing coefficients, we have the system of equations,

a2 + bc = −1, ab + bd = 1, ac + cd = 0, bc + d2 = −1.

Note that we can’t have c = 0 or else this would imply that we have a2 = −1 by the first
equation. Hence c , 0 implies that we have d = −a by the third equation. But then the
second equation implies we have,

1 = ab + bd = ab − ba = 0,

a contradiction. However, Proposition 3.6 implies that each G = SL(2,�) can be written as
a product of finitely many expressions in exp(g).

Remark 3.8. Later on, we will see that a sufficient condition for the exponential map to be
surjective is that G is a compact, connected Lie group.

3.1. Abelian Lie Groups. We can use the exponential map, along with the fact that it can
be used to construct a Lie group from its Lie algebra locally, to classify abelian Lie groups.
We first prove a lemma which we state for a general Lie group.

Lemma 3.9. Let G be a connected Lie group with Lie algebra g.

(1) If X,Y ∈ g, then

exp(tX)exp(sY) = exp(sY)exp(tX) ⇐⇒ [X,Y] = 0

for all t,s ∈�.
(2) G is abelian if and only if g is abelian. That is, [X,Y] = 0 for all X,Y ∈ g.
(3) We have

exp(X)exp(Y) = exp(X + Y)

for all X,Y ∈ g if and only if G is abelian.
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(4) If G is abelian, then the exponential map is surjective that is a group homomorphism of
abelian groups.

Proof. The proof is given below:

(1) For g ∈ G , note that left multiplication map by Lg takes integral curves of X to
integral curves of X. Thus, the map Õ(t) = Lg(exp tX) is the integral curve such that
Õ(0) = g and Õ′(0) = Xg . It follows that

Rexp tX (g) = g exp tX = Lg(exp tX) = Õ(t).

Recall that we have

[X,Y]e =
d
dt

(
d(æX

−t)æX (t)YæX (t)

)∣∣∣∣∣
t=0

.

Note that we have

d(æX
−t)æX (t)YæX (t) = dRexp(−tX)(Yexp(tX))

= dRexp(−tX)(dLexp(tX)(Y))

= d(Rexp(−tX) ◦ Lexp(tX))(Y) = dCexp(tX)(Y)

Here C(·) denotes the conjugation map. Therefore, we have

[X,Y]e =
d
dt

(
d(æX

−t)æX (t)YæX (t)

)∣∣∣∣∣
t=0

=
d
dt

(
dCexp(tX)(Y)

)∣∣∣∣∣
t=0

We first prove the forward implication. Since G is connected, the assumption im-
plies that Cg(h) = h for all g,h ∈ G . With X,Y ∈ g as above, we have [X,Y] = 0 from
the formula above since the differential is of Cg is zero for all g ∈ G . The converse
follows similarly.

(2) If G is abelian, the left hand side of the statement in (1) is true. Hence, g is abelian.
Conversely, if g is abelian we have that

exp(tX)exp(sY) = exp(sY)exp(tX)

for all X,Y ∈ g and t,s�. Since G is connected, As this implies that Cg(h) = h for
all g,h ∈ G as stated in (1). Hence, G is abelian.

(3) The forward implication is clear from (1) and (2). Conversely, assume that G is
abelian. Consider the map:

Õ(t) = (exp(tX))(exp(tY))

We have

Õ(t + s) = (exp((t + s)X))(exp((t + s)Y))

= (exp(tX))(exp(sX))(exp(tY))(exp(sY))

= (exp(tX))(exp(tY))(exp(sX))(exp(sY))

= Õ(t)Õ(s).

Hence, Õ is a 1-parameter subgroup. Note that Õ(0) = e and Õ′(0) = X + Y Hence,

Õ(t) = (exp(tX))(exp(tY)) = exp(t(X + Y))
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Plug in t = 1 now.
(4) Consider the exponential map:

exp : g→ G .

Since G is connected and abelian if g ∈ G

g = exp(X1) · · ·exp(Xn) = exp(X1 + · · ·+Xn) ∈ exp(�)

for Xi ∈ g. The last equality follows from (3). Thus, exp is surjective. Clearly, exp is
a group homomorphism of abelian groups.

