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Abstract. I was asked to substitute for a professor for the graduate-level course on

differential geometry. I lectured on the relationship between geodesics and the metric

space structure on Riemannian manifolds leading to the celebrated Hopf-Rinow The-

orem. Below are the lecture notes I authored. If you notice any typos, please send

corrections to junaida@umd.edu or junaid.aftab1994@gmail.com.
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In this note, all manifolds are assumed to be manifolds without boundary. We shall
exclusively focus on the case of Riemannian manifolds without boundary. This is be-
cause the theory of minimizing curves becomes considerably more complicated in the
presence of a nonempty boundary.

1. Background

Let’s recap the relevant material that has been covered in lectures thus far.

1.1. Riemann Distance Function. Recall that one can define the notion of length of
piecewise regular curves on a Riemannian manifold, which can then be used to endow
a Riemannian manifold with a metric space structure.

Definition 1.1. Let (M,g) be a Riemannian manifold. A (parametrized) smooth curve
is a smooth map Õ : I → M, where I ⊆ � is an interval. We say that Õ is a piecewise
regular curve (or admissible curve) if there exists a partition (a0, . . . ,ak) of I such that
Õ′(t) , 0 for all t ∈ Int([ai−1,ai ]) for all i = 1, . . . ,k.

The length of an admissible curve Õ : [a,b]→ M is defined as

Lg(Õ) :=
∫ b

a
|Õ̇(t)|g dt
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Õ(t0)

Õ(t1)

Õ(t2) Õ(t3)

Õ(t4)

Õ(t5)

A piecewise regular curve.

Note that due to the regularity of Õ, this integral is well-defined. We can now ex-
tend the most important concept from classical geometry to the setting of Riemannian
manifold.

Definition 1.2. Let (M,g) be a connected Riemannian manifold. The Riemannian dis-
tance between each pair of points p,q ∈ M is defined as

(1) dg(p,q) := inf{Lg(Õ);Õ admissible curve between p and q}

Exercise 1. Let M be a connected smooth manifold. Prove that any two points in M can
be joined by an admissible curve. This shows that Definition 1.2 is well-defined.

Exercise 2. Argue that the infimum in Equation (1) need not be attained. Hint: Con-
sider M = �

2 \ {(0,0)}.

Finally, we are in a position to endow the a metric space structure on a Riemannian
manifold.

Proposition 1.3. Let (M,g) be a connected Riemannian manifold. The distance function dg

is a metric on M whose metric topology induces the manifold topology.

Proof. It is clear that dg(p,p) = 0,dg(p,q) = dg(q,p) and that dg satisfies the triangle
inequality. See [Lee18, Lemma 2.53, Lemma 2.54] for an elementary albeit tedious
argument showing that dg(p,q) > 0 if p , q. Alternatively, one can use Gauss’ Lemma
[Lee18, Theorem 6.9]. Moreover, see [Lee18, Theorem 2.55] for the argument that the
metric topology induced by dg is same as the manifold topology on (M,g). □

1.2. Geodesics. Geodesics on an arbitrary Riemannian manifold are analogs of straight
lines in �

n with the Euclidean affine connection.

Remark 1.4. All statements below where only an affine connection is used hold for an ar-
bitrary smooth not necessarily Riemannian manifold. However, we continue use the phrase
“let (M,g) be a Riemannian manifold . . . ” in the hypothesis.

Definition 1.5. Let (M,g) be a Riemannian manifold with an affine connection, ∇, and
let Õ : I → M be a smooth curve. The acceleration of Õ is the vector field DtÕ̇(t) along
Õ, where Dt is the covariant derivative along Õ.

Remark 1.6. See [Lee18, Chapter 4] for more details on affine connections and covariant
derivatives along smooth curves.
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Curves where the velocity Õ̇ is parallel along Õ have a special name.

Definition 1.7. Let (M,g) be a Riemannian manifold with affine connection ∇. A
smooth curve Õ : I → M is called a geodesic (with respect to ∇) if its acceleration is
zero, i.e., DtÕ̇(t) ≡ 0.

