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NOTATION

In this section, I briefly summarize the notation used in this document:

(1) The components of 𝑣 ∈ ℝ𝑛 are written as 𝑣1,⋯ , 𝑣𝑛 with upper indices.
(2) The basis vectors of ℝ𝑛 are written as 𝑒1,⋯ , 𝑒𝑛 with lower indices.
(3) The partial derivative operation on ℝ𝑛 is written as either 𝜕𝑖 or 𝜕ℝ𝑛

𝑖 . On
occasion, we will write the partial derivative operators as

𝜕
𝜕𝑥 𝑖



𝑝

for 𝑝 ∈ ℝ𝑛 to make arguments more explicit when necessary.
(4) The Einstein summation convention is used throughout. For example,

𝑣 𝑖𝑒𝑖 is an abbreviation for
𝑛


𝑖=1

𝑣 𝑖𝑒𝑖

(5) For a smooth manifold, 𝑀, and 𝑝 ∈ 𝑀, the basis vectors for Tp𝑀 are
written as𝜕𝑀

𝑖 . When no confusion arises, the basis vectorswill bewritten
as simply 𝜕𝑖. In local coordinates, we shall continue to write the basis
vectors as 𝜕𝑀

𝑖 or 𝜕𝑖. When deemed necessary, we will write the basis
vectors as

𝜕
𝜕𝑥 𝑖



𝑝

1
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for 𝑝 ∈ 𝑀 in local coordinates.
(6) For a smooth manifold, 𝑀, and 𝑝 ∈ 𝑀, the basis vectors for T∗

p𝑀 are
written as 𝜀𝑖𝑀 . When no confusion arises, the basis vectors will be written
as simply 𝜀𝑖. In coordinates, the basis vectors will usually be written as
𝑑𝑥 𝑖|𝑝 .



MATH 740 HOMEWORK 1

W. GOLDMAN

(Due 20 February 2024)

A good general reference is Introduction to Smooth Manifolds, by John
M. Lee, ISBN 978-1-4899-9475-2, Springer Graduate Texts in Mathe-
matics 218, Second Edition (2012).

Problem 1. Let R > 0 and let X be a sphere of radius R > 0. Suppose
that p ∈ X and let r > 0. The metric circle Cr(p) consists of all points
q ∈ X with distance d(p, q) = r (respectively d(p, q) < r). Show that

length Cr(p) = 2πR sin(r/R)

= 2πr − π

3
R−2r3 + . . .

It bounds the metric disc Dr(p) comprising points q ∈ X with distance
d(p, q) < r) and

area Dr(p) = 2πR2
(
1− cos(r/R)

)
= πr2 − π

12
R−2r4 + . . .

Thus intrinsic measurements on X detect the variable R. The quantity
R−2 is the Gaussian curvature of X.

Problem 2. Let X be the upper half-plane {(x, y) ∈ R2 | y > 0}.
Define the Poincaré metric, by the metric tensor

ds2 =
dx2 + dy2

y2
.

• The group of all transformations (x, y) 7→ (Ax + b, Ay), where
A > 0, b ∈ R, acts isometrically on (X, ds2).
• It is convenient to use complex notation, replacing (x, y) ∈ R2

by z := x+ iy ∈ C. Then reflection in the unit semicircle ι

z
ι7−→ 1/z

(x, y) 7→
(
x/(x2 + y2), y/(x2 + y2)

)
also acts isometrically on (X, ds2).

Date: February 12, 2024.
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• Show that these transformations generate a group,1 isomor-
phic to PGL(2,R), consisting of all isometries of the Riemann-
ian manifold (X, ds2). The subgroup of orientation-preserving
isometries identifies with the group PSL(2,R) consisting of real
linear fractional transformations

z 7−→ az + b

cz + d

(where a, b, c, d ∈ R and ad− bc = 1), acting on the upper half
plane {z ∈ C | Im(z) > 0}.
• In this group, the involution or symmetry in the point in X

corresponding to the imaginary unit i (and the matrix [ 0 −1
1 0 ])

is the linear fractional transformation z
σ7−−→ −1/z. Prove that,

similarly to the calculation with ι above, σ∗ds2 = ds2.

Problem 3. Let A be an R-algebra and A
ε−→ R an R-algebra homo-

morphism. A derivation of A over ε is an R-linear map A
D−−→ R such

that
D(fg) = D(f)ε(g) + ε(f)D(g)

for all f, g ∈ A.
Let X be an open neighborhood of p ∈ Rn.

• Let A = C∞(X) be the algebra of smooth functions on X and
ε be evaluation at p:

A
ε−→ R(1)

f 7−→ f(p)

Show that the the derivations of A over ε form a vector space
with basis the partial derivative operators at p:

∂

∂xi

∣∣∣∣
p

: f 7−→ ∂f

∂xi
(p)

for i = 1, . . . , n.
• Let A = C(X) (continuous functions on X and ε be evaluation

at p as in (1). Show that no nonzero derivations of A over ε
exist.

1The symbol P denotes projectivization, that is, projective equivalence classes of
matrices: where two matrices are equivalent if they differ by multiplication by a
nonzero scalar.
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Problem 4. Let X be a smooth n-manifold with cotangent bundle

T∗X
ΠX−−−→ X. Let Diff(X) denote the group of diffeomorphisms X →

X.

• Define the smooth action of Diff(X) on T∗X and prove that
this action preserve the fibration ΠX and in particular the zero-
section 0X of T∗X.
• Construct a covector field (that is, a 1-form) α on T∗X which

is invariant under Diff(X).
• Construct an action of the semidirect product G := Diff(X) n

C∞(X) on T∗X which extends the action of Diff(X) and pre-
serves the covector field α, where C∞(X) is the vector group
with the natural action of Diff(X).
• Show that the exterior derivative dα is a closed everywhere

nondegenerate exterior 2-form (that is, a symplectic structure)
which is invariant under the action of G.

Problem 5. Recall the Lie groups GL(n,R), SL(n,R),O(n): The gen-
eral linear group consists of all invertible n × n matrices. The special
linear group consists of all n×nmatrices of determinant one (sometimes
called unimodular). The orthogonal group consists of all orthogonal
n× n matrices.

• GL(n,R), SL(n,R),O(n) are all smooth submanifolds of the vec-
tor space of n× n-matrices. Compute their dimensions.
• Identify which of these groups is compact.
• GL(n,R) has two components and SL(n,R) is connected.
• The special orthogonal group SO(n) := SL(n,R) ∩ O(n) is the

identity component of O(n).
• Every element of SO(n) is a rotation if and only if n < 4.
• SO(2) ≈ S1 and SO(3) ≈ RP3.

MATH 740 HOMEWORK 5



6 JUNAID AFTAB

1. HOMEWORK 1

Exercise 1. Denote a sphere of radius 𝑅 as 𝕊2
𝑅. Fix 𝑝 ∈ 𝕊2

𝑅 and let 0 < 𝑟 < 𝑅𝜋.

(1) We can assume that the point, 𝑝, is the north pole, 𝑁 = (0, 0, 𝑅) because
SO(3,ℝ), acts transitively and isometrically on 𝕊2

𝑅.
(2) We consider the standard parameterization of 𝕊2

𝑅 in spherical coordi-
nates.

(3) The metric circle, 𝐶𝑟 (𝑁), and the metric disc, 𝐷𝑟 (𝑁), are described as the
following subsets:

𝐶𝑟 (𝑁) = Γ([0, 2𝜋) × {𝑟/𝑅}) 𝐷𝑟 (𝑁) = Γ([0, 2𝜋) × [0, 𝑟/𝑅])

• 𝐶𝑟 (𝑁) is the great circle bounding the spherical cap, 𝐷𝑟 (𝑁), on 𝕊2
𝑅. The

great circle is the intersection of the plane

{(𝑥, 𝑦 , 𝑧) ∈ ℝ3 ∶ 𝑧 = 𝑅 cos⒧𝑟/𝑅⒭}

with 𝕊2
𝑅. The great circle is then described by the equation,

𝑥2 + 𝑦2 + (𝑅 cos⒧𝑟/𝑅⒭)2 = 𝑅2,

implying that

𝑥2 + 𝑦2 = 𝑅2 − 𝑅2 cos2(𝑟/𝑅) = 𝑅2 sin2(𝑟/𝑅) = (𝑅 sin⒧𝑟/𝑅⒭)2

Hence, 𝐶𝑅(𝑁) is a great circle of radius 𝑅 sin⒧𝑟/𝑅⒭ Therefore:

length 𝐶𝑟 (𝑁) = 2𝜋𝑅 sin⒧𝑟/𝑅⒭ = 2𝜋𝑟 −
𝜋𝑟3

3𝑅2 + 𝑂(𝑟5)

• 𝐷𝑟 (𝑁) is a spherical cap 𝕊2
𝑅. The spherical cap can be generated by by

revolving the graph of

𝑓(𝑥) = 𝑅2 − 𝑥2 𝑥 ∈ [0, 𝑅 sin⒧𝑟/𝑅⒭]
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about the 𝑦-axis. We then have the following:

area 𝐷𝑟 (𝑁) = 2𝜋
𝑅 sin⒧𝑟/𝑅⒭

0
𝑥1 + 𝑓′(𝑥)2𝑑𝑥,

= 2𝜋
𝑅 sin⒧𝑟/𝑅⒭

0
𝑥1 +

𝑥2

𝑅2 − 𝑥2𝑑𝑥,

= 2𝜋
𝑅 sin⒧𝑟/𝑅⒭

0
𝑥

𝑅2

𝑅2 − 𝑥2𝑑𝑥,

= 2𝜋𝑅(𝑅 − 𝑅2 − 𝑅2 sin2(𝑟/𝑅),

= 2𝜋𝑅2(1 − 1 − sin2(𝑟/𝑅),

= 2𝜋𝑅2(1 − cos⒧𝑟/𝑅⒭),

= 2𝜋𝑅2⎛⎜⎜⎜⎝
𝑟2

2𝑅2 −
𝑟4

24𝑅4 + 𝑂(𝑟6)
⎞⎟⎟⎟⎠
= 𝜋𝑟2 −

𝜋𝑟4

12𝑅2 + 𝑂(𝑟6)

Exercise 2. Let 𝑋 be the upper half-plane

𝑋 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑦 > 0}

endowed with the Poincaré metric,

𝑑𝑠2 =
𝑑𝑥2 + 𝑑𝑦2

𝑦2

We state a relevant result below about pullbacks of tensor fields below adapted
in the context of our problem:

Let 𝐹 ∶ 𝑋 → 𝑋 be a smooth map. Assume that the domain is described by
co-ordinates (𝑥, 𝑦) and the co-domain is described by co-ordinates (𝑥, 𝑦). Then
𝐹 can be written as:

𝐹 ∶ 𝑋 → 𝑋 (𝐹1(𝑥, 𝑦), 𝐹2(𝑥, 𝑦)) ∶= (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦))

Then 𝐹∗𝑑𝑠2 has the following expression:

𝐹∗𝑑𝑠2 = 𝐹∗⎛⎜⎜⎜⎝
𝑑𝑢2 + 𝑑𝑣2

𝑣2

⎞⎟⎟⎟⎠

=
1

(𝐹2(𝑥, 𝑦))2
⋅ (𝑑𝐹1(𝑥, 𝑦))2 +

1
(𝐹2(𝑥, 𝑦))2

⋅ (𝑑𝐹2(𝑥, 𝑦))2

In other words, compute the differential of 𝐹1(𝑥, 𝑦) and 𝐹2(𝑥, 𝑦) and multiply
each differential with 1/[𝐹2(𝑥, 𝑦)]2.

• Consider

𝑇𝑎,𝑏 ∶ 𝑋 → 𝑋 𝑇𝑎,𝑏(𝑥, 𝑦) = (𝑎𝑥 + 𝑏, 𝑎𝑦)
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where 𝑎 ∈ ℝ+ and 𝑏 ∈ ℝ. 𝑇𝑎,𝑏 is clearly invertible since its inverse is
given by:

𝑇𝑎−1,−𝑎−1𝑏 ∶ 𝑋 → 𝑋 𝑇𝑎−1,−𝑎−1𝑏(𝑢, 𝑣) = (𝑎−1(𝑢 − 𝑏), 𝑎−1𝑣)

Clearly, both 𝑇𝑎,𝑏 and 𝑇𝑎−1,−𝑎−1𝑏 are smooth maps. Therefore, 𝑇𝑎,𝑏 is a
diffeomorphism. We show that 𝑇∗

𝑎,𝑏𝑑𝑠2 = 𝑑𝑠2.

𝑇∗
𝑎,𝑏𝑑𝑠2 =

(𝑎𝑑𝑥)2 + (𝑎𝑑𝑦)2

𝑎2𝑦2 ,

=
𝑎2𝑑𝑥2 + 𝑎2𝑑𝑦2

𝑎2𝑦2 ,

=
𝑑𝑥2 + 𝑑𝑦2

𝑦2 = 𝑑𝑠2.

Hence, the group 𝐺 = {𝑇𝑎,𝑏 ∶ 𝑎 ∈ ℝ+, 𝑎 > 0}¹ acts isometrically on 𝑋.

• Consider
𝜄 ∶ 𝑋 → 𝑋 𝜄(𝑧) =

1
̄𝑧

𝜄 is clearly invertible since it is an idempotent map. Clearly, 𝜄 is smooth
as well because it can be written as

𝜄 ∶ 𝑋 → 𝑋 𝜄(𝑥, 𝑦) =
⎛⎜⎜⎜⎝

𝑥
𝑥2 + 𝑦2 ,

𝑦
𝑥2 + 𝑦2

⎞⎟⎟⎟⎠

We show that 𝜄∗𝑑𝑠2 = 𝑑𝑠2.