This completes the proof. □

Proposition 3.10. Let G be a connected Lie group.

(1) If G is 1-dimensional, then G is isomorphic to � or �1.
(2) If dimG = n and G is abelian, then

G � (�1)s ×�n−k

for some 0 ≤ s ≤ n.

Proof. The proof is given below:

(1) Since G is one-dimensional, g � � is an abelian Lie algebra. By Lemma 3.9, G is
abelian. Since G is connected as well, the exponential map is a surjective group
homomorphism. We can think of � as a smooth manifold/Lie group. Hence, exp is
a surjective Lie group homomorphism. If kerexp = {0}, exp is a bijective Lie group
homomorphism. Hence, it is a Lie group isomorphism18. Hence,

G ��.

Otherwise, assume that kerexp , {0}. We claim that kerexp = r� for some r > 0.
Indeed, Let

r = inf{a ∈ A : a > 0}
Since exp is injective on some neighborhood of 0, we have r > 0. Moreover, r ∈ A
since A is closed. Thus, r�⊆ A since A is a group. We now show that A ⊆ r�. Let
a ∈ A and suppose that a < r�. Then, there exists k ∈� such that 0 < a−kr < r. But
a − kr ∈ A since r ∈ A, which contradicts the definition of r. Thus, A = r�. In this
case �

1 ��/r�. The exp descends to a bijective group homomorphism:

ẽxp : �1 �
�

kerexp
→ G

This is a smooth map since �→ �
1 is a smooth submersion. Hence, ẽxp is a bijec-

tive Lie group homomorphism. Hence,

G � �
1

(2) Consider the exponential map:

exp : g→ G

18A bijective Lie group homomorphism is a Lie group isomorphism.
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Since dimG = n and G is abelian, g is also abelian. Hence, g � �
n with the trivial

Lie bracket. Since G is connected, the exponential map is surjective group ho-
momorphism. Since exp is a local diffeomorphism, exp has discrete kernel. This
follows because �

n is a Lie group and it is homogenous. Using the general fact that
a discrete subgroup of �n is isomorphic to �

s for some 0 ≤ s ≤ n. Hence, as in (1)
we have

G �
�

n

�
s � (�1)s ×�n−s .

This completes the proof. □

3.2. Lie Subalgebras & Lie Subgroups. We have defined Lie groups and Lie algebras. We
would now like to define sub-objects for Lie groups and Lie algebras. In this section, we
define subobjects of a Lie algebra.

Definition 3.11. Let g be a Lie algebra. A Lie subalgebra, h, is a vector subspace of g such
that [X,Y] ∈ h holds for all X,Y ∈ h.

Example 3.12. The simplest example is g =�
2, endowed with the trivial Lie algebra [·, ·] ≡

0. Then any vector subspace of �n is a Lie subalgebra of g.

Many standard linear algebra facts carry over to the setting of Lie algebras and Lie
subalgebras.

Lemma 3.13. Let A : g→ h be a Lie algebra homomorphism. Then kerA ⊆ g and imA ⊆ h are
Lie subalgebras.

Proof. The kernel and image of A are linear subspaces for algebraic reasons, so it suffices to
check that they are closed under the brackets on g and h, respectively. For any X,Y ∈ kerA
we have

A([X,Y]) = [A(X),A(Y)] = [0,0] = 0

so [X,Y] ∈ kerA and the kernel is closed under brackets. Similarly, for any u,v ∈ g the
equation

[A(X),A(Y)] = A([X,Y])

implies that [A(X),A(Y)] ∈ ImA. Hence the image is closed under brackets. □

The matrix Lie groups discussed before are all examples of (closed) Lie subgroups, to
be defined shortly. In fact, these are embedded submanifolds of the general linear group.
Should we require a Lie subgroup to be an embedded manifold? The answer is no.

Let g = �
2. We consider Lie subalgebras of g that are 1-dimensional subspaces of �2.

All such Lie subalgebras are of the form:

hÓ = the line passing through the origin in �
2 whose slope equals Ó.