Exercise 3. Let (M,g) be a Riemannian manifold endowed with its Levi-Civita connec-
tion. Let Õ : [a,b]→ M a smooth curve in M. Show that

d
dt
⟨Õ̇, Õ̇⟩ = 0

Hence, |Õ̇| is constant. Conclude that a re-parametrization of a geodesic is again a
geodesic if and only if the re-parametrization is a linear re-parametrization.

Remark 1.8. We will call a geodesic Õ on a Riemannian manifold satisfying |Õ̇(t)| = 1 a
normal geodesic. Of course given any geodesic, the corresponding normal geodesic is nothing
else but the arc-length re-parametrization of the given geodesic.

Proposition 1.9. Let (M,g) be a Riemannian manifold with affine connection ∇. For every
p ∈ M, w ∈ TpM, and t0 ∈�, there exists an open interval I ⊆� containing t0 and a geodesic
Õ : I → M satisfying Õ(t0) = p and Õ̇(t0) = w. Any two such geodesics agree on their common
domain.

Exercise 4. Provide Proposition 1.9. Hint: Write the geodesic equation in a smooth
co-ordinate charts and invoke the fundamental theorem of flows [Lee12, Chapter 9]
on manifolds to argue for the existence and uniqueness of solutions to the geodesic
equation. See [Chapter 3 Lee18, Chapter 4] for the proof.

Remark 1.10. Based on the properties of the pullback connection1 [Lee18, Proposition 4.38]
together with the fact that being a geodesic is a local property, one can show that a local
isometry maps geodesics to geodesics.

Definition 1.11. Let (M,g) be a Riemannian manifold with an affine connection ∇. A
geodesic Õ : I → M is called maximal if there exists no geodesic Õ̃ : Ĩ → M with I ⊊ Ĩ and
Õ̃|I = Õ. (M,g) is geodesically complete if each maximal geodesic is defined on all of �.

We now look at a geodesics of in some Riemannian manifolds.

Example 1.12. Let M = �
n with the Euclidean metric with the standard affine connec-

tion2. Since all connection coefficients are zero, the geodesic equation reads

Ṏk(t) = 0, 1 ≤ k ≤ n Õk(0) = pk , Õ̇k(0) = wk

Hence, each geodesic of the form the

Õ(t) = p+ tw p,w ∈�n

The same conclusion is true for Minkowski space, �n,1. In particular, �n and �
n,1 are

geodesically complete.
1See [Lee18] for the definition of pullback connections.
2This is also the Levi-Civita connection
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Geodesics with A , 0 in �
2 with connection coefficients È ijk = 0 except

È 1
12 = È 1

21 = 1.

Example 1.13. Endow �
2 with an affine connection determined by the connection co-

efficients by È ijk = 0 except È 1
12 = È 1

21 = 13. The geodesic equations read:

d2x
dt2

+ 2
dx
dt

dy
dt

= 0,
d2y
dt2

= 0.

Consider (x0,y0) ∈ �
2. From the second equation we have y = At + y0. If A = 0, the

solutions are
x = Bt + x0, y = y0.

If A , 0, then

d2x
dt2

+ 2A
dx
dt

= 0

d
dt

(
dx
dt

)
dx
dt

= −2A

We have log
(
dx
dt

)
= −2At+C, so that dx

dt = De−2At , where D , 0. Therefore, the equations
are

x =
D

2A

(
1− e−2At

)
+ x0, y = At + y0, D , 0.

Some geodesics are plotted in Figure 2.

Example 1.14. Consider the cylinder

C := {(x,y,z) ∈�3 : x2 + y2 = 1}

Note that C is surface of revolution obtained revolving the curve Õ(z) = (1,z) Therefore,
a parameterization of C is given by

X(z,Ú) = (cos(Ú),sin(Ú),z) z ∈� Ú ∈ [0,2á]

It can be checked that the induced metric on C is

dz2 + dÚ2

We consider C is endowed with its Levi-Civita connection. All Christoffel symbols/connection
coefficients are zero. Thus, the geodesic equations read

z̈ = 0 Ú̈ = 0

3This is not the Levi-Civita connection.
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It can be easily confirmed geodesic are vertical straightlines of the form z = at + b,Ú =
Ú0, helicies z = aÚ + b for a,b , 0 or circles in planes of the form z = z0. In particular,
C is geodesically complete.