𝜄∗𝑑𝑠2 =
(𝑥2 + 𝑦2)2

𝑦2

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣
𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2
𝑑𝑥 −

2𝑥𝑦
(𝑥2 + 𝑦2)2

𝑑𝑦
⎤⎥⎥⎥⎦

2

+
⎡⎢⎢⎢⎣

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
𝑑𝑦 −

2𝑥𝑦
(𝑥2 + 𝑦2)2

𝑑𝑥
⎤⎥⎥⎥⎦

2⎞⎟⎟⎟⎠

The first term in parenthesis expands to:

(𝑦2 − 𝑥2)2

(𝑥2 + 𝑦2)4
𝑑𝑥2 +

4𝑥2𝑦2

(𝑥2 + 𝑦2)4
𝑑𝑦2 −

2𝑥𝑦(𝑦2 − 𝑥2)
(𝑥2 + 𝑦2)4

𝑑𝑥𝑑𝑦

The second term in parenthesis expands to:

4𝑥2𝑦2

(𝑥2 + 𝑦2)4
𝑑𝑥2 +

(𝑥2 − 𝑦2)2

(𝑥2 + 𝑦2)4
𝑑𝑦2 −

2𝑥𝑦(𝑥2 − 𝑦2)
(𝑥2 + 𝑦2)4

𝑑𝑥𝑑𝑦

¹It is clear that this is a group. For instance, 𝑇1,0 is the identity. We also have 𝑇𝑎,𝑏 ∘𝑇𝑐,𝑑 = 𝑇𝑎𝑐,𝑏𝑐+𝑑 .
Moreover, 𝑇−1

𝑎,𝑏 = 𝑇𝑎−1,−𝑎−1𝑏.
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It is clear that the cross terms cancel. We have:

𝜄∗𝑑𝑠2 =
(𝑥2 + 𝑦2)2

𝑦2

⎛⎜⎜⎜⎝
(𝑥2 − 𝑦2)2 + 4𝑥2𝑦2

(𝑥2 + 𝑦2)4
𝑑𝑥2 +

(𝑥2 − 𝑦2)2 + 4𝑥2𝑦2

(𝑥2 + 𝑦2)4
𝑑𝑦2⎞⎟⎟⎟⎠

=
(𝑥2 + 𝑦2)2

𝑦2

⎛⎜⎜⎜⎝
(𝑥2 + 𝑦2)2

(𝑥2 + 𝑦2)4
𝑑𝑥2 +

(𝑥2 + 𝑦2)2

(𝑥2 + 𝑦2)4
𝑑𝑦2⎞⎟⎟⎟⎠

=
(𝑥2 + 𝑦2)2

𝑦2

⎛⎜⎜⎜⎝
1

(𝑥2 + 𝑦2)2
𝑑𝑥2 +

1
(𝑥2 + 𝑦2)2

𝑑𝑦2⎞⎟⎟⎟⎠

=
𝑑𝑥2 + 𝑑𝑦2

𝑦2 = 𝑑𝑠2

Hence, 𝜄 acts isometrically on 𝑋.

• We shall make use of the following fact from complex analysis²:

Let 𝔹 denote the unit disk in ℝ2 which is identified with ℂ. Then
𝐹 ∶ 𝑋 → 𝔹 𝐹(𝑧) = 𝑧−𝑖

𝑧+𝑖 is a holomorphic map with holomorphic inverse
given by 𝐺 ∶ 𝔹 → 𝑋 𝐺(𝑤) = 𝑖 ⋅ 1−𝑤

1+𝑤

A simple calculation shows that 𝐹 ′(𝑧) ≠ 0 for each 𝑧 ∈ 𝑋. Therefore,
𝐹 is a holomorphic, conformal transformation. 𝐹 is also orientation-
preserving since 𝐹 is a (locally) invertible holomorphic map. Clearly,
𝐹 is also a diffeomorphism. Therefore, one can define a metric on 𝔹2 by
𝐹∗(𝑑𝑠2) such that (𝑋, 𝑑𝑠2) and (𝔹2, 𝐹∗(𝑑𝑠2)) are isometric (by definition).
(𝔹2, 𝐹∗(𝑑𝑠2)) is called the Poincaré disk model for the hyperbolic plane.
The task of computing the isometries of 𝑋 is equivalent to the task of
computing the isometries of the Poincaré disk. To achieve the latter goal,
we shall make use of an additional fact from complex analysis:

A map 𝑓 is an automorphism of 𝔹2 if and only 𝑓𝑎,𝑏(𝑧) = 𝑎𝑧+𝑏
𝑏𝑧+𝑎 for 𝑎, 𝑏 ∈ ℂ

such that |𝑎|2 − |𝑏|2 = 1

This result is a consequence of Schwarz’s lemma. One can check that
each 𝑓𝑎,𝑏 is orientation-preserving. Armed with the previous two obser-
vations, we have that Aut(𝔹) ≅ Aut+(𝑋) with the explicit isomorphism
given by

Φ ∶ Aut(𝔹) → Aut+(𝑋) Φ(𝑓𝑎,𝜃) = 𝐺 ∘ 𝑓𝑎,𝑏 ∘ 𝐹

Here Aut+(𝑋) is the group of orientation preserving isometries of 𝑋. A
somewhat lengthy calculation which we omit shows that an element of

²Any proof classifying isometries of the hyperbolic plane shall make use of some non-trivial
result.
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Aut+(𝑋) is of the form

𝑧 ↦
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

,

where𝑎, 𝑏, 𝑐, and 𝑑 are real, and𝑎𝑑−𝑏𝑐 = 1. Since 𝐹 and𝐺 are orientation-
preserving, we have that

Aut+2(𝑋) =
⎧⎪⎨⎪⎩
𝑧 ↦

𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑



⒧𝑎 𝑏
𝑐 𝑑

⒭ ∈ SL(2,ℝ)
⎫⎪⎬⎪⎭

In fact, we have that

Aut+(𝑋) = Isom+(𝑋)

It suffices to show that Aut+(𝑋) ⊆ Isom+(𝑋). That is, every transforma-
tion of the form

𝑧 ↦
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

⒧𝑎 𝑏
𝑐 𝑑

⒭ ∈ SL(2,ℝ)

is an isometry of 𝑋. This is a simple but tedious calculation which we
skip. Hence, we obtain a surjective homomorphism

Γ ∶ SL(2,ℝ) → Isom+(𝑋) ⒧𝑎 𝑏
𝑐 𝑑

⒭ ↦
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

One can check that

ker Γ = {𝜆𝐼2 ∶ 𝜆 ∈ ℝ×}

Hence,
Isom+(𝑋) ≅ PSL(2,ℝ)

Consider the short exact sequence

1 SL(2,ℝ) GL(2,ℝ) ℝ∗ 1det

This short exact sequence descends to a short exact sequence

1 PSL(2,ℝ) PGL(2,ℝ) ℝ∗/ℝ+ 1det

In particular, we have that

|PGL(2,ℝ) ∶ PSL(2,ℝ)| = |ℝ∗/ℝ+| = 2.

By the next part, we know that there isn orientation reversing symme-
try, 𝜎, of 𝑋 contained in PGL(2,ℝ) ⧵ PSL(2,ℝ). It is then clear that all
elements of the set

𝜎PSL(2,ℝ)



MATH 740 HOMEWORK 11

consists of orientation-reversing isometries. This shows that

Isom(𝑋) ≅ PGL(2,ℝ)

• Consider
𝜎 ∶ 𝑋 → 𝑋 𝜎(𝑧) = −

1
𝑧

𝜎 is clearly invertible since it is an idempotent map. Clearly, 𝜎 is smooth
as well because it can be written as

𝜎 ∶ 𝑋 → 𝑋 𝜎(𝑥, 𝑦) =
⎛⎜⎜⎜⎝

−𝑥
𝑥2 + 𝑦2 ,

𝑦
𝑥2 + 𝑦2

⎞⎟⎟⎟⎠

We show that 𝜎∗𝑑𝑠2 = 𝑑𝑠2.

𝜎∗𝑑𝑠2 =
(𝑥2 + 𝑦2)2

𝑦2

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣
𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
𝑑𝑥 +

2𝑥𝑦
(𝑥2 + 𝑦2)2

𝑑𝑦
⎤⎥⎥⎥⎦

2

+
⎡⎢⎢⎢⎣

𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2
𝑑𝑦 −

2𝑥𝑦
(𝑥2 + 𝑦2)2

𝑑𝑥
⎤⎥⎥⎥⎦

2⎞⎟⎟⎟⎠

The first term in parenthesis expands to:

(𝑥2 − 𝑦2)2

(𝑥2 + 𝑦2)4
𝑑𝑥2 +

4𝑥2𝑦2

(𝑥2 + 𝑦2)4
𝑑𝑦2 +

4𝑥𝑦(𝑥2 − 𝑦2)
(𝑥2 + 𝑦2)2

𝑑𝑥𝑑𝑦

The second term in parenthesis expands to:

4𝑥2𝑦2

(𝑥2 + 𝑦2)4
𝑑𝑥2 +

(𝑥2 − 𝑦2)2

(𝑥2 + 𝑦2)4
𝑑𝑦2 −

4𝑥𝑦(𝑥2 − 𝑦2)
(𝑥2 + 𝑦2)4

𝑑𝑥𝑑𝑦

It is clear that the cross terms cancel. We have:

𝜎∗𝑑𝑠2 =
(𝑥2 + 𝑦2)2

𝑦2

⎛⎜⎜⎜⎝
(𝑥2 − 𝑦2)2 + 4𝑥2𝑦2

(𝑥2 + 𝑦2)4
𝑑𝑥2 +

(𝑥2 − 𝑦2)2 + 4𝑥2𝑦2

(𝑥2 + 𝑦2)4
𝑑𝑦2⎞⎟⎟⎟⎠

= 𝑑𝑠2

as above. Hence, 𝜎 acts isometrically on 𝑋.

This completes the proof.

Exercise 3. Fix 𝑝 ∈ ℝ𝑛 and let 𝜀 be the evaluation map at 𝑝. Let 𝐴 = C∞(ℝ𝑛)
or 𝐴 = C(ℝ𝑛) and let Der𝑝(ℝ𝑛) denote the space of derivations of 𝐴 over 𝜀. For
some 𝑋𝑝 ∈ Der𝑝(ℝ𝑛), let us first record two key properties of 𝑋𝑝 that follow
immediately from the definition:

(1) For any constant function 𝑓 ∈ 𝐴, 𝑋𝑝(𝑓) = 0. Indeed, note that:

𝑋𝑝(1) = 𝑋𝑝(1 ⋅ 1) = 1 ⋅ 𝑋𝑝(1) + 𝑋𝑝(1) ⋅ 1 = 2𝑋𝑝(1)

Hence, 𝑋𝑝(1) = 0. If 𝑓 = 𝑐 for some constant 𝑐 ∈ ℝ, then 𝑓 = 𝑐 ⋅ 1 where
1 is the constant function taking value 1. Thus, by linearity

𝑋𝑝(𝑓) = 𝑋𝑝(𝑐 ⋅ 1) = 𝑐𝑋𝑝(1) = 0
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(2) If 𝑓, 𝑔 ∈ 𝐴 with 𝑓(𝑝) = 𝑔(𝑝) = 0, then 𝑋𝑝(𝑓𝑔) = 0. Indeed,

𝑋𝑝(𝑓𝑔) = 𝑓(𝑝)𝑋𝑝(𝑔) + 𝑋𝑝(𝑓)𝑔(𝑝) = 0 + 0 = 0

• Let 𝐴 = C∞(ℝ𝑛). Let T𝑝ℝ𝑛 be the geometric tangent space of ℝ𝑛 at 𝑝:

T𝑝ℝ𝑛 = {𝑝} × ℝ𝑛 ∶= {𝑣𝑝 ∈ ℝ𝑛|𝑣 ∈ ℝ𝑛}

Moreover, let 𝐷𝑣𝑝 denote the directional derivative operator at 𝑝 in the
direction of 𝑣 . We show that the map

Φ𝑝 ∶ T𝑝ℝ𝑛 → Der𝑎ℝ𝑛 𝑣𝑝 ↦ 𝐷𝑣𝑝

is a vector space isomorphism. If 𝑣𝑝 , 𝑤𝑝 ∈ T𝑝ℝ𝑛, 𝑐 ∈ ℝ and 𝑓 ∈ 𝐴, we
have that:

𝐷𝑐𝑣𝑝+𝑤𝑝 (𝑓) = 𝑐𝑣 𝑖𝜕𝑖𝑓 + 𝑤 𝑖𝜕𝑖𝑓 = 𝑐𝐷𝑣𝑝 (𝑓) + 𝐷𝑤𝑝 (𝑓)

Hence, Φ𝑝 is a linear map.

Let (𝑎, 𝑣) ∈ kerΦ𝑝 . Hence, so that 𝐷𝑣𝑝𝑓 = 0 for all 𝑓 ∈ C∞(ℝ𝑛). Taking
𝑓(𝑥) = 𝑥 𝑗 for 1 ≤ 𝑗 ≤ 𝑛 to be the 𝑗-th coordinate function, we have

0 = 𝐷𝑣𝑝 (𝑥
𝑗) = 𝑣 𝑖𝜕𝑖𝑥 𝑗(𝑝) = 𝑣 𝑖𝛿𝑗𝑖 = 𝑣 𝑗 .

This shows that 𝑣 = 0, and so Φ𝑝 is one-to-one.

