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Abstract. These are notes on the theory of schemes covering sheaf theory, affine schemes,
schemes, and the properties of schemes, with a view toward presenting the general theory
of schemes. I wrote these notes at various stages during graduate school as part of an
attempt to develop an understanding of modern algebraic geometry. There may be errors
or typographical mistakes; corrections and suggestions are most welcome. Please send
them to junaid.aftab1994@gmail.com.
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1. Why Algebraic Geometry & Schemes?

Classical algebraic geometry is the study of affine algebraic sets, X ⊆ Cn, given by the
common zero set of a bunch of polynomials,

X = {f1(x) = . . . = fk(x) = 0},
for some f1, . . . , fk ∈ C[x1, . . . , xn].

Remark 1.1. Classical algebraic geometry also studies projective algebraic sets.

Classical algebraic geometry is captured by the slogan:

“algebra = geometry”

The slogan “algebra = geometry” is captured in the algebra-geometry correspondence.
This correspondence forms a fundamental bridge between geometric objects and algebraic
structures. This correspondence allows us to translate geometric problems into algebraic
ones and vice versa. This duality is central to many powerful methods and results in affine
algebraic geometry, enabling a deep interplay between geometry and algebra. When K is
algebraically closed, this leads to the classical algebra-geometry correspondence:

{Affine algebraic subsets of X ⊆ Kn} ←→ {Radical Ideals of K[x1, · · · , xn]}
Scheme theory is the language of modern algebraic geometry. While the slogan “algebra

= geometry” is already embodied in the classical algebra-geometry correspondence, why go
further? One motivation lies in the following meta-principle:

A scheme is to a variety as an abstract
manifold is to an embedded submanifold of Rn.

Recall the Whitney embedding theorem, which states that any smooth finite-dimensional
manifold can be embedded in Rn for some n ∈ N. Yet, smooth manifold theory is not about
studying objects distinct from submanifolds of Rn, but about understanding them in a way
that emphasizes intrinsic properties, free from artifacts of any specific embedding. Similarly,
scheme theory seeks to study classical affine and projective varieties intrinsically—beyond
their realization as subsets of affine or projective space. This perspective not only clari-
fies foundational aspects but also provides the natural framework for advanced topics in
algebraic geometry.

(1) Intersection Theory: Consider a basic example from intersection theory: the
intersection of the line y = 0 and the parabola y = x2. Classically, their intersection
is the single point (0, 0), but this misses an important feature—namely, tangency.
From a scheme-theoretic perspective, the intersection is given by

SpecR[x, y]/(y, y − x2) ∼= SpecR[x]/(x2),
which reflects the fact that the curves are tangent at the origin. Thus, the scheme-
theoretic approach captures geometric information—like tangency—that the classi-
cal viewpoint overlooks.

(2) Moduli Spaces: Scheme theory also provides the natural language for constructing
and understanding moduli spaces—parameter spaces that classify algebraic objects
up to isomorphism. For instance, consider the problem of classifying algebraic curves
of a fixed genus g. Classically, one might attempt to describe such families by explic-
itly writing down equations in projective space, but this quickly becomes unwieldy
and fails to capture families of curves with desirable geometric structure (such as
degenerations).
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Remark 1.2. In many important cases, moduli spaces are most naturally and accurately
described using the language of stacks. This is particularly true when the objects being
classified have non-trivial automorphisms. Stacks generalize schemes, allowing for a more
flexible framework. In this sense, schemes serve as a foundational stepping stone toward
understanding stacks, making scheme theory an essential prerequisite for moduli theory.
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Part 1. Spectrum of a Ring

The spectrum of a ring forms a fundamental bridge between commutative algebra and
geometry. It provides the foundational framework through which algebraic data—such
as rings and their ideals—are reinterpreted in geometric terms. In this part, we develop
the concept of Spec R, the spectrum of a commutative ring R, and introduce the Zariski
topology, which endows Spec R with a natural topological structure. The notion of the
spectrum serves as the starting point for the theory of affine schemes, which are locally
modeled on spectra of rings, and ultimately paves the way for the construction of general
schemes.

2. Affine Algebraic Sets

The goal of affine algebraic geometry is to study the solution sets of polynomial equations
in several variables over a fixed ground field. We introduce the main objects of study and
outline the relationship between algebra and geometry.

Remark 2.1. We denote affine n-space over a field K by

AnK := {(a1, . . . , an) | ai ∈ K for i = 1, . . . , n},
which is just Kn viewed geometrically. We will abbreviate AnK as An.

Let K[x1, . . . , xn] be the polynomial ring in n variables over K. We begin by defining an
affine algebraic set.

Definition 2.2. For a subset S ⊆ K[x1, . . . , xn] of polynomials, the affine zero locus of S,

V(S) := {x ∈ An : f(x) = 0 for all f ∈ S} ⊆ An,

is an affine algebraic set.