Exercise 5. Let (M,g) be a Riemannian manifold, and let ∇0,∇1 be two affine connec-
tions on M. Let D be the difference tensor:

D (X,Y) = ∇0
XY −∇

1
XY

Prove that M has the same geodesics with respect to the ∇0 and ∇1 if and only if the
difference tensor is an alternating tensor.

1.2.1. Geodesics on Submanifolds. Let (M,g) be a Riemannian manifold with Levi-Civita
connection ∇. Let N ⊆ M be an embedded submanifold. The Levi-Civita connection on
N is given by

(2) (∇̃XY)p := áT (∇X̃ Ỹ)p p ∈ N

Here áT is the orthogonal projection map from TpM to TpN, and X̃, Ỹ denote extensions
of vector fields X,Y , respectively.

Exercise 6. Prove Equation (2).

We can characterize geodesic in N computing the formula for the covariant deriva-
tive along curves in N.

Proposition 1.15. Let (M,g) be a Riemannian manifold with an affine connection, ∇. Let
N ⊆ M be an embedded submanifold endowed with induced Levi-Civita connection, ∇̃, as in
Equation (2). Let Õ : I → M be a curve in M such that Õ(I) ⊆ N. Let X be a vector field along
Õ such that X(Õ(t)) ∈ TÕ(t)N for each t ∈ I . If D̃t is the covariant derivative along curves in
N with respect to ∇̃, then

D̃tX = áT (Dt(X))

Exercise 7. Prove Proposition 1.15.

Corollary 1.16. Let M = �
n or M = �

n,1, and let N be an embedded submanifold of M. A
smooth curve Õ : I → M is a geodesic (with respect to the induced, tangential connection on
M) if and only if Ṏ(t) is orthogonal to TÕ(t)M for all t ∈ I .

Proof. This follows at once from the previous proposition and the fact tha DtÕ̇ = Ṏ on
M = �

n or M = �
n,1. □

Example 1.17. (Geodesics on �
n(R)) Let’s invoke Corollary 1.16 to compute geodesics

on �
n(R). Let p ∈ �n(R), and let v ∈ Tp�

n(R). We then have that p ⊥ v. Let v̂ = Rv/ |v|.
Consider the smooth curve

Õ(t) = cosatp+ sin(at)v̂, a = |v|/R

Clearly, Õ(0) = p. Note that

Õ̇(t) = −asin(at)p+ acos(at)v̂

Ṏ(t) = −a2 cos(at)p− a2 sin(at)v̂
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Note that Õ̇(0) = av̂ = v. Since Ṏ(t) is parallel to Õ(t), we have that Ṏ(t) is orthogonal
to TÕ(t)�

n(R). By Corollary 1.16, Õ(t) is a geodesic such that Õ(0) = p and Õ̇(0) = v4.
We label this geodesic Õp,v. Each such Õp,v has period 2á/a, and has constant speed.
The image of Õp,v is the great circle formed by the intersection of �n(R) with the linear
subspace spanned by p and v̂. Hence, all geodesics on �

n(R) are great circles.

1.3. Exponential Map & Normal Coordinates. One can study the behaviour of all
geodesics at point on a Riemannian manifold. This information is conveniently en-
coded in the exponential map.

Remark 1.18. Everything in this section works verbatim for semi-Riemannian manifolds
and, in fact, even for any other affine connection. As before, All statements below where
only an affine connection is used hold for an arbitrary smooth not necessarily Riemannian
manifold.

In what follows, let Õp,v denote a geodesic such that Õp,v(0) = p and Õ̇p,v(0) = v. We
start off with a simple lemma.

Lemma 1.19. (Rescaling Lemma) Let (M,g) be a Riemannian manifold with an affine
connection ∇. For every p ∈ M, v ∈ TpM, and c, t ∈�, we have that

Õp,cv(t) = Õp,v(ct)

whenever both sides are defined.