Fix 𝑋𝑝 ∈ Der𝑝ℝ𝑛. Define the vector 𝑣 by taking its 𝑗-th component in
the standard basis to be 𝑋𝑝(𝑥 𝑗). That is, let 𝑣 𝑗 = 𝑋𝑝(𝑥 𝑗). Let 𝑓 ∈ C∞(ℝ𝑛).
By Taylor’s Theorem,

𝑓(𝑥) = 𝑓(𝑝) + 𝜕𝑖𝑓(𝑝)(𝑥 𝑖 − 𝑝 𝑖) +
1
2
(𝑥 𝑖 − 𝑝 𝑖)(𝑥 𝑗 − 𝑝 𝑗)

1

0
(1 − 𝑡)𝜕𝑖𝜕𝑗𝑓(𝑎 + 𝑡(𝑥 − 𝑝))𝑑𝑡

Setting

𝑔 𝑖(𝑥) = (𝑥 𝑖 − 𝑝 𝑖), ℎ𝑗(𝑥) = (𝑥 𝑗 − 𝑝 𝑗)
1

0
(1 − 𝑡)𝜕𝑖𝜕𝑗𝑓(𝑎 + 𝑡(𝑥 − 𝑝)),

the functions 𝑔 𝑖, ℎ𝑗 are smooth and satisfy 𝑔 𝑖(𝑝) = ℎ𝑗(𝑝) = 0 for 1 ≤ 𝑖, 𝑗 ≤
𝑛, and we have

𝑓(𝑥) = 𝑓(𝑝) + 𝜕𝑖𝑓(𝑝)(𝑥 𝑖 − 𝑝 𝑖) +
1
2

𝑛


𝑖,𝑗=1

𝑔 𝑖(𝑥)ℎ𝑗(𝑥).
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Using the properties of 𝑋𝑝 mentioned above, we have:

𝑋𝑝𝑓 = 𝑋𝑝 ⒧𝜕𝑖𝑓(𝑝)(𝑥 𝑖 − 𝑝 𝑖)⒭

= 𝜕𝑖𝑓(𝑝)𝑋𝑝(𝑥 𝑖 − 𝑝 𝑖)

= 𝜕𝑖𝑓(𝑝)𝑣 𝑖

= 𝐷𝑣𝑝𝑓

This shows that Φ𝑝 is onto. Hence, T𝑝ℝ𝑛 ≅ Der𝑝(ℝ𝑛). Since a basis for
𝑇𝑝ℝ𝑛 is given by {(𝑒𝑖)𝑝}𝑛𝑖=1, where 𝑒𝑖 is the 𝑖-th coordinate vector, it is
clear that a basis for Der𝑝(ℝ𝑛) is given by {𝐷(𝑒𝑖)𝑝 }

𝑛
𝑖=1. Written down more

explicitly, the basis is given by

𝜕
𝜕𝑥𝑖



𝑝
∶ 𝑓 ↦

𝜕𝑓
𝜕𝑥𝑖

(𝑝)

for 𝑖 = 1,… , 𝑛

• Let𝐴 = C(ℝ𝑛). We show that that no nonzero derivations of𝐴over 𝜀 exist.
Let 𝑓 ∈ C(ℝ𝑛) and let 𝐷 be a derivation. Since 𝐷(𝑐) = 0, we can WLOG
assume that 𝑓(𝑝) = 0. Otherwise, simply consider 𝑓 − 𝑓(𝑝). Moreover,
any such 𝑓 can be written as a sum of non-negative functions,

𝑓 = 𝑓+ − 𝑓− 𝑓+ = max{𝑓(𝑥), 0} 𝑓− = max{−𝑓(𝑥), 0}

Since, 𝐷(𝑓) = 𝐷(𝑓+) − 𝐷(𝑓−), it suffices to show that 𝐷(𝑓) = 0 for any non-
negative 𝑓 ∈ C(ℝ𝑛) with 𝑓(𝑝) = 0.

Since 𝑓 is non-negative, 𝑓 = 𝑔2 where 𝑔 = 𝑓 is a non-negative func-
tion in C(ℝ𝑛). Note that

𝐷(𝑓) = 𝐷(𝑔2) = 𝑓(𝑝)𝐷(𝑔) + 𝐷(𝑔)𝑓(𝑝) = 0.

Hence, 𝐷 ≡ 0.

Here are some remarks about the problem:

(1) When 𝑓 ∈ C∞(ℝ𝑛), our argument in the first part crucially used the
smoothness of 𝑓 since we expanded the function in a Taylor series.

(2) The argument in the second part breaks down for at least two reasons
when 𝑓 ∈ C∞(ℝ𝑛):
(a) 𝑓+ and 𝑓− might not be smooth and thus the argument does not work

for 𝑓 ∈ C∞(ℝ𝑛).
(b) The square root of a non-negative smooth function, 𝑓, might not be

a non-negative smooth function.
(3) It is certainly a bit surprising that the space of derivations over the alge-

bra of continuous functions is zero. In any case, this problem highlights
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that defining the notion of a tangent space and dimension is a tricky busi-
ness if we intend to work with topological manifolds.

This completes the proof.

Exercise 4. The solution is given below:

• Let 𝐹 ∈ Diff(𝑋). Define the following action:

𝜃 ∶ Diff(𝑋) × T∗𝑋 → T∗𝑋 𝜃(𝐹, (𝑝, 𝜔𝑝)) = (𝐹(𝑝), (𝑑𝐹−1
𝐹(𝑝))

∗(𝜔𝑝))

Here (𝑑𝐹−1
𝐹(𝑝))

∗(𝜔𝑝) is simply the pullback of 𝜔𝑝 ∈ 𝑇∗
𝑝𝑋 by the linear map

(𝑑𝐹−1
𝐹(𝑝))

∗. For fixed 𝐹 ∈ Diff(𝑋), we get a map, 𝜃𝐹 ∶ T∗𝑋 → T∗𝑋 which can
be visualized in the diagram below

𝑋 𝑋

T∗𝑋 T∗𝑋

𝐹−1

𝜃𝐹 (𝜔) 𝜔

(𝑑𝐹−1)∗

𝐹(𝑝) 𝑝

(𝐹(𝑝), (𝑑𝐹−1
𝐹(𝑝))

∗(𝜔𝑝)) (𝑝, 𝜔𝑝)

Let’s check that 𝜃 indeed defines a group action. Clearly,

𝜃(1𝑋 , (𝑝, 𝜔𝑝)) = (𝑝, 𝜔𝑝)

Moreover, note that

(𝑑(𝐺 ∘ 𝐹)−1𝐺∘𝐹(𝑝))
∗(𝜔𝑝) = (𝑑(𝐹−1 ∘ 𝐺−1)𝐺∘𝐹(𝑝))∗(𝜔𝑝)

= (𝑑𝐹−1
𝐹(𝑝) ∘ 𝑑𝐺

−1
𝐺∘𝐹(𝑝))

∗(𝜔𝑝)

= (𝑑𝐺−1
𝐺(𝐹(𝑝)))

∗((𝑑𝐹−1
𝐹(𝑝))

∗(𝜔𝑝))

Therefore,

𝜃(𝐺 ∘ 𝐹, (𝑝, 𝜔𝑝)) = 𝜃(𝐺, (𝐹(𝑝), (𝑑𝐹−1
𝐹(𝑝))

∗(𝜔𝑝)))

Hence, 𝜃 indeed defines a group action. Let 0𝑋 be the zero section on
of T∗𝑋. For each 𝐹 ∈ Diff(𝑋) and 𝑝 ∈ 𝑋, we have that

𝜃(𝐹, (𝑝, (0𝑋 )𝑝)) = (𝐹(𝑝), (𝑑𝐹−1
𝐹(𝑝))

∗((0𝑋 )𝑝))

Since (𝑑𝐹−1
𝐹(𝑝))

∗ is a linear map for each 𝑝 ∈ 𝑀, it is clear that

𝜃(𝐹, (𝑝, (0𝑋 )𝑝)) = (𝐹(𝑝), (0𝑋 )𝐹(𝑝))

for each 𝑝 ∈ 𝑀. Hence, 𝜃𝐹 (0𝑋 ) = 0𝑋 for each 𝐹 ∈ Diff(𝑋).

• Recall that a (𝑞, 𝜔𝑞 ) ∈ T∗𝑋 is such that 𝜔𝑞 ∈ T∗
𝑞𝑋 for some 𝑞 ∈ 𝑋. We

show that there is a natural 1-form, 𝛼, on T∗𝑋 called the tautological 1-
form. Consider the natural projection map,

𝜋 ∶ T∗𝑋 → 𝑋 𝜋((𝑞, 𝜔𝑞 )) = 𝑞
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Taking pullback yields a map

𝑑𝜋∗
(𝑞,𝜔𝑞 ) ∶ T

∗
𝑞𝑋 → T∗

𝜔𝑞 (T
∗𝑋)

The tautological 1-form, 𝛼, on T∗𝑋 is defined as

𝛼(𝑞,𝜔𝑞 ) = 𝑑𝜋∗
(𝑞,𝜔𝑞 )(𝜔𝑞 )

In other words, if 𝑣 ∈ T(𝑞,𝜔𝑞 )(T
∗𝑋), then

𝛼(𝑞,𝜔𝑞 )(𝑣) = 𝜔(𝑑𝜋(𝑞,𝜔𝑞 )(𝑣))

Let 𝐹 ∈ Diff(𝑋). Let 𝑑𝐹∗ denote the induced smooth map

𝑑𝐹∗ ∶ T∗𝑋 → T∗𝑋

𝑑𝐹∗ is defined by the rule

𝑑𝐹∗(𝑝, 𝛾𝑝) = (𝐹(𝑝), (𝑑𝐹−1
𝐹(𝑝))

∗(𝛾𝑝)) (𝑝, 𝛾𝑝) ∈ T∗𝑋

In what follows, denote 𝐺 = 𝑑𝐹∗. We claim that 𝛼 is invariant under 𝐺.
That is,

𝐺∗(𝛼) = 𝛼

That is, for each (𝑝, 𝛾𝑝) ∈ T∗𝑋, we have that

𝑑𝐺∗
(𝑝,𝛾𝑝 )(𝛼𝐺(𝑝,𝛾𝑝 )) = 𝛼(𝑝,𝛾𝑝 )

Before moving on, note that the following diagram commutes

T∗𝑋 T∗𝑋

𝑋 𝑋

𝐺

𝜋 𝜋

𝐹

Let 𝐺(𝑝, 𝛾) = (𝑝 ′, 𝛾 ′
𝑝′) We have the following:

𝑑𝐺∗
(𝑝,𝛾)(𝛼𝐺(𝑝,𝛾)) = 𝑑𝐺∗

(𝑝,𝛾)(𝑑𝜋
∗
(𝑝′,𝛾 ′)(𝛾

′
𝑝′))

= 𝑑(𝜋 ∘ 𝐺)∗(𝑝′,𝛾 ′)(𝛾
′
𝑝′)

= 𝑑(𝐹 ∘ 𝜋)∗(𝑝′,𝛾 ′)(𝛾
′
𝑝′)

= 𝑑𝜋∗
(𝑝,𝛾)(𝑑𝐹

∗
𝑝′(𝛾 ′

𝑝′))

= 𝑑𝜋∗
(𝑝,𝛾)(𝛾𝑝)

= 𝛼(𝑝,𝛾)

This proves the claim.

•
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• Wecompute the exterior derivative in coordinates. For 𝑞 ∈ 𝑋, let (𝑈, (𝑥1,⋯ , 𝑥𝑛))
be a chart in 𝑋 containing 𝑞. Let ( 𝑈, (𝑥1,⋯ , 𝑥𝑛, 𝑝1,⋯ , 𝑝𝑛)) be the corre-
sponding chart in T∗𝑋 containing (𝑞, 𝜔𝑞 ) such that

𝜔 = 𝜔𝑖𝑑𝑥 𝑖

is the coordinate representation of 𝜔. Write some 𝑣 ∈ 𝑇(𝑞,𝜔𝑞 )(T
∗𝑋) as

𝑣 = 𝑣 𝑖 𝜕
𝜕𝑥 𝑖 + 𝑣𝑘 𝜕

𝜕𝑝𝑘

Since 𝑑𝜋 is essentially the block matrix

𝑑𝜋 = ⒧1𝑛×𝑛 0𝑛×𝑛,⒭

we have:

𝛼(𝑞,𝜔𝑞 )(𝑣) = 𝜔(𝑑𝜋(𝑞,𝜔𝑞 )(𝑣))

= 𝜔⒧𝑣 𝑖 𝜕
𝜕𝑥 𝑖 ⒭

= 𝜔𝑗𝑑𝑥 𝑗⒧𝑣 𝑖 𝜕
𝜕𝑥 𝑖 ⒭

= 𝜔𝑗𝑣 𝑖𝑑𝑥 𝑗⒧
𝜕
𝜕𝑥 𝑖 ⒭

= 𝜔𝑖𝑣 𝑖

In other words,

𝛼(𝑞,𝜔𝑞 ) = 𝑑𝜋∗
(𝑞,𝜔𝑞 )(𝜔) = 𝜔𝑖𝑑𝑥 𝑖

Therefore,
𝑑𝛼(𝑞,𝜔𝑞 ) = 𝑑𝜔𝑖 ∧ 𝑑𝑥 𝑖

Clearly, 𝑑𝛼 is closed since

𝑑(𝑑𝜔𝑖 ∧ 𝑑𝑑𝑥 𝑖) = 𝑑2𝜔𝑖 ∧ 𝑑𝑑𝑥 𝑖 − 𝑑𝜔𝑖 ∧ 𝑑2𝑑𝑥 𝑖

because 𝑑2 = 0. Moreover, 𝑑𝛼 is non-degenerate. For some 𝑋 ∈ 𝑇(T∗𝑋)
(a vector field in T∗𝑋), assume that 𝑑𝛼(𝑋, 𝑌) = 0 for each 𝑌 ∈ 𝑇(T∗𝑋). In
the local coordinates chosen as above, write 𝑋 as

𝑎𝑖 𝜕
𝜕𝑥 𝑖 + 𝑏𝑘 𝜕

𝜕𝑝𝑘
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We have

0 = 𝑑𝛼(𝑞,𝜔𝑞 )
⎛⎜⎜⎜⎝
𝑋 𝑖 𝜕

𝜕𝑥 𝑖 + 𝑋𝑘 𝜕
𝜕𝑝𝑘 ,

𝜕
𝜕𝑥 𝑗

⎞⎟⎟⎟⎠
= −𝑎𝑗

0 = 𝑑𝛼(𝑞,𝜔𝑞 )
⎛⎜⎜⎜⎝
𝑋 𝑖 𝜕

𝜕𝑥 𝑖 + 𝑋𝑘 𝜕
𝜕𝑝𝑘 ,

𝜕
𝜕𝑝 𝑗

⎞⎟⎟⎟⎠
= 𝑏𝑗

Hence, 𝑋 = 0 in each local coordinate chart. Therefore, 𝑋 ≡ 0. Hence,
𝑑𝛼 is non-degenerate.