If Ó = p
q , where p,q are co-prime integers, then

Gp,q =

{(
eipt 0
0 eiqt

)
: t ∈�

}
⊆ GL(2,�)
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can be easily seen to be a matrix Lie group of GL(2,�) such that the Lie algebra of Gp,q is
hÓ. All such Gp,q are difeomorphic to �

1 and are all embedded submanifolds in �
1 ×�1.

However, if Ó is irrational, then

GÓ =

{(
ei t 0
0 eiÓt

)
: t ∈�

}
⊆ GL(2,�)

is a (non-matrix) Lie group with Lie algebra hÓ. Note that GÓ is an immersed manifold of
�
1 ×�1 such that GÓ = �

1 ×�1.

Definition 3.14. Let G be a Lie group. A Lie subgroup, H, is a subgroup of G that is
also an immersed submanifold such that mH×H and iH : H → H are smooth maps. That is,
Û : H ↪→ G is a Lie group homomorphism that is a smooth immersion.

Note that we identify and define TeH as a subspace of TeG . Hence, if H is a Lie subgroup
of G , then the Lie algebra of H is a Lie subalgebra of the Lie algebra of G .

Remark 3.15. According to the discussion above, a Lie subgroup of a compact Lie group could
be a non-compact Lie subgroup!

Proposition 3.16. Let G be a Lie group with Lie algebra g. Let H be a Lie subgroup of G with
Lie algebra h.

(1) The one-parameter subgroups of H are precisely those one-parameter subgroups of G
whose initial velocities lie in TeH.

(2) The exponential map of H is the restriction to h of the exponential map of G .
(3) We have then

h = {X ∈ g | expG (tX) ∈ H for all t ∈�}.

Proof. The proof is given below:

(1) Let Õ :�→ H be a one-parameter subgroup. Then the composite map

�

ï
−→ H ↪→ G

is a one-parameter subgroup of G , which clearly satisfies Õ′(0) ∈ TeH. Conversely,
suppose Õ : �→ G is a one-parameter subgroup whose initial velocity lies in TeH.
Let Õ̃ : �→ H be the one-parameter subgroup of H with the same initial velocity.
By composing with the inclusion map, we can also consider Õ̃ as a one-parameter
subgroup of G . Since Õ and Õ̃ are both one-parameter subgroups of G with the
same initial velocity, they are equal.

(2) This follows from (1).
(3) If X ∈ h, then (1) implies that expG (tX) ∈ H for all t ∈ �. Now assume that

expG (tX) ∈ H for all t ∈ �. It can be shown that expG (tX) is a smooth map into
H [1, Theorem 19.25]. Hence, expG (tX) is a one-parameter subgroup of H. By (1),
expG (tX) is a one-parameter subgroup of G such that X ∈ TeH = h.

This completes the proof. □

We can compute the Lie algebras of some classical matrix Lie groups for k = �,�,�.
Note that Proposition 3.16 and the fact that the Lie algebra of GL(n,k) is M(n,k) implies
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that elements in the Lie algebra of a matrix Lie group are contained in M(n,k). We first
prove an important lemma.

Lemma 3.17. Let k =�,� and let X ∈ M(n,k). We have

deteX = eTrX

Proof. Consider the Lie group homomorphism: det : GL(n,�)→�
×We know that d(det)In (X) =

Tr(X). Proposition 3.4(7) then implies that

deteX = eTrX .

This completes the proof. □

We can now compute the Lie algebras of some matrix Lie groups:

Example 3.18. Let k =�,�,�.

(1) Assume that k ,�. Let G = SL(n,k). If X ∈ sl(n,k), then consider Õ(t) = etX . Since
Õ(t) ∈ SL(n,k), we must have that

1 = detÕ(t) = detetX = etTrX .

Hence, we have

0 =
d
dt

etTrX
∣∣∣∣∣∣
t=0

= TrX
d
dt

etTrX
∣∣∣∣∣∣
t=0

= TrX.

Hence, the Lie algebra sl(n,k) of SL(n,k) is given by

sl(n,k) = {X ∈ M(n,k) | TrX = 0}.