Proof. Consider the curve Õp,v : I → M. Define a new curve

Õ̃ : c−1I → M, t 7→ Õp,v(ct)

Clearly,
Õ̃(0) = Õ(0) = p ˜̇Õ′(t) = cÕ̇0(0) = cv

We now check that Õ̃ satisfies the geodesic equation. Hence, initial point and velocity
of both sides of (4.7) are equal. Working in a local coordinate chart, it is easy to check
that

Dt ˜̇Õ′(t) = c2DtÕ
′(ct) = 0

By existence and uniqueness, Õ̃ = Õp,cv
5. □

For p ∈ M, the assignment v 7→ Õp,v defines a map from TpM to the set of geodesics
in M. By Lemma 1.19, we can define a map from a line through the origin in TpM to a
geodesic.

Definition 1.20. Let (M,g) be a Riemannian manifold with an affine connection. The
domain of the exponential map is defined by

E := {(p,v) ∈ TM | Õp,v is defined on [0,1]}

4This follows from existence and uniqueness of solutions to the geodesic equation.
5Here Õp,cv is the geodesic such that Õp,cv(0) = p and Õp,cv = cv.



HOPF-RINOW THEOREM 7

and the exponential map on M by

exp : E → M, v 7→ exp(p,v) := Õp,v(1)

For each p ∈ M, the exponential map of M at p, denoted by expp, is the restriction of
exp to Ep := E ∩TpM.

Remark 1.21. If M is geodesically complete, then E = TM.

Proposition 1.22. Let (M,g) be a Riemannian manifold. The exponential map has the
following properties:

(1) For each (p,v) ∈ TM, the geodesic Õp,v is given by

Õp,v(t) = expp(tv)

for all t such that either side is defined.
(2) The set Ep ⊆ TpM is star-shaped with respect to 0.
(3) E is an open subset of TM containing the image of the zero section, and the exponen-

tial map is smooth.
(4) For each point p ∈ M, the differential d(expp)0 : T0(TpM) � TpM → TpM is the iden-

tity map of TpM.

Proof. (Sketch) The proof is given below:

(1) This is a simple consequence of Lemma 1.19.
(2) This immediately follows from (1).
(3) See [Lee18, Proposition 5.19].
(4) For any v ∈ T0(TpM) � TpM, consider ä(t) = tv. Then

d(expp)0(v) =
d
dt

∣∣∣∣∣
t=0

(expp ◦ä)(t) =
d
dt

∣∣∣∣∣
t=0

expp(tv) =
d
dt

∣∣∣∣∣
t=0

Õv(t) = v.

This completes the proof. □

Remark 1.23. In general, the differential (d expp)v is no longer the identity map if v is not
the zero tangent vector.

Example 1.24. The following is a list of examples of exponential maps:

(1) If v ∈ Tp�
n ��

n, then the geodesic through p with initial velocity v is given by

Õp,v(t) = p+ tv

Hence, expp(v) = p+ v.
(2) If v ∈ Tp�

n(R), then the geodesic through p with initial velocity v is given by

Õp,v(t) = cosatp+ sin(at)v̂, a = |v|/R

Hence, expp(v) = (cosa)p+ (sina)v̂ such that a = |v|/R.

We now discuss an important application of the exponential map. Based on Propo-
sition 1.22, the exponential map at every point p ∈ M is a local diffeomorphism. Hence,
there are neighborhoods V of 0 in TpM and a neighborhood U of p in M such that
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expp : V → U is a diffeomorphism. If V is star-shaped at 0, U is called a normal neigh-
bourhood. Let B be an isomorphism from �

n to TpM given by

B(x1, . . . ,xn) = x ibi

Here (bi ) is an orthonormal basis for TpM. The (Riemannian) normal coordinates cen-
tered at p induced by (bi ) are obtained by combining B with expp to get

æ = B−1 ◦ (expp |V )−1 : U →�
n

Proposition 1.25. Let (M,g) be a Riemannian manifold, and let (U , (x i )) be any normal
coordinate chart centered at p ∈ M.

(1) The coordinate basis is orthonormal at p.
(2) The coordinates of p are (0, . . . ,0).
(3) The components of the metric are gi j (p) = Öi j .
(4) For every v = vi�i |p ∈ TpM, the geodesic Õv is represented in normal coordinates by

the line
Õv(t) = (tv1, . . . , tvn),

as long as t is in some interval I containing 0 with Õv(I) ⊆ U .
(5) The Christoffel symbols vanish at p, i.e., È ki j (p) = 0.