Exercise 5. The solution is given below:

• (1) GL(𝑛,ℝ) is an open subset of ℝ𝑛2 which has dimension 𝑛2. An open
subset of a manifold is a manifold whose dimension is the same as
that of the ambient manifold. Hence,

dimGL(𝑛,ℝ) = 𝑛2

(2) Consider the map

det ∶ GL(𝑛,ℝ) → ℝ∗ 𝐴 ↦ det𝐴

Clearly, SL(𝑛,ℝ) = det−1(1). We claim that det has constant rank 1.
It suffices to show that this at 𝐼𝑛 ∈ GL(𝑛,ℝ) since det is Lie group
homomorphism. Let 𝑋 ∈ 𝑇𝐼𝑛GL(𝑛,ℝ) ≅ ℝ𝑛2 and consider the curve
𝛾(𝑡) = 𝐼𝑛 + 𝑡𝑋 in ℝ𝑛2³ We compute

𝑑
𝑑𝑡



𝑡=0

det⒧𝐼 + 𝑡𝑋⒭

Note that to first order:

det⒧𝐼 + 𝑡𝑋⒭ = 
𝜎∈𝑆𝑛

sgn(𝜎) ⋅ (𝐼 + 𝑡𝑋)1,𝜎(1) ⋅ (𝐼 + 𝑡𝑋)2,𝜎(2) ⋅ ⋯ ⋅ (𝐼 + 𝑡𝑋)𝑛,𝜎(𝑛)

=
𝑛


𝑖=1

(1 + 𝑡𝑋𝑖𝑖) + 𝑂(𝑡2)

= 1 + 𝑡
𝑛


𝑖=1

𝑋𝑖𝑖 + 𝑂(𝑡2)

Therefore,

𝑑
𝑑𝑡



𝑡=0

det⒧𝐼 + 𝑡𝑋⒭ =
𝑛


𝑖=1

𝑋𝑖𝑖 = Tr𝑋

³For small enough 𝑡, 𝛾(𝑡) is contained in GL(𝑛,ℝ) since GL(𝑛,ℝ) is an open subset of ℝ𝑛2
so the

map is well-defined for small enough 𝑡.
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Clearly, the linear map 𝑋 ↦ Tr𝑋 is surjective. Hence, 𝑑𝐹𝐼𝑛 has rank
1. By the regular level set theorem, we have

dimSL(𝑛,ℝ) = GL(𝑛,ℝ) − rankdet = 𝑛2 − 1.

(3) Consider

Φ ∶ GL(𝑛,ℝ) → GL(𝑛,ℝ) 𝐴 ↦ 𝐴𝑇𝐴

It can be shown that Φ has constant rank⁴. Therefore, by the regular
level set theorem, we have

dimO(𝑛,ℝ) = GL(𝑛,ℝ) − rank𝑑Φ𝐼𝑛

We compute rank𝑑Φ𝐼𝑛 . The tangent space of GL(𝑛,ℝ) isomorphic
to M𝑛(ℝ) ≅ ℝ𝑛2 . Fix any 𝐴 ∈ M𝑛(ℝ). For any small enough 𝜀 > 0,
consider a curve 𝛾 ∶ (−𝜀, 𝜀) → O(𝑛,ℝ) such that 𝛾(0) = 𝐼𝑛 and 𝛾 ′(0) =
𝐴⁵. We have:

𝑑Φ𝐼𝑛(𝐴) = (Φ ∘ 𝛾)′(0)

=
𝑑
𝑑𝑡

𝛾(𝑡)𝑇𝛾(𝑡)


𝑡=0

= 𝛾 ′(0)𝑇𝛾(0) + 𝛾(0)𝑇𝛾 ′(0)

= 𝐴 + 𝐴𝑇

Since𝐴+𝐴𝑇 is symmetric, the image of 𝑑Φ𝐼𝑛 is contained in the vector
space of 𝑛-by-𝑛 symmetric matrices. In fact, it is equal to this vector
space. This is because for any

𝑑Φ𝐼𝑛(𝐵) =
𝐵 + 𝐵𝑇

2
= 𝐵

for any 𝑛-by-𝑛 symmetric matrix, 𝐵. Therefore,

dimO(𝑛,ℝ) = 𝑛2 −
𝑛(𝑛 + 1)

2
=

𝑛(𝑛 − 1)
2

• Each group is a subset ofℝ𝑛2 . Therefore, it will be compact if and only if
it is closed an bounded with respect to the Euclidean topology. Since all
norms on ℝ𝑛2 are equivalent, we choose to work with the infinity norm,
‖⋅‖∞.

⁴Use the equivariant rank theorem which is a generalization of the result that a Lie group ho-
momorphism has constant rank.
⁵Such curves are guaranteed to exist!
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(1) Consider the sequence of matrices:

𝐴𝑚 = 𝑚𝐼𝑛

Clearly, ‖𝐴𝑚‖∞ = 𝑚. Therefore, GL(𝑛,ℝ) is not a bounded set since
it contains matrices of arbitrarily large norm.

(2) Consider the sequence of matrices:

𝐴𝑚 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑚 0 ⋯ 0
0 1

𝑚 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By construction, det𝐴𝑚 = 1 and ‖𝐴𝑚‖∞ = 𝑚. Therefore, SL(𝑛,ℝ)
is not a bounded set since it contains matrices of arbitrarily large
norm.

(3) Consider the function:

Φ ∶ ℝ𝑛2 → ℝ𝑛2 Φ(𝐴) = 𝐴𝑇𝐴

Clearly, O(𝑛,ℝ) = Φ−1(𝐼𝑛). Therefore, O(𝑛,ℝ) is a closed set. Each
entry in amatrix𝑂 ∈ O(𝑛,ℝ) is bounded in absolute value by 1 since
each matrix in 𝑂 ∈ O(𝑛,ℝ) has orthonormal columns. Therefore,
‖𝑂‖∞ ≤ 1 for every𝑂 ∈ O(𝑛,ℝ). As a result,𝑂 ∈ O(𝑛,ℝ) is compact.

• O(𝑛,ℝ) is not connected. If not, then O(𝑛,ℝ) would be path connected
sinceO(𝑛,ℝ) is a smooth manifold. However, +𝐼𝑛 and −𝐼𝑛 cannot be con-
nected by a continuous path by the continuity of the determinant func-
tion.

We show every 𝐴 ∈ SO(𝑛,ℝ) can be connected to 𝐼𝑛. First, we argue
that given any two unit vectors 𝑣, 𝑤 ∈ ℝ𝑛, there is a path 𝛾(𝑡) ∈ SO(𝑛,ℝ)
such that:

𝛾(0)𝑣 = 𝑣

𝛾(1)𝑣 = 𝑤

That is, any two unit vectors in ℝ𝑛 can be continuously rotated. Choose a
𝑢 ∈ ℝ𝑛 as follows:
(1) If 𝑣 and 𝑤 are linearly independent, apply the Gram-Schmidt algo-

rithm and choose 𝑢 such that 𝑢 ⟂ 𝑣 and 𝑢 ∈ span{𝑣, 𝑤}.
(2) If 𝑣 and 𝑤 are linearly dependent (𝑤 = −𝑣), then take 𝑢 to be any

unit vector in 𝑣⟂.
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Let 𝑉 = span{𝑣, 𝑢}. One can then consider a one-parameter family of
rotations, 𝑅𝜙 ∈ SO(2,ℝ) that act on 𝑉. Since 𝑤 ∈ 𝑉, there is an angle 𝜙0

such that (in the above constructed basis):

𝑤 = 𝑅𝜙0 0
0 𝐼𝑛−2

 𝑣.

Define the path

𝛾(𝑡) ∶= 𝑅𝑡𝜙0 0
0 𝐼𝑛−2



The image of 𝛾 is clearly contained in SO(𝑛,ℝ) and is such that

𝛾(0) = 𝑅(0)𝑣 = 𝑣

𝛾(1) = 𝑅(1)𝑣 = 𝑤

Any 𝐴 ∈ SO(𝑛,ℝ) is represented by an orthonormal basis (𝑎1,… , 𝑎𝑛)
over vectors in ℝ𝑛. Apply the above procedure recursively: find a path
𝛾1(𝑡) ∈ SO(𝑛,ℝ) such that

𝛾1(𝑡)𝑎1 = 𝑒1

Then choose a path 𝛾2 taking 𝛾1(1)𝑎2 to 𝑒2. Note that any such 𝛾2 leaves
𝑒1 invariant. Indeed 𝑒1 ⟂ 𝑒2, 𝛾1(1)𝑎2 ⁶. So, 𝑒1 is in the complement
of the subspace in which the rotation happens and is thus left invariant.
Proceed recursively now and consider the paths 𝛾1(𝑡),⋯ , 𝛾𝑛(𝑡). Consider

𝛾 = 𝛾𝑛 ∘ ⋯ ∘ 𝛾1

Based on the above remarks, it is clear that

𝛾(0)𝑎𝑖 = 𝑎𝑖

𝛾(1)𝑎𝑖 = 𝑒𝑖

for 𝑖 = 1,⋯ , 𝑛. Hence, SO(𝑛,ℝ) is path-connected and hence connected
since SO(𝑛,ℝ) is a smooth manifold.

• (1) Consider the function:

det ∶ ℝ𝑛2 → ℝ

Clearly, GL(𝑛,ℝ) = det−1(ℝ ⧵ {0}). Therefore, GL(𝑛,ℝ) is not con-
nected. Otherwise, ℝ ⧵ {0}, which is the image of the det map, will
be connected. Hence, GL(𝑛,ℝ) has at least two components. We
show that it has exactly 2 components. We have:

GL(𝑛,ℝ) = GL+𝑛(ℝ)GL−𝑛(ℝ),

⁶Applying 𝛾1 to an orthonormal basis results in an orthonormal basis
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whereGL±(𝑛,ℝ) is the set of all elements inGL(𝑛,ℝ)with positive/negative
determinant. It suffices to show that GL+(𝑛,ℝ) is path-connected
since GL−(𝑛,ℝ) is diffeomorphic to GL+(𝑛,ℝ).

We use the singular value decomposition. Let

𝐴 = 𝑈Σ𝑉

be the singular value decomposition of 𝐴. Here 𝑈 and 𝑉 are unitary
matrices andΣ is a diagonal matrix consisting of the singular values
of 𝐴 which are all non-negative⁷. Since 𝐴 has positive determinant,
the singular values of 𝐴 are all positive real numbers.

Since det𝐴 > 0, det𝑈 = det𝑉. Therefore, both 𝑈 and 𝑉 are in the
same component of O(𝑛,ℝ). WLOG, assume that both matrices are
contained in SO(𝑛,ℝ). Since SO(𝑛,ℝ) is connected, there exist paths
𝛾1(𝑡) and 𝛾2(𝑡) in SO(𝑛,ℝ) such that

𝛾1(0) = 𝑈 𝛾1(1) = 𝐼𝑛

𝛾1(0) = 𝑉 𝛾1(1) = 𝐼𝑛
Consider the path

𝛾(𝑡) = 𝛾1(𝑡)Σ𝛾2(𝑡)

Clearly, 𝛾(𝑡) is in SO(𝑛,ℝ) such that

𝛾1(0) = 𝐴 𝛾1(1) = Σ

Since Γ has positive entries, there exists a smooth curve 𝛽 such that
𝛽(𝑠) ∈ SO(𝑛,ℝ) and that

𝛽1(0) = Σ 𝛽(1) = 𝐼𝑛

Simply consider 𝛽 ∘ 𝛾 . This shows that GL+(𝑛,ℝ)
(2) Consider the continuous surjective map

Φ∶ GL+(𝑛,ℝ) → SL(𝑛,ℝ) 𝐴 ↦
𝐴

(det𝐴) 1𝑛
∈ SL(𝑛,ℝ).

Since GL+(𝑛,ℝ) is connected, SL(𝑛,ℝ) since it is the image of a con-
nected set under a continuous map.

⁷This is crucial in this proof.
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• Wefirst pin down structure of thematrices in SO(2,ℝ) and SO(3,ℝ). We
claim that every element in 𝐴 ∈ SO(2,ℝ) can be written as:

𝐴 = ⒧cos𝜃 − sin𝜃
sin𝜃 cos𝜃

⒭

Indeed, the columns of a matrix in SO(2,ℝ) are orthonormal. Hence,
the first column must be a unit vector in ℝ2. Hence, it can be written as
the unit vector shown in the first column in the matrix above. It is clear
that the only unit vector orthogonal to the first column vector is the sec-
ond column vector shown in the matrix above. Clearly, every matrix in
SO(2,ℝ) is a rotation.

We now claim that every element in 𝐴 ∈ SO(3,ℝ) is conjugate to a
matrix of the form:

𝐴 =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos𝜃 − sin𝜃 0
sin𝜃 cos𝜃 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Here, we use the easily proved fact that every (real or complex) eigen-
value of a matrix in SO(𝑛,ℝ) has absolute value 1.

The characteristic polynomial of 𝐴 is a degree three polynomial so it
must have a real root. If it has three real roots, then the eigenvalues are
(1, 1, 1) or (−1, −1, 1). Hence, 𝐴 is conjugate to

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
or

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0
0 −1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

which is of the form above. If it has only one root, then it must be 1
and the complex eigenvalues come in conjugate pairs. Let 𝑉 denote the
eigenspace of eigenvalue 1 and let 𝑉⟂⁸ be the eigensapce correspond-
ing to the complex eigenvalues. Let the complex eigenvalues be 𝜆 =
cos𝜃+ 𝑖 sin𝜃 = for some 𝜃 and 𝜆 along with complex eigenvectors 𝑣 and
𝑣 respectively. It is quite easy to see that

𝑉⟂ = Span{𝑣 + 𝑣, 𝑖(𝑣 − 𝑣)}

invariant under the action of 𝐴:

𝐴(𝑣 + 𝑣) = cos𝜃(𝑣 + 𝑣) + sin𝜃𝑖(𝑣 − 𝑣)

𝐴𝑖(𝑣 − 𝑣) = − sin𝜃(𝑣 + 𝑣) + cos𝜃𝑖(𝑣 − 𝑣)

⁸The matrix is orthogonally diagonalizable!
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Hence, 𝐴 restricted to 𝑉⟂ is of the form

⒧cos𝜃 − sin𝜃
sin𝜃 cos𝜃

⒭

This proves the claim. Hence, every element in SO(3,ℝ) fixes a vector,
𝑣 , and maps the plane orthogonal to 𝑣 via a rotation.