(2) Let G =O(n,�). Consider Õ(t) = etX ∈O(n,�). Differentiating the equation Õ(t)TÕ(t) =
In at the identity t = 0, we have

0 =
d
dt

(
Õ(t)TÕ(t)

)
=

d
dt

(
(etX )TetX

) ∣∣∣∣∣
t=0

=
(
XTetX + (etX )TX

) ∣∣∣∣∣
t=0

= XT +X

Hence, the Lie algebra o(n,�) of O(n,�) is given by

o(n,�) = {X ∈ M(n,�) : XT = −X}.

(3) Using (3), we can obtain the Lie algebra su(n,�) of G = SO(n,�). We observe that
Õ(t) as in (3) additionally satisfies the constraint:

1 = detÕ(t) = detetX = etTrX for all t ∈�.

Therefore, we have

so(n,�) = {X ∈ o(n,�) : TrX = 0} = o(n,�)

The last equality follows since each matrix in o(n,�) already has zero trace.
(4) Let G = U(n,�). Consider Õ(t) = etX ∈ U(n,�). Differentiating the equation Õ(t)∗Õ(t) =

In at the identity t = 0, we have

0 =
d
dt

(Õ(t)∗Õ(t)) =
d
dt

(
(etX )∗etX

) ∣∣∣∣∣
t=0

=
(
X∗etX + (etX )∗X

) ∣∣∣∣∣
t=0

= X∗ +X
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Hence, the Lie algebra u(n,�) of U(n,�) is given by

u(n,�) = {X ∈ M(n,�) : X∗ = −X}.

It is easy to check that u(n,�) is not a complex Lie algebra. Hence, U(n,�) is not a
complex Lie group.

(5) Using (5), we can obtain the Lie algebra su(n,�) of G = SU(n,�). We observe that
Õ(t) as in (5) additionally satisfies the constraint:

1 = detÕ(t) = detetX = etTrX for all t ∈�.

Therefore, we have

su(n,�) = {X ∈ u(n,�) : TrX = 0}.

It is easy to check that su(n,�) is not a complex Lie algebra. Hence, SU(n,�) is not
a complex Lie group.

(6) Let G = U(n,�). A similar argument as in (5) shows that the Lie algebra u(n,�) of
U(n,�) is given by

u(n,�) = {X ∈ M(n,�) : XH = −X}.

(7) Let G = Sp(n,�). Consider Õ(t) = etX ∈ Sp(n,�). Differentiating the equation
Õ(t)TJÕ(t) = J at the identity t = 0, we have

0 =
d
dt

(
Õ(t)TJÕ(t)

)
=

d
dt

(
(etX )TJetX

) ∣∣∣∣∣
t=0

=
(
XTetXJ + (etX )TJX

) ∣∣∣∣∣
t=0

= XTJ + JX

Hence, the Lie algebra sp(n,�) of Sp(n,�) is given by

sp(n,�) = {X ∈ M(2n,�) : XTJ = −JX}.

A simple counting argument shows that dimsp(n,�) = n(2n +1).
(8) Let G = Sp(n,�). An argument as in (8) shows that the Lie algebra sp(n,�) of

Sp(n,�) is given by

sp(n,�) = {X ∈ M(2n,�) : XTJ = −JX}.

A simple counting argument shows that dimsp(n,�) = 2n(2n +1).
(9) Let G = O(p,q). An argument as in (8) shows that the Lie algebra o(p,q) of O(p,q)

is given by
o(p,q) = {X ∈ M(n,�) : XTgp,q = −gp,qX}.

A simple counting argument shows that dimo(p,q) = n(n −1)/2.

Note that all matrix Lie groups discussed thus far are embedded submanifolds of GL(n,k)
which are closed. Cartan’s theorem states the converse is true in general: any closed sub-
group of a Lie group is a Lie subgroup that is also an embedded submanifold. Before
proving Cartan’s theorem, we prove a key lemma first. The result effectively states that
group multiplication in G is reflected to first order in the vector space structure of its Lie
algebra.