Exercise 8. Prove Proposition 1.25.

Remark 1.26. Let r > 0 such that expp restricts to a diffeomorphism on �r(0). We will
call expp(�r(0)) the geodesic ball of radius r centered at p in M. Similarly, we will call
�expp(�r(0)) the geodesic sphere of radius r centered at p in M.

Remark 1.27. Geodesics starting at p and lying in a normal neighborhood of p are called
radial geodesics.

2. Geodesics & Metric Balls

Geodesics of Riemannian manifolds were defined in Section 1.2. In a sense, geodesics
are acceleration zero curves on a Riemannian manifold. Geodesics of �n - which are
line segments - enjoy an additional property: these are curves of shortest length be-
tween its endpoints. The goal of this section is to propose an alternative characteri-
zation of geodesics of Riemannian manifolds as the “shortest” curves in a Riemann-
ian manifold. Along the way, we shall see how geodesic and metric balls are related.
Hence, we shall see that geodesics are intimately linked with the underlying metric
space topology of a Riemannian manifold.

Remark 2.1. Let (M,g) be a Riemannian manifold. An admissible curve Õ : [a,b]→ I is
said to be a minimizing curve if

Lg(Õ) ≤ Lg(Õ̃)

for every admissible curve Õ̃ with the endpoints Õ(a) and Õ(b). One can check that a min-
imizing curve between two points on a Riemannian manifold. This is best done by using
techniques from variational calculus on manifolds. Indeed, if p and q are two points on a
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Riemannian manifold, one can define the length function, Lg , on the set of all admissible
curves between p and q. Using techniques from the calculus of variations, one can then
check that the geodesic equation vcharacterizes the critical points of the length functional.
Hence, one can then conclude that a minimizing curve - which must be a a critical point of
the length functional - must be geodesic. See [Jos08, Chapter 5] for more details.

The purpose of the remainder of this section is to explore the extent to which the
result mentioned in Remark 2.1 is true. It is clear that the full converse of the statement
does not hold. We can see this by picking two (not antipodal) points, p,q on a great
circle of the unit sphere �

n. There are two geodesics connecting p and q, of which
only one is length minimizing. We shall prove in this section that geodesics are locally
length minimizing curves.

Definition 2.2. Let (M,g) be a Riemannian manifold. An admissible curve Õ : I → M is
locally minimizing if for every t0 ∈ I there exists a neighborhood I0 ⊆ I containing t0

such that Õ|[a,b] is minimizing for every [a,b] ⊆ I0.

The crux of the proof that geodesics are locally minimizing is the Gauss Lemma.

Proposition 2.3. (Gauss Lemma) Let (M,g) be a Riemannian manifold, and let Br(0) ⊆ E
such that expp restricts to a diffeomorphism on �r(0). Let U = expp(Br(0)). Let v,w ∈
��r(0). Let q = expp(v).

(1) The radial vector field �r is a unit vector field orthogonal to the geodesic spheres in
U \ {p}.

(2) Let r be the radial distance. Then grad r = �r on U \ {p}.

Proof. The proof is given below:

(1) See [Lee18, Theorem 6.9] for a proof.
(2) This follows from (2). It suffices to show that �r is orthogonal to the level sets

of r and |�r |2g . The first claim follows directly from (2), and the second from the
fact that �r(r) = 1 by direct computation in normal coordinates, which in turn
is equal to |�r |2g by (2).

□

Back to our main goal. We want to prove that geodesics are locally length minimiz-
ing. As a first step, we will prove this result for radial geodesics.

Proposition 2.4. Let (M,g) be a Riemannian manifold. Suppose p ∈ M and q is contained
in a geodesic ball around p. Then (up to reparametrization) the radial geodesic from p to q
is the unique minimizing curve in M from p to q.