For 𝑛 ≥ 4, consider the following matrix:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos𝜃 − sin𝜃 0 0 0
sin𝜃 cos𝜃 0 0 0
0 0 cos𝜙 − sin𝜙 0
0 0 sin𝜙 cos𝜙 0
0 0 0 0 𝐼𝑛−4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where 𝜃 ∈ ℚ/ℤ, the multiplicative group of roots of unity, and 𝜙 ∈ 𝕊1 ⧵
ℚ/ℤ. This is not a rotation.

• Recall that every matrix 𝐴 ∈ SO(2,ℝ) can be written as:

𝐴 = ⒧cos𝜃 − sin𝜃
sin𝜃 cos𝜃

⒭

Consider 𝕊1 ⊆ ℂ. Define:

𝐹 ∶ 𝕊1 → SO(2,ℝ) 𝑒𝑖𝜃 ↦ ⒧cos𝜃 − sin𝜃
sin𝜃 cos𝜃

⒭

𝐹 is smooth because 𝐹 can be thought of as the restriction of a smooth
map

̃𝐹 ∶ ℂ → 𝑀2(ℝ) ≅ ℝ4 𝑟𝑒𝑖𝜃 ↦ ⒧𝑟 cos𝜃 −𝑟 sin𝜃
𝑟 sin𝜃 𝑟 cos𝜃

⒭

Since 𝕊1 ⊆ ℂ and SO(2,ℝ) ⊆ 𝑀2(ℝ) are embedded submanifolds of
𝑀2(ℝ), the restriction map is guaranteed to smooth. Consider

𝐺 ∶ 𝑀2(ℝ) → ℂ ⒧𝑎 𝑐
𝑏 𝑑

⒭ ↦ 𝑎 + 𝑖𝑏

Clearly, 𝐺 is a smooth map and its restriction

𝐺 ∶ SO(2,ℝ) → 𝕊1 ⒧cos𝜃 − sin𝜃
sin𝜃 cos𝜃

⒭ ↦ cos𝜃 + 𝑖 sin𝜃 = 𝑒𝑖𝜃

is also smooth as argued above. Clearly, 𝐹 and 𝐺 are inverse of each
other. Hence,

SO(2,ℝ) ≅ 𝕊1
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Let 𝐵3
𝜋 be a 3-ball of radius 𝜋. Consider the equivalence relation on

𝜕𝐵3
𝜋 = by 𝑥 ∼ 𝑦 if 𝑥 = −𝑦 . It is a standard fact that

ℝℙ3 ≅ 𝐵3
𝜋/𝜕𝐵3

𝜋

From the previous part, we know that an element in SO(3,ℝ) can be
specified by a some 𝑣 ∈ ℝ3 and a rotation in 𝑣⟂ by an angle 𝜃 ∈ [−𝜋, 𝜋]
radians. A rotation by 𝜋 is equivalent to a rotation by −𝜋. Therefore,
we can represent any element of SO(3,ℝ), besides the identity by the
ordered pair (𝑣, 𝜃), where 𝑣 is the unit vector in the direction of the rota-
tion, and 𝜃 is the magnitude between −𝜋 and 𝜋. Note that 𝜃𝑣 ∈ 𝐵3

𝜋. An
explicit diffeomorphism between SO(3,ℝ) and 𝐵3

𝜋/𝜕𝐵3
𝜋 is

𝑓(𝑣, 𝜃) = [𝜃𝑣],

and
𝑓(𝐼) = 0.

It is a simple matter to check that this is a well-defined diffeomorphism.
Hence,

SO(3,ℝ) ≅ 𝐵3
𝜋/𝜕𝐵3

𝜋 ≅ ℝℙ3
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(Due 14 March 2024)

A good general reference is Introduction to Smooth Manifolds, by John
M. Lee, ISBN 978-1-4899-9475-2, Springer Graduate Texts in Mathe-
matics 218, Second Edition (2012).

Problem 6.

(1) Consider the vector field

Y := ex
∂

∂y

on the plane M = R2. Integrate X to obtain a local flow ϕt(x, y)
(where t is defined in some neighborhood of 0, which may vary
with the initial condition (x, y).1

(2) Is Y complete?, that is, is ϕt defined for all time?
(3) Show that the diffeomorphism

R2 Φ−−→ R2

(x, y) 7−→ (x, e−xy)

satisfies Φ∗Y = ∂
∂y

.

(4) Verify directly that

F
(
ϕt(x, y)

)
= τtF (x, y)

where τt(x, y) = (x, y + t) is the one-parameter group of trans-
lations generated by the vector field ∂

∂y
.

(5) Deduce this from uniqueness of flows generated by vector fields.
(6) Show that ϕt preserves Euclidean area.
(7) Deduce this by computing the interior product ιY (ω), its ex-

terior derivative dιY (ω), and the Lie derivative LY (ω) where
ω = dx∧ dy is the Euclidean area form, using Cartan’s formula

LY = dιY + ιY d.

Date: March 6, 2024.
1The condition that ϕ is a local flow is that ϕ0(x, y) = (x, y) and ϕs ◦ϕt = ϕs+t

whenever (ϕs ◦ ϕt)(x, y) and ϕs+t(x, y) are defined.
1
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(8) Let X := ey ∂
∂x

. Find a diffeomorphism Ψ such that

Ψ∗(X) =
∂

∂x
.

(9) Compute the Lie bracket [X, Y ]. Use this to deduce that no
diffeomorphsm Ψ exists such that

Ψ∗(Y ) =
∂

∂y
and Ψ∗(X) =

∂

∂x
.

(10) ShowX+Y is incomplete, although bothX and Y are complete.

Problem 7.
Let a, b ∈ R with a < b and (a, b)

γ−−→ E2 a regular plane curve
parametrized by arc length. The matrix

J :=

[
0 −1
1 0

]
represents counter-clockwise orthogonal rotation. Show that

T(s) := γ′(s)

N(s) := J γ′(s)
defines a positively oriented orthonormal frame field along γ. Define
the signed curvature k±(s) of γ by:

T′(s) = k±(s)T(s).

Prove that:

(1) If g ∈ Isom+(E2), then the signed curvature the transformed
curve g ◦ γ also has signed curvature k±(s).

(2) Conversely suppose that two regular plane curves γ1, γ2 have
the same signed curvature function. Show there exists a unique
g ∈ Isom+(E2) such that γ2 = g ◦ γ1.

(3) Let (a, b)
f−−→ R be a smooth function. Let p0 ∈ E2 and (T0,N0)

be a positively oriented orthonormal frame. Show there is a
unique regular plane curve γ(s) with:
(a) The signed curvature k±(s) of γ equals f ;
(b) At time s = 0, the unit tangent and normal vector fields

equal T0,N0.

26 JUNAID AFTAB
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Problem 8.

(1) Let (a, b)
γ−−→ E3 a regular space curve parametrized by arc

length. That is, the velocity γ′(s) has unit length, and equals
the unit tangent vector field T(s). Assume the acceleration

D

ds
γ′(s) =

D

ds
T(s) := T′(s) = γ′′(s)

is nonzero for all s ∈ (a, b) (so that the unit normal vector field
N(s) can be uniquely defined).

(2) Prove that the acceleration γ′′(s) is orthogonal T(s) and define
the unit normal vector field N(s) by:

N(s) :=
1

‖γ′′(s)‖
γ′′(s)

and the curvature by

k(s) := ‖γ′′(s)‖.
Define the binormal vector field by:

B(s) := T(s)× N(s)

and prove that ‖B(s)‖ = 1.
(3) Prove that for each s, the ordered triple

(
T(s),N(s),B(s)

)
is a

positively oriented orthonormal basis of R3 (that is, a positively
oriented orthonormal frame).

(4) Define the torsion τ (s) of γ as the B(s)-component of the de-
rivative N′(s):

τ (s) := N′(s) · B(s).

Show that the moving frame2
(
T(s),N(s),B(s)

)
satisfies the

Frenet-Serret structure equations:

(*)

T′(s)N′(s)
B′(s)

 =

 0 k(s) 0
−k(s) 0 τ (s)

0 −τ (s) 0

T(s)
N(s)
B(s)

 .
(5) Show that k(s) and τ (s) are invariant under the group Isom+(E3),

that is, if we replace the curve γ by the composition

γ̃ := g ◦ γ,
where g ∈ Isom+(E3) is an orientation-preserving isometry, then

the corresponding curvature and torsion functions k̃(s), τ̃ (s) are
equal:

k̃(s) = k(s), τ̃ (s) = τ (s).

2In French, repère mobile.
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(6) Show any pair of smooth functions k(s), τ (s), where k(s) > 0,
can be realized by a smooth regular space curve γ(s) and this
curve is unique up to composition with Isom+(E3).

(Hint: set this up as initial value problem. The Frenet-Serret

frame field
(
T(s),N(s),B(s)

)
and the curvature and torsion are

defined by the structure equations (*). Consider a fiber bundle
over (a, b) with total space

E := (a, b)× E3 × F3

where F3 is the set of positively oriented orthonormal frames3

in R3.
This makes E −→ (a, b) into a principal Isom+(E3)-bundle

over the parameter space (a, b), and we seek a section of this
bundle (which will be a solution of (*)). Write the coordinates
of E as(

s; (x, y, z); (t1, t2, t3); (n1, n2, n3); (b1, b2, b3)
)

where:
• s ∈ (a, b) corresponds to “time” (or “arc length”);
• (x, y, z) are the coordinates of the space curve γ;
• (t1, t2, t3) are the components of the unit tangent vector

field T;
• (n1, n2, n3) are the components of the unit normal vector

field N;
• (b1, b2, b3) are the components of the unit binormal vector

field B.
Then (*) corresponds to the vector field ξ on E defined by:

ξ := ∂s + (t1∂x + t2∂y + t3∂z)

+ k(s)(n1∂t1 + n2∂t2 + n3∂t3)

+
(
− k(s)t1 + τ (s)b1

)
∂n1

+
(
− k(s)t2 + τ (s)b2

)
∂n2

+
(
− k(s)t3 + τ (s)b3

)
∂n3

+
(
− τ (s)

)
(n1∂b1 + n2∂b2 + n3∂b3).

Now solve an initial value problem.)

3F3 is an SO(3)-torsor, that is, any pair of positively oriented frames are related
by a unique element of SO(3).
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(7) Explain why the matrix 0 k(s) 0
−k(s) 0 τ (s)

0 −τ (s) 0


appearing in (*) is skew-symmetric.

(8) Find all space curves of constant curvature and constant torsion.
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2. HOMEWORK 2

Exercise 6. The solution is given below:

• Let 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be an integral curve for 𝑋. The associated system
of ODE is

𝑑𝑥
𝑑𝑡

= 0
𝑑𝑦
𝑑𝑡

= 𝑒𝑥(𝑡)

Consider the initial condition 𝛾(0) = (𝑥0, 𝑦0). Since the system of ODE’s
is uncoupled, we first solve the first ODE and then solve the secondODE.
The solution to the first ODE is clearly,

𝑥(𝑡) = 𝑥0.

Plugging this expression in the second ODE, we get,
𝑑𝑦
𝑑𝑡

= 𝑒𝑥0 , 𝑦(0) = 𝑦0.

The solution to the second ODE is

𝑦(𝑡) = 𝑦0 + 𝑒𝑥0𝑡

Hence, the corresponding integral curve is

𝛾(𝑡) = (𝑥0, 𝑦0 + 𝑒𝑥0𝑡)

The corresponding flow is

𝜑𝑡(𝑥0, 𝑦0) = (𝑥0, 𝑦0 + 𝑒𝑥0𝑡)

• 𝑌 is complete since for each (𝑥0, 𝑦0) ∈ ℝ2, 𝜑𝑡(𝑥0, 𝑦0) is defined for all 𝑡 ∈
ℝ.

• Write the coordinates in the domain as (𝑢, 𝑣). The inverse of Φ is given
by the formula:

Φ−1(𝑢, 𝑣) = (𝑢, 𝑒𝑢𝑣)

The differential of 𝐹

𝑑Φ(𝑥,𝑦) =  1 0
−𝑦𝑒−𝑥 𝑒−𝑥 ⟺ 𝑑ΦΦ−1(𝑢,𝑣) =  1 0

−𝑣 𝑒−𝑢

Moreover, have

𝑌Φ−1(𝑢,𝑣) = 𝑒𝑢 𝜕
𝜕𝑦



𝐹−1(𝑢,𝑣)

Therefore,

(Φ∗𝑌)(𝑢,𝑣) = 𝑑ΦΦ−1(𝑢,𝑣)(𝑌Φ−1(𝑢,𝑣)) =
𝜕
𝜕𝑣



(𝑢,𝑣)
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• Note that

Φ(𝜑𝑡(𝑥0, 𝑦0)) = Φ(𝑥0, 𝑦0 + 𝑒𝑥0𝑡)

= (𝑥0, 𝑒−𝑥0(𝑦0 + 𝑒𝑥0𝑡))

= (𝑥0, 𝑒−𝑥0𝑦0 + 𝑡) = 𝜏𝑡(Φ(𝑥0, 𝑦0))

• We have

𝑑
𝑑𝑡



𝑡=0

Φ(𝜑𝑡(𝑥0, 𝑦0)) = 𝑑Φ(𝑥0,𝑦0)⒧
𝑑
𝑑𝑡



𝑡=0

𝜑𝑡(𝑥, 𝑦)⒭(1)

= 𝑑Φ(𝑥0,𝑦0)(𝑌(𝑥0,𝑦0))(2)

=
𝜕
𝜕𝑦



Φ(𝑥0,𝑦0)

(3)

Since 𝜏𝑡(𝑥0, 𝑦0) is the flow generated by the vector field 𝜕
𝜕𝑦 , by the unique-

ness of the flow we have

(4) Φ(𝜙𝑡(𝑥0, 𝑦0)) = 𝜏𝑡(Φ(𝑥0, 𝑦0))