Lemma 3.19. Let G be a Lie group and let g be its Lie algebra and let X,Y ∈ g.
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(1) There is a smooth function Z : (−Ö,Ö)→ g for some ê > 0 such that

exp(tX)exp(tY) = exp
(
t(X + Y) + t2Z(t)

)
for all t ∈ (−ê,ê).

(2) (Lie-Trotter Product Formula) We have

lim
n→∞

(
exp

( t
n
X
)
exp

( t
n
Y
))n

= exp(t(X + Y))

Proof. The proof is given below:

(1) Let 0 ∈ U ⊆ g be neighbourhood such that that exp |U : U → exp(U) is a diffeomor-
phism. If X,Y ∈ g, we can find an ê sufficiently small so that exp(tX)exp(tY) ∈ U
for all |t| < ê. Define f : (−ê,ê)→ g by f (t) = exp−1(exp(tX)exp(tY)). The map f is
smooth as it is the composition of

(−ê,ê)
expX ×expY−−−−−−−−−−→ exp(U)× exp(U)

m−−→ exp(U)
exp−1
−−−−−→ U

where expX (t) = exp(tX) and expY (t) = exp(tY) Taking the differential at zero yields

f ′(0) = (d exp)−10 (d(expX )0(�t |t=0) + d(expX )0�t |t=0)) = X + Y .

Therefore, Taylor’s theorem yields

f (t) = f (0) + tf ′(0) + t2Z(t) = 0+ t(X + Y) + t2Z(t)

for some smooth function Z .
(2) For any t ∈� and any sufficiently large n ∈�, (1) implies that

exp
( t
n
X
)
exp

( t
n
Y
)
= exp

(
t
n
(X + Y) +

t2

n2
Z
( t
n

))
Using properties of the exponential map, we have

lim
n→∞

(
exp

( t
n
X
)
exp

( t
n
Y
))n

= lim
n→∞

exp

(
t
n
(X + Y) +

t2

n2
Z
( t
n

))n
= lim

n→∞
exp

(
t(X + Y) +

t2

n
Z
( t
n

))
= exp

(
t(X + Y) + lim

n→∞
t2

n
Z
( t
n

))
= exp(t(X + Y))

This completes the proof. □

We will discuss results similar to that of Lemma 3.19 later on.

Proposition 3.20. (Cartan’s Closed Subgroup Theorem) Let G be a Lie group and let H be a
closed subgroup. Then H is a Lie subgroup of G that is an embedded submanifold of G .

Proof. The proof has been commented out from the note for brevity. □

Example 3.21. Consider the group:

H =



1 x y
0 1 z
0 0 1

 ∈ M(3,�)

∣∣∣∣∣∣∣∣ x,y,z ∈�
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It is easily checked that H is a closed subgroup under matrix multiplication of GL(3,�).
Hence, Proposition 3.20 implies that H is a Lie subgroup of GL(3,�). It is a non-abelian
Lie group group called the Heisenberg group. We denote the Lie algebra of H as heis. We
have

heis = {X ∈ M(3,�) : etX ∈ H for all t ∈�}
= {X ∈ M(3,�) : X is strictly upper triangular}

This is because if X is strictly upper triangular, Xm will be strictly upper triangular for
m ∈ �. Thus, for any such X we will have etX ∈ H. Conversely, if etX ∈ H for all real t,
then all of the entries of etX on or below the diagonal are independent of t. Thus, X will
be strictly upper triangular. Clearly, dimheis = 3 as expected.

4. Baker-Campbell-Hausdorff (BCH) Formula

The starting point for the Baker-Campbell-Hausdorff (BCH) formula can be considered
to be the formula in Lemma 3.19, which loosely states that

exp(tX)exp(tY) = exp(t(X + Y) +higher-order terms) .

The BCH formula provides the solution for the nature of these higher-order terms. One of
the main applications of the BCH formula is to prove Lie’s Third Theorem, which will be
covered in the next section.

4.1. BCH Formula for Matrix Lie Groups.

4.2. BCH Formula for General Lie Groups.

5. Lie Group-Lie Algebra Correspondence
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