Proof. Choose × > 0 such that U = expp(B×(0)) is a geodesic ball containing q. Let
Õ : [0,c]→ M be the radial geodesic from p to q parametrized by arc length. We have
Lg(Õ) = c, since Õ has unit speed. Let Ó : [0,b]→ M be an arbitrary admissible curve
from p to q parametrized by arc length. Let a0 ∈ [0,b] denote the last time that Ó(t) = p,
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and b0 ∈ [0,b] the first time after a0 that Ó(t) meets the geodesic sphere of radius c
around p. We have

c = r(Ó(b0))− r(Ó(a0))

=
∫ b0

a0

d
dt

r(Ó(t))dt

=
∫ b0

a0

dr(Ó′(t))dt

=
∫ b0

a0

⟨gradr|Ó(t),Ó
′(t)⟩g dt

≤
∫ b0

a0

|gradr|Ó(t)|g |Ó′(t)|g dt

=
∫ b0

a0

|Ó′(t)|g dt

= Lg[Ó|[a0,b0]] ≤ Lg[Ó].

This shows that Õ is a minimizing curve. Now suppose Lg(Ó) = c. Then b = c. Both
inequalities in the derivation above are equalities. Since Ó is a unit-speed curve, the
second of these equalities implies that a0 = 0 and b0 = b = c, since otherwise the seg-
ments of Ó before t = a0 and after t = b0 would contribute positive lengths. Moreover,
the first equality implies that Ó′(t) is a positive multiple of gradr|Ó(t) for each t. Since
Ó is a unit-speed curve, we must have Ó′(t) = gradr|Ó(t) = �r |Ó(t) for each t. Both Ó and
Õ are integral curves of �r passing through q. Hence, Ó = Õ. □

Corollary 2.5. Let (M,g) be a connected Riemannian manifold and let p ∈ M.

(1) Within every open (or closed) geodesic ball around p, the radial distance function
r(x) is equal to the Riemannian distance from p to x in M.

(2) Every open or closed geodesic ball is also an open or closed metric ball of the same
radius.

(3) Every geodesic sphere is a metric sphere of the same radius.

Proof. The proof is given below:

(1) If x is in the open geodesic ball, the radial geodesic from p to x is minimizing
by Proposition 2.4. Since its velocity is equal to �r , which is a unit vector in
both the g-norm and the Euclidean norm in normal coordinates, the g-length
of Õ is equal to its Euclidean length, which is r(x).

(2) See [Lee18, Corollary 6.13] for a proof.
(3) See [Lee18, Corollary 6.13] for a proof.

□

Remark 2.6. Note that we have yet to fully prove the statement that geodesics are lo-
cally length minimizing curves. Indeed, Proposition 2.4 only deals with the case of radial
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geodesics. However, discussion above is sufficient for our discussion of the Hopf-Rinow the-
orem in the next section. Refer to [Lee18, Proposition 6.14] for a proof of the complete
statement that geodesics are locally length minimizing curves.

3. Hopf-Rinow Theorem

In the previous section, we have uncovered a relationship between the metric proper-
ties of a Riemannian manifold and the geometric properties of a Riemannian manifold.
Indeed, we have seen that geodesics are locally length minimizing curves. Moreover,
we have seen that open (closed) geodesic balls are open (closed) metric balls. We now
further this relationship of such properties by proving the Hopf-Rinow theorem, which
asserts that a Riemannian manifold is geodesically complete if and only if the underly-
ing metric space is (metrically) complete. We shall need the following lemma.

Lemma 3.1. Let (M,g) be a connected Riemannian manifold. Suppose there exists a point
p ∈ M such that the restricted exponential map expp is defined on all of TpM. For any q ∈ M,
there is a unit-speed minimizing geodesic from p to q.

Remark 3.2. Clearly, the converse of Lemma 3.1 is not true. Consider �n. Any two points
can be joined by a geodesic, but the restricted exponential map expp need not be define on on
all of TpM for p ∈ M “sufficiently close” to �

n−1.

Remark 3.3. We sketch the main idea behind the proof of Lemma 3.1.

• Start with a normal neighborhood U = expp(�Ö(0)) of p. By Proposition 1.25, the
geodesics from p are of the form expp(sv) for some v in TpM with |v| = 1 and s < Ö.
• Fix a point x0 on the geodesic sphere expp(��Ö(0)) that minimizes d(x,q) amongst

all x on the on the geodesic sphere expp(��Ö(0)). Then our desired Õ us a radial
geodesic from p to x0.
• Repeat this process from x0 until we get to q. At each step, we prove that the geodesic

segment added, in fact, coincides with Õ.