• Fix some 𝑡 ∈ ℝ and consider

𝜑𝑡 ∶ ℝ2 → ℝ2 𝜑𝑡(𝑥, 𝑦) = (𝑥, 𝑦 + 𝑒𝑥𝑡)

The area form, 𝑑𝐴, onℝ2 (the co-domain) is 𝑑𝐴(𝑢,𝑣) = 𝑑𝑢∧𝑑𝑣 . Note that

𝜑∗
𝑡 (𝑑𝐴)(𝑥,𝑦) = 𝑑𝑥 ∧ 𝑑(𝑦 + 𝑒𝑥𝑡)

= 𝑑𝑥 ∧ 𝑑(𝑦 + 𝑒𝑥𝑡𝑑𝑥)

= 𝑑𝑥 ∧ 𝑑𝑦 + 𝑒𝑥𝑡𝑑𝑥 ∧ 𝑑𝑥

= 𝑑𝑥 ∧ 𝑑𝑦

= 𝑑𝐴(𝑥,𝑦)

Hence,
𝜑∗
𝑡 (𝑑𝐴) = 𝑑𝐴

• Note that

𝑑(𝑑𝑥 ∧ 𝑑𝑦) = 𝑑2𝑥 ∧ 𝑑𝑦 + 𝑑𝑥 ∧ 𝑑2𝑦 = 0 + 0 = 0

If 𝑍 is any vector field on ℝ2, we have:

𝜄𝑌 (𝜔)(𝑍) = 𝜔(𝑌, 𝑍) = det 𝑑𝑥(𝑌) 𝑑𝑥(𝑍)
𝑑𝑦(𝑌) 𝑑𝑦(𝑍)

 = det  0 𝑑𝑥(𝑍)
𝑒𝑥 𝑑𝑦(𝑍)

 = −𝑒𝑥𝑑𝑥(𝑍)

Therefore
𝜄𝑌 (𝜔) = −𝑒𝑥𝑑𝑥
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As a result

𝑑(𝜄𝑌 (𝜔)) = −𝑑(𝑒𝑥𝑑𝑥) = −𝑒𝑥𝑑𝑥 ∧ 𝑑𝑥 = 0

Using Cartan’s formula, we have:

ℒ𝑌 (𝜔) = 0 + 0 = 0

This is sufficient to imply that 𝜔 is preserved under the flow generated
by 𝑌. See [Lee12, Proposition 12.37]

• Write the coordinates in the domain as (𝑢, 𝑣). The inverse of Ψ is given
by the formula:

Ψ−1(𝑢, 𝑣) = (𝑢𝑒𝑣 , 𝑣)

The differential of 𝐹

𝑑Ψ(𝑥,𝑦) = 𝑒
−𝑦 −𝑥𝑒−𝑦

0 1
 ⟺ 𝑑ΦΦ−1(𝑢,𝑣) = 𝑒

−𝑣 −𝑢
0 1



Moreover, have

𝑌Φ−1(𝑢,𝑣) = 𝑒𝑣 𝜕
𝜕𝑥



𝐹−1(𝑢,𝑣)

Therefore,

(Φ∗𝑌)(𝑢,𝑣) = 𝑑ΦΦ−1(𝑢,𝑣)(𝑌Φ−1(𝑢,𝑣)) =
𝜕
𝜕𝑢



(𝑢,𝑣)

• The Lie bracket is given by

[𝑋, 𝑌] =
⎡⎢⎢⎢⎣
𝑒𝑦 𝜕

𝜕𝑥
, 𝑒𝑥 𝜕

𝜕𝑦
⎤⎥⎥⎥⎦

= 𝑋(𝑒𝑥 )
𝜕
𝜕𝑦

− 𝑌(𝑒𝑦 )
𝜕
𝜕𝑥

= 𝑒(𝑥+𝑦) 𝜕
𝜕𝑦

− 𝑒(𝑥+𝑦) 𝜕
𝜕𝑥

= 𝑒(𝑥+𝑦)⎛⎜⎜⎜⎝
𝜕
𝜕𝑦

−
𝜕
𝜕𝑥

⎞⎟⎟⎟⎠

• If such a diffeomorphism, Γ, exists, then

Γ∗
⎛⎜⎜⎜⎝
𝑒(𝑥+𝑦)⎛⎜⎜⎜⎝

𝜕
𝜕𝑦

−
𝜕
𝜕𝑥

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠
= Γ∗[𝑋, 𝑌] = [Γ∗𝑋, Γ∗𝑌] =

⎡⎢⎢⎢⎣
𝜕
𝜕𝑥

,
𝜕
𝜕𝑦

⎤⎥⎥⎥⎦
= 0

However,

Γ∗
⎛⎜⎜⎜⎝
𝑒(𝑥+𝑦)⎛⎜⎜⎜⎝

𝜕
𝜕𝑦

−
𝜕
𝜕𝑥

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠



MATH 740 HOMEWORK 33

cannot be the zero-vector field. In fact, it must be non-zero everywhere
since Γ∗ is an isomorphism. Hence, no such Γ exists.

• Let 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be an integral curve for𝑋+𝑌. The associated system
of ODE is

𝑑𝑥
𝑑𝑡

= 𝑒𝑦(𝑡)

𝑑𝑦
𝑑𝑡

= 𝑒𝑥(𝑡)

Note that the equation

𝑒𝑥(𝑡) = 𝑒𝑦(𝑡)

defines an integral curve, 𝛾 , that lies on the 𝑦 = 𝑥 lines and is such that
𝑑𝑥
𝑑𝑡

= 𝑒𝑥(𝑡)

The solution to such an ODE is of the form

𝑥(𝑡) = − log
⎛⎜⎜⎜⎝

1
𝐴 − 𝑡

⎞⎟⎟⎟⎠

for some 𝐴 ∈ ℝ. Clearly, 𝑥(𝑡) is not defines for all values of 𝑡. Hence,
𝑋 + 𝑌 is incomplete.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Exercise 7. The solution is given below:

• Recall that any orientation preserving isometry of ℝ2 is of the form

𝑔(x) = 𝐴x + b

for some 𝐴 ∈ SO(2,ℝ) and b ∈ ℝ2. Therefore,

𝐴 = cos𝜃 − sin𝜃
sin𝜃 cos𝜃
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for some 𝜃 ∈ [0, 2𝜋). Write 𝛾(𝑠) = (𝑥(𝑠), 𝑦(𝑠)). We have

(𝑔𝛾(𝑠))′ = 𝑥
′(𝑠) cos𝜃 − 𝑦 ′(𝑠) sin𝜃

𝑦 ′(𝑠) cos𝜃 + 𝑥 ′(𝑠) sin𝜃
 = cos𝜃 − sin𝜃

sin𝜃 cos𝜃
 𝑥

′(𝑠)
𝑦 ′(𝑠)

 = 𝐴𝛾 ′(𝑠)

Define
B̃(𝑠) = (𝑔𝛾(𝑠))′ N(𝑠) = 𝕁B̃(𝑠)

We have

B̃′(𝑠) = 𝑥
′′(𝑠) cos𝜃 − 𝑦 ′′(𝑠) sin𝜃

𝑦 ′′(𝑠) cos𝜃 + 𝑥 ′′(𝑠) sin𝜃


= cos𝜃 − sin𝜃
sin𝜃 cos𝜃

 𝑥
′′(𝑠)

𝑦 ′′(𝑠)


= cos𝜃 − sin𝜃
sin𝜃 cos𝜃

 −𝑘
±(𝑠)𝑦 ′(𝑠)

𝑘±(𝑠)𝑥 ′(𝑠)


= 𝑘±(𝑠) cos𝜃 − sin𝜃
sin𝜃 cos𝜃

 −𝑦
′(𝑠)

𝑥 ′(𝑠)


= 𝑘±(𝑠) N(𝑠)

Hence, 𝑔 ∘ 𝛾 and 𝛾 have the same signed curvature.
• By construction, we have:

B
′(𝑠)

N′(𝑠)
 =  0 𝜅±(𝑠)

−𝜅±(𝑠) 0
 B(𝑠)
N(𝑠)



This is the 2-D analog of the Frenet-Serre structure equations. An argu-
ment entirely analogous to that given in the next problem can now be
used to solve the remaining parts. For a more elementary argument, see
[Pre10, Theorem 2.26]

Exercise 8. The solution is given below:

• Note that

‖𝛾 ′(𝑠)‖ = 1 ⟺ 𝛾 ′(𝑠) ⋅ 𝛾 ′(𝑠) = 1 ⟺ 𝛾 ′′(𝑠) ⋅ 𝛾 ′(𝑠) = 0

Hence 𝛾 ′′(𝑠) is orthogonal to 𝛾 ′(𝑠) and hence T(𝑠).
• We have

‖T(𝑠)‖ = ‖T(𝑠)‖‖N(𝑠)‖ sin𝜃(𝑠) = 1 ⋅ 1 ⋅ sin⒧𝜋/2⒭ = 1

• It is clear that (T(𝑠),N(𝑠),B(𝑠)) forms an orthonormal basis forℝ3 for each
𝑠 ∈ (𝑎, 𝑏). Moreover, (T(𝑠),N(𝑠),B(𝑠)) is a positively oriented basis since⁹

(T(𝑠) × N(𝑠)) ⋅ B(𝑠) = B(𝑠) ⋅ B(𝑠) = 1 > 0
⁹Here I use the result that a basis (𝑢, 𝑣, 𝑤) of ℝ3 is positively oriented if (𝑢 × 𝑣) ⋅ 𝑤 > 0, and
negatively oriented if (𝑢 × 𝑣) ⋅ 𝑤 < 0
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• By definition, we have

T′(𝑠) = 𝑘(𝑠)N(𝑠)

Since ‖N(𝑠)‖ = 1, we have N′(𝑠) ⋅ N(𝑠) = 0. Hence,

N′(𝑠) = 𝛼(𝑠)T(𝑠) + 𝜏(𝑠)B(𝑠)

Note that:

B′(𝑠) = (T(𝑠) × N(𝑠))′

= T′(𝑠) × N(𝑠) + T(𝑠) × N′(𝑠)

= 𝜅(𝑠)N(𝑠) × N(𝑠) + T(𝑠) × (𝛼(𝑠)T(𝑠) + 𝜏(𝑠)B(𝑠))

= 𝜏(𝑠)T(𝑠) × B(𝑠)

= −𝜏(𝑠)N(𝑠)

Similarly, we have

N′(𝑠) = (B(𝑠) × T(𝑠))′

= B′(𝑠) × T(𝑠) + B(𝑠) × T′(𝑠)

= −𝜏(𝑠)N(𝑠) × T(𝑠) + 𝜅(𝑠)B(𝑠) × N(𝑠)

= 𝜏(𝑠)T(𝑠) × N(𝑠) − 𝜅(𝑠)N(𝑠) × B(𝑠)

= −𝜅(𝑠)T(𝑠) + 𝜏(𝑠)B(𝑠)

Therefore, we have:

(5)
⎡⎢⎢⎢⎢⎢⎢⎢⎣

T′(𝑠)
N′(𝑠)
B′(𝑠)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 𝑘(𝑠) 0
−𝑘(𝑠) 0 𝜏(𝑠)
0 −𝜏(𝑠) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T(𝑠)
N(𝑠)
B(𝑠)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

• Let W(𝑠) = T(𝑠),N(𝑠),B(𝑠). Since ‖W(𝑠)‖ = 1, we have:

W′(𝑠) ⋅W(𝑠) = 0

Moreover, for W1(𝑠) ≠ W2(𝑠), we have:

W1(𝑠) ⋅W′
2(𝑠) +W2(𝑠) ⋅W′

1(𝑠) = (W1(𝑠) ⋅W2(𝑠))′ = 0

The last equality follows since W1(𝑠) ⋅ W2(𝑠) = 0 since W1(𝑠) ≠ W2(𝑠).
Therefore,

W1(𝑠) ⋅W′
2(𝑠) = −W2(𝑠) ⋅W′

1(𝑠)

This shows that the thematrixmust be skew-symmetric, which is indeed
the case.

• Recall that any orientation preserving isometry of ℝ3 is of the form

𝑔(x) = 𝐴x + b
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for some 𝐴 ∈ SO(3,ℝ) and b ∈ ℝ3. Therefore, we have

�̃�(𝑠) = ‖ ̃𝛾(𝑠)
′′
‖ = ‖(𝐴𝛾(𝑠) + b)

′′
‖ = ‖𝐴𝛾

′′
(𝑠)‖ = ‖𝛾

′′
(𝑠)‖ = 𝑘(𝑠)

The second last equality follows since 𝐴 preserves the Euclidean dot
product and the Euclidean norm. Hence, the curvature is invariant un-
der the action of an orientation-preserving isometry. Note that

T̃(𝑠) = 𝐴T(𝑠)

Since 𝑘(𝑠) = �̃�(𝑠), we also have that

Ñ(𝑠) = 𝐴N(𝑠)

Since 𝐴 preserves angles, 𝐴B(𝑠) is perpendicular to both 𝐴T(𝑠) = T̃(𝑠) and
𝐴N(𝑠) = Ñ(𝑠). Hence 𝐴B(𝑠) = ±B̃(𝑠). Since 𝛾 is orientation-preserving,
we must have 𝐴B(𝑠) = B̃(𝑠) Hence:

�̃�(𝑠) = Ñ′(𝑠) ⋅ B̃(𝑠) = (𝐴N′(𝑠)) ⋅ (𝐴B(𝑠)) = N′(𝑠) ⋅ B(𝑠) = 𝜏(𝑠)

Hence, the torsion is invariant under the action of an orientation-preserving
isometry.