Proof. (Sketch) Let ê > 0 be small enough such that the closed geodesic ball U =
expp(�ê(0)) doesn’t contain q. Since �U is compact, there is a point x on �U that min-
imizes the function dg(q, ·) on �U . Let Õ be a unit-speed minimizing radial geodesic
such that Õ[0,ê] connects p and x6.

We claim that Õ is such that

(3) dg(p,q) = dg(p,Õ(ê) + dg(Õ(ê),q) = dg(p,x) + dg(x,q)

Let ã : [c,d] ∈ M be any admissible curve from p to q. Let t0 be the first time ã hits �U ,
and let ã1 and ã2 denote the restrictions of ã to [c, t0] and [t0,d], respectively. Since
every point in � is at a distance ê from p, we have

Lg(ã1) ≥ dg(p,ã(t0)) = dg(p,x)

Similarly, we have
Lg(ã1) ≥ dg(ã(t0),q) ≥ dg(x,q)

6Note that Õ is defined for all t ∈�.
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Altogether, we have,

Lg(ã) = Lg(ã1) + Lg(ã2) ≥ dg(p,x) + dg(x,q)

Taking infimum over all such curves, we have

dg(p,g) ≥ dg(p,x) + dg(x,q)

Moreover, we have by the triangle inequality,

dg(p,g) ≤ dg(p,x) + dg(x,q)

Therefore, we have
dg(p,g) = dg(p,x) + dg(x,q)

We say that Õ|[0,ê] aims at q since it satisfies Equation (3)7. If T = dg(p,q), we wish to
show that

z := sup{b ∈ [0,T] : Õ[0,b] aims at q} = T

We have already seen that z ≥ ê. It can be shown that indeed z = T8. This is sufficient
to complete the proof. Since Õ is minimizing, we have that

dg(p,Õ(T)) = Lg(Õ) = d(p,q)

Therefore, we have,

dg(p,q) = dg(p,Õ(T)) + dg(Õ(T),q) = dg(p,q) + dg(Õ(T),q)

Hence, dg(Õ(T),q) = 0 which implies that Õ(T) = q. This shows that Õ|[0,T] is a unit-
speed minimizing geodesic from p to q. □

Exercise 9. Complete the proof of Lemma 3.1. Or see [Lee18, Lemma 6.18]9.

Theorem 3.4. (Hopf-Rinow Theorem) Let (M,g) be a connected Riemannian manifold.
Then the following conditions are equivalent:

(1) M is complete as a metric space.
(2) M is geodesically complete.

Proof. The proof is given below:

• (1) implies (2): Assume M is a complete metric but M is not geodesically com-
plete. There is some unit-speed maximal geodesic Õ : I → M such that I , �.
Since Õ is a maximal geodesic, I is an open interval of the form (a,b) containing
0. If b <∞, let {ti } be any increasing sequence in (a,b) that converges to b. Set
qi = Õ(ti ). Since Õ is parametrized by arc length, the length of Õ|[ti ,tj ] is exactly
|tj − ti |, so

dg(qi ,q j ) = |tj − ti |

7In a sense, this means that Õ|[0,ê] is parallel to the straight line that would connect p and q if we were
working in Euclidean space.
8In a sense, this means that Õ|[0,T] coincides with the straight line that would connect p and q if we were
working in Euclidean space.
9Some details of the proof have been left out due to time constraints.
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Hence, (qi ) is a Cauchy sequence in M. By completeness, (qi ) converges to some
point q ∈ M. Let W be a uniformly Ö-normal neighborhood of q for some Ö >

010. Choose j large enough that tj > b − Ö and q j ∈ W . The fact that BÖ(q j ) is a
geodesic ball means that every unit-speed geodesic starting at q j exists at least
for t ∈ (a,Ö]. In particular, this is true of the geodesic Ó with Ó(0) = q j and
Ó̇(0) = Õ̇(tj ) for t ∈ [0,Ö]. Define Õ̃ : [0, tj + Ö]→ M by

Õ̃(t) =

Õ(t) for t ∈ (a,b),

Ó(t − tj ) for t ∈ (tj − Ö, tj + Ö).