• Let 𝐴(𝑠) denote thematrix appearing in the Frenet-Serret structure equa-
tions and consider the following vector:

E(𝑠) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

T(𝑠)
N(𝑠)
B(𝑠)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
E′(𝑠) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T′(𝑠)
N′(𝑠)
B′(𝑠)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
E(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T(0)
N(0)
B(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∶= c

WLOG, assume that 𝑘(𝑠) and 𝜏(𝑠) are defined on some symmetric in-
terval about the origin, (−𝑎, 𝑎) for some 𝑎 > 0. Consider the following
initial value problem:

(*) E′(𝑠) = 𝐴(𝑠)E(𝑠) E(0) = c

Note that the initial value problem is a system of nine linear first or-
der ODEs in the nine vectors that determine E(𝑠). Since 𝑘(𝑠), 𝜏(𝑠) ∈
C∞(−𝑎, 𝑎), we have 𝐴(𝑠) is a smooth matrix-valued function. By the exis-
tence and uniqueness of solutions for linear ODE, there exits an interval
0 ∈ 𝐼 ⊆ (−𝑎, 𝑎) and E(𝑠) ∈ ℝ9 solving (∗). It can be checked that 𝐸(𝑠)
defines an orthonormal frame for each 𝑠 ∈ 𝐼. This will require solving
another system of ODE and we will have to use the fact that the matrix
appearing in the Fernet-Serre stucture equations is skew-symmetric. De-
tails skipped.
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Consider the curve x(𝑡) ∶ 𝐼 → ℝ3 defined by

x(𝑡) = x0 +
𝑠∈𝐼

T(𝑠)𝑑𝑠

where x(0) = x0. We have

x(𝑠)
′′
= T

′
(𝑠) = 𝑘(𝑠)N(𝑠)

It is also a simple matter to check that the torison of the curve x(𝑠) is

𝜏(𝑠) = N′(𝑠) ⋅ B(𝑠)

Therefore, x(𝑠) is the unique curve such that x(0) = x0 and has the re-
quired curvature and torsion for each 𝑠 ∈ 𝐼.

More generally, assume that x1(𝑠) and x2(𝑠) are two space curves with
the curvature and torsion functions 𝑘(𝑠) and 𝜏(𝑠) resp. Let the corre-
sponding Frenet frames be 𝐸1(𝑠) and 𝐸2(𝑠) resp. Think fo 𝐸1(𝑠) and 𝐸2(𝑠)
as 3-by-3 matrices with determinant one. Define:

𝐴 = 𝐸1(0)𝐸−1
2 (0) B = x2(0) − 𝐴x1(0)

Consider the curve

x3(𝑠) = 𝐴x1(𝑠) + b

Since det𝐴 = 1, x3 is a curve with curvature 𝑘(𝑠) and 𝜏(𝑠). Since x3(0) =
x2(0), our discussion above implies that

𝐴x1(𝑠) + b = x3(𝑠) = x2(𝑠)

• Consider the circular helix

x(𝑡) = (𝑟 cos 𝑡, 𝑟 sin 𝑡, ℎ𝑡)

It can be checked that the circulat helix has constant curvature and tori-
son

𝜅 =
𝑟

𝑟2 + ℎ2
𝜏 =

ℎ
𝑟2 + ℎ2

If 𝜏 = 0, we have ℎ = 0 and 𝑟 = 𝜅. If 𝜏 ≠ 0 We have:

𝑟 =
𝜏

𝜅𝜏2 + 𝜅
ℎ =

𝜏2

𝜅𝜏2 + 𝜅
Hence for each 𝜏 and 𝜅 > 0, there exists a circular helix with curvature
𝜅 and torsion 𝜏. By our above result, such a helix is defined uniquely up
to an orientation-preserving isometry.



MATH 740 HOMEWORK 3

W. GOLDMAN

(1) Let Mm be a smooth manifold. Vector fields X, Y ∈ Vec(M) :=
Γ(TM) commute if and only if [X, Y ] = 0.
(a) Suppose that X1, . . . , Xk ∈ Vec(M) are vector fields whose

values X1(x), . . . , Xk(x) ∈ TxM are linearly independent.
Local coordinates (u1, . . . , um) exist in a neighborhood of
x in which Xi is the coordinate vector field:

Xi =
∂

∂ui

for i = 1, . . . , k. (Lee, Smooth manifolds, 231–236)
(b) A compact manifold Mm which admits m everywhere lin-

early independent commuting vector fields is diffeomorphic
to a torus. (Hint: Express M as a quotient of Rm by a dis-
crete subgroup Λ < Rm.)

(c) Furthermore suppose that M admits a Riemannian struc-
ture g ∈ Γ(Sym2T∗M) such that each Xi is a Killing vector
field, that is, an infinitesimal isometry (a vector field in-
tegrating to a one-parameter group R −→ Isom(M, g) of
isometries). Then M is isometric to a flat torus.

(2) Groups of isometries of Riemannian manifolds
(a) Let (M, g) be a (connected) Riemannian manifold. Let

φ ∈ Isom(M, g) is an isometry, that is, a diffeomorphism

M
φ−−→M

such that φ∗g = g. Suppose that p ∈ M and φ(p) = p.
Then differential (Dφ)p of φ at p acts on Tp(M):

Tp(M)
(Dφ)p−−−−→ Tφ(p)(M) = Tp(M)

Suppose that (Dφ)p equals the identity map. Then φ is
the identity. (Hint: It may be helpful if you first assume
that M is complete.)

Date: March 14, 2024.
1
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(b) Deduce that if M is compact, then Isom(M, g) is compact.
(Hint: use the compactness of the orthogonal group O(n).)

(c) Find an example of a Riemannian manifold for which
Isom(M, g) is not compact.

(3) Let M3 be a smooth 3-manifold and let ω be a contact form,
that is, a 1-form such that ω ∧ dω 6= 0.
(a) Show that there exists a vector field X such that ω(X) = 1

and LX(ω) = 0.
(b) Show that every point p ∈ M has an open neighborhood

U and local coordinates (x, y, z) such that

ω = x dy + dz.

(c) Let M = R3 and let ω be as above. Show that ∀p, q ∈ M ,
can be connected by a smooth path γ(t) such that

ω
(
γ′(t)

)
= 0.

(Hint: consider the projection

R3 → R2

(x, y, z) 7→ (x, y),

and the problem of lifting a smooth curve
(
x(t), y(t)

)
∈ R2

to a curve γ satisfying the above differential equation.)
(4) Homogeneous Riemannian manifolds

(a) Recall that a group Γ acts transitively on a set S :⇐⇒
∀p, q ∈ S, ∃γ ∈ Γ such that p

γ7−→ q. A Riemannian manifold
(M, g) is homogeneous if Isom(M, g) acts transitively on
M . Prove that a homogeneous Riemannian manifold is
geodesically complete. (Hint: Show that there exists ε >
0 such that all p ∈ M , the ε-ball about p is a normal
neighborhood of p.)

(b) An isometry of a metric space (M,d) is a map M
φ−→ M

which preserves distances:

d
(
φ(p), φ(q)

)
= d(p, q),

∀p, q ∈M . Find an example of an incomplete metric space
(M,d) for which its group of isometries acts transitively.1

(c) Find an example of a homogeneous Lorentzian manifold
which is geodesically incomplete.

1I assigned this problem several years ago, I think, but I don’t remember how to
do it.
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3. HOMEWORK 3

Exercise 9. The solution is given below:

• Nothing to prove.
•
•

Exercise 10. The solution is given below:

•
•
•

Exercise 11.

The solution is given below:

•
•
•

Exercise 12. The solution is given below:

•
•
•
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W. GOLDMAN

(1) Let Mm be a smooth manifold.
(a) Find two Riemannian structures which are not isometric

but share the same Levi-Civita connection. (Hint: is every
affine (that is, parallelism-preserving) transformation an
isometry?)

(b) Prove or disprove: The Levi-Civita connection of a (pos-
itive definite) Riemannian structure cannot be the Levi-
Civita connection of a (strictly indefinite) Lorentzian struc-
ture.

(2) Suppose ∇ is a torsionfree affine connection with curvature ten-
sor R defined by:

Vec(M)
R(X,Y ):=∇X∇Y −∇X∇Y −∇[X,Y ]−−−−−−−−−−−−−−−−−−−−−→ Vec(M)

for X, Y ∈ Vec(M).
(a) Prove the first Bianchi identity: For vector fields X, Y, Z ∈

Vec(M),

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0

and express this identity in terms of the Cristoffel symbols
Γk
ij.

(b) Prove that if∇ is the Levi-Civita connection of a Riemann-
ian structure g, then

g
(
R(X, Y )Z,W

)
= g

(
R(Z,W )X, Y

)
for X, Y, Z,W ∈ Vec(M). In particular R defines a self-
adjoint tensorial mapping

Λ2TM −→ Λ2TM

X ∧ Y 7−→ R(X, Y ).

Date: April 23, 2024.
1
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(3) A Riemannian manifold (M, g) is a symmetric space if, ∀p ∈M ,
there is an isometry ιp ∈ Isom(M, g) such that:
• ιp(p) = p.
• The differential (Dιp)p equals the inversion −1 in the tan-

gent space TpM .
(a) Show that a symmetric space is geodesically complete.
(b) Show that a symmetric space is homogeneous: its auto-

morphism group acts transitively.
(c) Show that Euclidean space, the sphere and hyperbolic space

are all symmetric spaces.
(d) Let G be a compact Lie group. Then it admits a bi-

invariant metric g. Show that (G, g) is a symmetric space
where the inversion in the identity element e ∈ G equals
inversion

G −→ G

x 7−→ x−1

(e) Show that the geodesics in (G, g) are the cosets of one-
parameter subgroups.
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4. HOMEWORK 4

Exercise 13. The solution is given below:

• Let (𝑀, 𝑔) be an Riemannian manifold. For 𝜆 > 0, , 𝜆𝑔). These two
Riemannian manifold are not isometric. by the formula

Γ𝑘𝑖𝑗;𝜆𝑔 =
𝑔𝑘𝑙

2𝜆
(𝜕𝑖(𝜆𝑔𝑗𝑙) + 𝜕𝑗(𝜆𝑔𝑖𝑙) − 𝜕𝑙(𝜆𝑔𝑖𝑗))

=
𝑔𝑘𝑙

2𝜆
(𝜆𝜕𝑖𝑔𝑗𝑙 + 𝜆𝜕𝑗𝑔𝑖𝑙 − 𝜆𝜕𝑙𝑔𝑖𝑗)

=
𝑔𝑘𝑙

2
(𝜕𝑖𝑔𝑗𝑙 + 𝜕𝑗𝑔𝑖𝑙 − 𝜕𝑙𝑔𝑖𝑗)

= Γ𝑘𝑖𝑗;𝑔

Here, Γ𝑘𝑖𝑗;𝑔 represents theChristoffel symbols for themetric𝑔 , and Γ𝑘𝑖𝑗;𝜆𝑔 (𝜆𝑔).
Hence, the Christoffel symbols symbols are the same. This implies that
the Levi-Civita connection is also the same.

• This is false. Both ℝ4 with the standard Euclidean metric, and ℝ4 with
theMinkowksimetric have the trivial Levi-Civita connection (all Christof-
fel symbols vanish).

Exercise 14. The solution is given below:

• We have

𝑅(𝑋, 𝑌) = ∇𝑋∇𝑌 − ∇𝑌∇𝑋 − ∇[𝑋,𝑌],

𝑅(𝑌, 𝑍) = ∇𝑌∇𝑍 − ∇𝑍∇𝑌 − ∇[𝑌,𝑍],

𝑅(𝑍, 𝑋) = ∇𝑍∇𝑋 − ∇𝑋∇𝑍 − ∇[𝑍,𝑋].

Then

𝑅(𝑋, 𝑌)𝑍 + 𝑅(𝑌, 𝑍)𝑋 + 𝑅(𝑍, 𝑋)𝑌 = ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇[𝑋,𝑌]𝑍

+ ∇𝑌∇𝑍𝑋 − ∇𝑍∇𝑌𝑋 − ∇[𝑌,𝑍]𝑋

+ ∇𝑍∇𝑋𝑌 − ∇𝑋∇𝑍𝑌 − ∇[𝑍,𝑋]𝑌

Since our connection is torsion-free, we have that for vector fields 𝐴 and
𝐵

∇𝐴𝐵 − ∇𝐵𝐴 = [𝐴, 𝐵].

Then rearranging terms and applying this fact, we get

𝑅(𝑋, 𝑌)𝑍 + 𝑅(𝑌, 𝑍)𝑋 + 𝑅(𝑍, 𝑋)𝑌 = ∇𝑋 (∇𝑌𝑍 − ∇𝑍𝑌) + ∇𝑌 (∇𝑍𝑋 − ∇𝑋𝑍) + ∇𝑍 (∇𝑋𝑌 − ∇𝑌𝑋)

− ∇[𝑋,𝑌]𝑍 − ∇[𝑌,𝑍]𝑋 − ∇[𝑍,𝑋]𝑌

= ∇𝑋 [𝑌, 𝑍] + ∇𝑌 [𝑍, 𝑋] + ∇𝑍 [𝑋, 𝑌]

− ∇[𝑋,𝑌]𝑍 − ∇[𝑌,𝑍]𝑋 − ∇[𝑍,𝑋]𝑌.
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Now we can use the fact that ∇ is torsion-free again to rearrange and
observe:

(∇𝑋 [𝑌, 𝑍] − ∇[𝑌,𝑍]𝑋)

+ (∇𝑌 [𝑍, 𝑋] − ∇[𝑍,𝑋]𝑌)

+ (∇𝑍 [𝑋, 𝑌] − ∇[𝑋,𝑌]𝑍)

= [𝑋, [𝑌, 𝑍]] + [𝑌, [𝑍, 𝑋]] + [𝑍, [𝑋, 𝑌]]

By the Jacobi identity this is zero. Let𝑋 = 𝜕𝑖 , 𝑌 = 𝜕𝑗 , 𝑍 = 𝜕𝑘 We compute:

𝑅(𝜕𝑖 , 𝜕𝑗)𝜕𝑘 = ∇𝜕𝑖∇𝜕𝑗𝜕𝑘 − ∇𝜕𝑗∇𝜕𝑖𝜕𝑘 − ∇[𝜕𝑖 ,𝜕𝑗 ]𝜕𝑘 = ∇𝜕𝑖∇𝜕𝑗𝜕𝑘 − ∇𝜕𝑗∇𝜕𝑖𝜕𝑘

The last term vanishes since co-ordinate vector fields commute. Com-
puting the first term we have