The expression on the right hand side are geodesics and their position and ve-
locity agree at tj . Hence, the two geodesics agree on the overlap of the domains
of the geodesics. Since tj + Ö > Ö > b, Õ̃ is an extension past b, which is a con-
tradiction. Hence, b = +∞. A similar argument shows that a = −∞. Hence, M
must be geodesically complete.
• (2) implies (1): Let (qi ) be a Cauchy sequence in M. Since M is geodesically

complete, we have that expp is defined on all of TpM for each p ∈ M. Therefore,
Lemma 3.1 implies that any two points of M can be joined by a unit-speed
minimizing geodesic. For each i , let Õi (t) = expp(tvi ) be a unit-speed minimizing
geodesic from p to qi . Let di = dg(p,qi ). We have

expp(divi ) = Õdivi (1) = Õvi (di ) = Õvi (dg(p,qi )) = qi

Clearly, di is a bounded sequence. Since |vi | = 1, the sequence (divi ) of vectors
in TpM is bounded. Thus, a subsequence (dikvik ) converges to some v ∈ TpM,
and by continuity of the exponential map

lim
k→∞

expp(dikvi ikk) = expp(v)

Since the original sequence (qi = expp(divi )) is a Cauchy sequence, we must
have that (qi = expp(divi )) converges to the limit q = expp(v) in M.

□

A connected Riemannian manifold is simply said to be complete if it is either geodesi-
cally complete or metrically complete. Theorem 3.4 then implies that it is both these
properties are equivalent. We end our discussion by discussing some corollaries of the
Hopf-Rinow theorem.

Corollary 3.5. Let (M,g) be a connected Riemannian manifold.

(1) If there exists a point p ∈ M such that the restricted exponential map expp is defined
on all of TpM, then M is complete.

(2) If M is complete, then any two points in M can be joined by a unit-speed minimizing
geodesic segment.

(3) If M is compact, then M is complete.

10This means that W is contained in a geodesic ball of radius Ö around each of its points. See [Lee18,
Lemma 5.14] for a proof that such neighbourhoods exist.
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(4) If M is a homogeneous Riemannian manifold, then M is complete.
(5) If M is a Riemannian symmetric space, then M is complete.

Proof. The proof is given below:

(1) follows directly from the the observation that the hypothesis was used to proved
that M is metrically complete in the proof of (2) implies (1) in Theorem 3.4.

(2) A complete Riemannian manifold is geodesically complete. Hence, the re-
stricted exponential map expp is defined on all of TpM for each p ∈ M. The
desired statement now follows from Lemma 3.1.

(3) A compact metric space is a complete metric space. The claim now follows
from Theorem 3.4.

(4) Assume that M is not geodesically complete. There is some unit-speed maximal
geodesic Õ : I → M such that 0 ∈ I = (a,b) , �. Let p = Õ(0). If b <∞, let {ti } be
any increasing sequence in (a,b) that converges to b. Set qi = Õ(ti ). Let Ö > 0
such that U = expp(BÖ(0)) is a geodesic ball centered at p. Choose j large enough
such that tj > b−Ö. Since M is a homogeneous Riemannian manifold, there exist
Fj ∈ Isom(M,g) such that Fj (p) = q j . Consider the following diagram:

M M

TpM TqM

Fj

dFj

expp expq

The diagram commutes due to the naturality of the exponential map. Refer to
[Lee18, Proposition 5.20]. Since Fj is an isometry, dFj is a linear isometry. Hence,
dFj (BÖ(0)) is isometric to BÖ(0). Therefore, expq(dFj (BÖ(0))) can be identified
with a geodesic ball of radius Ö centered at q. Since the diagram commutes, we
have that Fj (U) is a geodesic ball of radius Ö centered at q j . Now as in the proof
of the statement (1) implies (2) in Theorem 3.4, we can construct Õ̃ that extends
Õ past b. Hence, we must have b = +∞. Similarly, we must have a = −∞. This
shows that M is geodesically complete, and hence complete.

(5) If a geodesic Õ is defined on [0,s), we may reflect it by s|Õ(t) for some t ∈ (s/2,s),
hence we may extend it beyond s. Hence, M is geodesically complete.

□
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