∇𝜕𝑖∇𝜕𝑗𝜕𝑘 = ∇𝜕𝑖 ⒧Γ
ℓ
𝑗𝑘𝜕ℓ⒭

= 𝜕𝑖(Γℓ𝑗𝑘)𝜕ℓ + Γℓ𝑗𝑘∇𝜕𝑖𝜕ℓ

= 𝜕𝑖Γℓ𝑗𝑘𝜕ℓ + Γℓ𝑗𝑘Γ𝑠𝑖ℓ𝜕𝑠

Swap indices to get ∇𝜕𝑗∇𝜕𝑖𝜕𝑘:

∇𝜕𝑗∇𝜕𝑖𝜕𝑘 = 𝜕𝑗Γℓ𝑖𝑘𝜕ℓ + Γℓ𝑖𝑘Γ𝑠𝑗ℓ𝜕𝑠

Therefore,

𝑅(𝜕𝑖 , 𝜕𝑗)𝜕𝑘 = (𝜕𝑖Γℓ𝑗𝑘 + Γ𝑚𝑗𝑘Γℓ𝑖𝑚 − 𝜕𝑗Γℓ𝑖𝑘 − Γ𝑚𝑖𝑘Γℓ𝑗𝑚)
𝑅𝑙
𝑖𝑗𝑘

𝜕ℓ

Similarly, we have:

𝑅(𝜕𝑗 , 𝜕𝑘)𝜕𝑖 = (𝜕𝑗Γℓ𝑘𝑖 + Γ𝑚𝑘𝑖Γℓ𝑗𝑚 − 𝜕𝑘Γℓ𝑗𝑖 − Γ𝑚𝑗𝑖 Γℓ𝑘𝑚)
𝑅𝑙
𝑗𝑘𝑖

𝜕ℓ

𝑅(𝜕𝑘 , 𝜕𝑖)𝜕𝑗 = (𝜕𝑘Γℓ𝑖𝑗 + Γ𝑚𝑖𝑗 Γℓ𝑘𝑚 − 𝜕𝑖Γℓ𝑘𝑗 − Γ𝑚𝑘𝑗Γℓ𝑖𝑚)
𝑅𝑙
𝑘𝑖𝑗

𝜕ℓ

As a result

0 = 𝑅(𝜕𝑖 , 𝜕𝑗)𝜕𝑘 + 𝑅(𝜕𝑗 , 𝜕𝑘)𝜕𝑖 + 𝑅(𝜕𝑘 , 𝜕𝑖)𝜕𝑗 = (𝑅𝑙
𝑖𝑗𝑘 + 𝑅𝑙

𝑗𝑘𝑖 + 𝑅𝑙
𝑘𝑖𝑗)𝜕𝑙

Hence,
𝑅𝑙
𝑖𝑗𝑘 + 𝑅𝑙

𝑗𝑘𝑖 + 𝑅𝑙
𝑘𝑖𝑗 = 0

for each 𝑖, 𝑗, 𝑘, 𝑙.
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• Bianchi’s first identity implies:

𝑔(𝑅(𝑋, 𝑌)𝑍,𝑊) + 𝑔(𝑅(𝑌, 𝑍)𝑋,𝑊) + 𝑔(𝑅(𝑍, 𝑋)𝑌,𝑊) = 0,

𝑔(𝑅(𝑌, 𝑍)𝑊,𝑋) + 𝑔(𝑅(𝑍,𝑊)𝑌, 𝑋) + 𝑔(𝑅(𝑊, 𝑌)𝑍, 𝑋) = 0,

𝑔(𝑅(𝑍,𝑊)𝑋, 𝑌) + 𝑔(𝑅(𝑊,𝑋)𝑍, 𝑌) + 𝑔(𝑅(𝑋, 𝑍)𝑊, 𝑌) = 0,

𝑔(𝑅(𝑊,𝑋)𝑌, 𝑍) + 𝑔(𝑅(𝑋, 𝑌)𝑊, 𝑍) + 𝑔(𝑅(𝑌,𝑊)𝑋, 𝑍) = 0.

Then

0 = 𝑔(𝑅(𝑋, 𝑌)𝑍,𝑊) + 𝑔(𝑅(𝑌, 𝑍)𝑋,𝑊) + 𝑔(𝑅(𝑍, 𝑋)𝑌,𝑊)

+ 𝑔(𝑅(𝑌, 𝑍)𝑊,𝑋) + 𝑔(𝑅(𝑍,𝑊)𝑌, 𝑋) + 𝑔(𝑅(𝑊, 𝑌)𝑍, 𝑋)

+ 𝑔(𝑅(𝑍,𝑊)𝑋, 𝑌) + 𝑔(𝑅(𝑊,𝑋)𝑍, 𝑌)

+ 𝑔(𝑅(𝑋, 𝑍)𝑊, 𝑌) + 𝑔(𝑅(𝑊,𝑋)𝑌, 𝑍) + 𝑔(𝑅(𝑋, 𝑌)𝑊, 𝑍) + 𝑔(𝑅(𝑌,𝑊)𝑋, 𝑍)

= 𝑔(𝑅(𝑋, 𝑌)𝑍,𝑊) + 𝑔(𝑅(𝑋, 𝑌)𝑊, 𝑍) + 𝑔(𝑅(𝑌, 𝑍)𝑋,𝑊) + 𝑔(𝑅(𝑌, 𝑍)𝑊,𝑋)

+ 𝑔(𝑅(𝑍,𝑊)𝑌, 𝑋) + 𝑔(𝑅(𝑍,𝑊)𝑋, 𝑌) + 𝑔(𝑅(𝑊,𝑋)𝑍, 𝑌) + 𝑔(𝑅(𝑊,𝑋)𝑌, 𝑍)

+ 𝑔(𝑅(𝑍, 𝑋)𝑌,𝑊) + 𝑔(𝑅(𝑊, 𝑌)𝑍, 𝑋) + 𝑔(𝑅(𝑋, 𝑍)𝑊, 𝑌) + 𝑔(𝑅(𝑌,𝑊)𝑋, 𝑍).

Using the result that

(*) 𝑔(𝑅(𝑋, 𝑌)𝑍,𝑊) = −𝑔(𝑅(𝑋, 𝑌)𝑊, 𝑍),

the first four pairs of terms cancel, leaving:

0 = 𝑔(𝑅(𝑍, 𝑋)𝑌,𝑊) + 𝑔(𝑅(𝑊, 𝑌)𝑍, 𝑋) + 𝑔(𝑅(𝑋, 𝑍)𝑊, 𝑌) + 𝑔(𝑅(𝑌,𝑊)𝑋, 𝑍)

= −𝑔(𝑅(𝑋, 𝑍)𝑌,𝑊) + 𝑔(𝑅(𝑊, 𝑌)𝑍, 𝑋) + 𝑔(𝑅(𝑋, 𝑍)𝑊, 𝑌) − 𝑔(𝑅(𝑊, 𝑌)𝑋, 𝑍).

Applying (∗), we have

0 = 2𝑔(𝑅(𝑋, 𝑍)𝑊, 𝑌) − 2𝑔(𝑅(𝑊, 𝑌)𝑋, 𝑍).

In other words,

𝑔(𝑅(𝑋, 𝑍)𝑊, 𝑌) = 𝑔(𝑅(𝑊, 𝑌)𝑋, 𝑍).

In other words,

𝑔(𝑅(𝑋, 𝑌)𝑍,𝑊) = 𝑔(𝑅(𝑍,𝑊)𝑋, 𝑌).

Exercise 15. The solution is given below:

• Sketch: Let 𝛾 ∶ (𝑎, 𝑏) → 𝑀 be a geodesic. If 𝑏 < +∞, let 𝑐 be ”suffi-
ciently” near to 𝑏, and let 𝜄𝛾(𝑐) be the symmetry at 𝛾(𝑐). Since 𝜄𝛾(𝑐) re-
verses geodesics through 𝛾(𝑐), the domain of 𝛾 can be extended beyond
𝑏.

• We already showed above that 𝑀 is geodesically complete. By Hopf-
Rinow, any 𝑝, 𝑞 ∈ 𝑀 can be joined by a unit-speed, length minimizing
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geodesic, 𝛾|[0,𝑑] ∶ [0, 𝑑] → 𝑀 is such that 𝛾(0) = 𝑝, 𝛾(𝑑) = 𝑞 and 𝑑 =
𝑑𝑔 (𝑝, 𝑞). Then the symmetry 𝜄𝛾(𝑑/2) at the point 𝛾(𝑑/2) is an isometry
and reverses geodesics, hence carries 𝑞 = 𝛾(𝑑) to 𝑝 = 𝛾(0).

Remark 4.1. For 𝑝 ∈ (𝑀, 𝑔), let Isop𝑝(𝑀, 𝑔) denote the set of isometries of
𝑀 that fix 𝑝. If (𝑀, 𝑔) is a homogenous Riemannian manifold, then it is easy
to chech that

Isop𝑝(𝑀, 𝑔) = 𝐹−1
𝑝,𝑞 Isop𝑞(𝑀, 𝑔)𝐹𝑝,𝑞

for each 𝑝, 𝑞 ∈ (𝑀, 𝑔) such that 𝐹𝑝,𝑞(𝑝) = 𝑞 and 𝐹𝑝,𝑞 is a linear isometry.
Moreover, it is clear that if an isometry in Isop𝑞(𝑀, 𝑔) acts as inversion of
T𝑞𝑀, then the corresponding isometry in Isop𝑝(𝑀, 𝑔) also acts as inversion
on T𝑝𝑀.

• ℝ𝑛 is a symmetric space since for each 𝑝 ∈ ℝ𝑛, the isometry

𝜄𝑝(𝑥) = 2𝑝 − 𝑥

is such that 𝜄𝑝(𝑝) = 𝑝 and 𝜄′𝑝 = −Idℝ𝑛 .
Since𝕊𝑛 is a homogeneousRiemannianmanifold (with isometry group

O(𝑛 + 1)), it suffices to prove that 𝕊𝑛 is symmetric at 𝑁 = (0,⋯ , 0, 1) ∈
𝕊𝑛+1 based on the remark above. Consider the map

𝜄𝑁(𝑥1,… , 𝑥𝑛+1) = (−𝑥1,… , −𝑥𝑛, 𝑥𝑛+1).

defined on ℝ𝑛+1. It is a simple matter to check that 𝜄𝑁 restricts to a map
from𝕊𝑛 to𝕊𝑛. Clearly, 𝜄𝑁(𝑁) = 𝑁 and (𝑑𝜄𝑁)𝑁 = −IdT𝑋𝕊𝑛 . The last equality
follows since

T𝑁𝕊𝑛 = {𝑥 ∈ ℝ𝑛+1 ∶ 𝑥𝑛+1 = 0}

and
(𝑑𝜄𝑁)𝑁 ∶ T𝑁ℝ𝑛+1 → T𝑁ℝ𝑛+1 (−𝑥1,… , −𝑥𝑛, 0).

Now simply note that 𝜄𝑁 restricts to the inversion map on T𝑁𝕊𝑛. Hence,
(𝑑𝜄𝑁)𝑁 is an isometry from T𝑁𝕊𝑛 to T𝑁𝕊𝑛 that satisfies the desired prop-
erties. Based on the remark above, (𝑑𝜄𝑁)𝑝 is indeed an isometry for each
𝑝 ∈ 𝕊𝑛.

We consider the hyperboloid model of hyperbolic space:

ℍ𝑛 = {𝑥 ∈ ℝ𝑛,1 ∶ 𝑞(𝑥, 𝑥) = −1 and 𝑥𝑛+1 > 0}

Here 𝑞(⋅, ⋅) is the metric of signature (𝑛, 1). Since ℍ𝑛 is homogeneous
(with isometry group O+(𝑛 + 1), the (𝑛 + 1)-dimensional Lorentz group),
it suffices to prove that ℍ𝑛 is symmetric at 𝑃 = (0,⋯ , 0, 1) ∈ ℍ𝑛 based
on the remark above. Consider the map

𝜄𝑃(𝑥1,… , 𝑥𝑛+1) = (−𝑥1,… , −𝑥𝑛, 𝑥𝑛+1).
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defined on ℝ𝑛,1. It is a simple matter to check that 𝜄𝑁 restricts to a map
from ℍ𝑛 to ℍ𝑛. Clearly, 𝜄𝑃(𝑃) = 𝑁 and (𝑑𝜄𝑁)𝑃 = −IdT𝑋ℍ𝑛 based on argu-
ments similar to given above for the sphere. Hence, (𝑑𝜄𝑃)𝑃 is an isometry
from T𝑃ℍ𝑛 to T𝑃ℍ𝑛 that satisfies the desired properties. Based on the
remark above, (𝑑𝜄𝑁)𝑥 is indeed an isometry for each 𝑥 ∈ ℍ𝑛.

• Since a Lie group is a homogeneous Riemannian manifold, it suffices to
prove that 𝐺 is symmetric at the identity, 𝑒 ∈ 𝐺. Consider the inversion
map

𝑖 ∶ 𝐺 → 𝐺 𝜄(𝑔) = 𝑔−1

Clearly, 𝑖(𝑒) = 𝑒. Moreover, we claim that the differential of 𝑖 at 𝑒

𝑑𝑖𝑒 ∶ T𝑒𝐺 → T𝑒𝐺 𝑑𝑖𝑒(𝑋) = −𝑋

Consider the constant map

𝑐 ∶ 𝐺 → 𝐺 𝑐(𝑔) = 𝑒

𝑑𝑐𝑒 is clearly the zero map. 𝑐 can be thought of being given by the fol-
lowing composition:

𝑔 ↦ (𝑔, 𝑖(𝑔)) ↦ 𝑚(𝑔, 𝑖(𝑔)) = 𝑒

Therefore, we have¹⁰

0 = 𝑑𝑑𝑒(𝑋) = (𝑋, 𝑑𝑖𝑒(𝑋)) = 𝑋 + 𝑑𝑖𝑒(𝑋).

Therefore, 𝑑𝑖𝑒(𝑋) = −𝑋. Clearly, 𝑑𝑖𝑒 is an isometry since the inversion
map is a linear isometry from T𝑒𝐺 to T𝑒𝐺.

• Skipped.

¹⁰We use the fact that 𝑑𝑚(𝑒,𝑒)(𝑋, 𝑌) = 𝑋 + 𝑌 .
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