Note that if a is the ideal generated by S, then V(S) = V(a). Moreover, V(a) = V(
√
a)

where
√
a is the radical ideal of a.

Remark 2.3. If S = {f1, . . . , fr} is a finite set, we will write V(S) = V(f1, . . . , fr). Since
K[x1, · · · , xn] is a Noetherian ring, Hilbert’s basis theorem (Proposition 27.6) implies that
every V(S) is of the form V(f1, . . . , fk) for some f1, · · · , fr ∈ K[x1, · · · , xn].

Example 2.4. The following is a list of affine algebraic sets:

(1) Any point in An with a = (a1, . . . , an) ∈ An is an affine algebraic set.
(2) Linear subspaces of An are algebraic sets.
(3) Let K = R. Some affine algebraic sets in R2 are shown below:

x

y

V(x2+y2−1)

x

y

V(y2−x3−1)

x

y

V(xy)
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Our goal is to study geometric properties of affine algebraic sets through their defining
polynomials from an algebraic perspective. However, it is not sufficient to consider only the
initially given polynomials, since they are not unique. For example,

V(x2 + y2 − 1) = V((x2 + y2 − 1)2),

even though the defining expressions differ. This motivates the need to consider all poly-
nomials that vanish on a given affine algebraic set—that is, its vanishing ideal.

Definition 2.5. Let X ⊆ An be any subset. The ideal of X is the set:

I(X) := {f ∈ K[x1, . . . , xn] : f(x) = 0 for all x ∈ X}.

Remark 2.6. I(X) is indeed an ideal, as can be easily verified. In fact, it is a radical ideal.

Example 2.7. Let a = (a1, . . . , an) ∈ An be a point. We claim that

I(a) = (x1 − a1, . . . , xn − an).

(1) If f ∈ I(a), then f(a) = 0. This means that replacing each xi by ai in f gives zero,
i.e., that f is zero modulo (x1 − a1, . . . , xn − an). Hence f ∈ (x1 − a1, . . . , xn − an).

(2) If f ∈ (x1 − a1, . . . , xn − an), then f =
∑n

i=1(xi − ai)fi for some f1, . . . , fn ∈
K[x1, . . . , xn], and so certainly f(a) = 0, i.e., f ∈ I(a).

Note that we now have two distinct operations, V(·) and I(·). Moreover, these operations
allow us to move and forth between subsets of An and subsets of K[x1, · · · , xn].

{Subsets of An} ←→ {Subsets of K[x1, · · · , xn]}
X 7→ I(X)

V(S)←[ S

Actually, I(X) is a radical ideal of of K[x1, · · · , xn] and I(S) is an affine algebraic subset of
An. Hence, we have the following maps:

{Affine algebraic subsets of An} ←→ {Radical ideals of K[x1, · · · , xn]}
X 7→ I(X)

I(S)←[ S

This begs the question: are the operations V(·) and I(·) and inverses of each other? An
investigation of this question is important since since it is in some sense the central question
in affine algebraic geometry: is there a bijective correspondence between geometric objects
(affine algebraic sets) and algebraic objects (radical ideals)?

Conjecture 2.8. Let K be an algebraically closed field. Consider the operations V(·) and
I(·) define above.

{Affine algebraic subsets of An} ←→ {Radical ideals of K[x1, · · · , xn]}
X 7→ I(X)

I(S)←[ S

Then V(·) and I(·) yield an inclusion-reversing bijective correspondence between affine al-
gebraic sets of An and radical ideals K[x1, · · · , xn]
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We will prove Conjecture 2.8 in Proposition 3.6. For now, we assume the validity of
the bijective correspondence between affine algebraic sets and their vanishing ideals, and
explore some of its consequences. Throughout, we assume K is an algebraically closed field.
If X ⊆ An is a fixed affine algebraic set, we are often interested in identifying polynomials
in K[x1, . . . , xn] that take the same values at every point of X. This leads to the following
definition:

Definition 2.9. Let X ⊆ An be an affine algebraic subset. The coordinate ring of X is
the quotient ring:

A(X) =
K[x1, · · · , xn]

I(X)

Remark 2.10. In A(X), we identify two polynomials f, g ∈ K[x1, . . . , xn] if and only if
f − g vanishes on X; that is, f(x) = g(x) for all x ∈ X. Thus, an element f ∈ A(X) can
be viewed as a function X → K, given by evaluating a polynomial at points of X, where
functions differing by a polynomial vanishing on X are considered equal.

Given a fixed affine algebraic set X, one may focus on studying affine algebraic subsets
of X. This motivates the following definition:

Definition 2.11. Let X ⊆ An be an affine algebraic subset and A(X) be the associated
co-ordinate ring. For any S ⊆ A(X), the X-affine algebraic subsets is the zero locus

VX(S) = {x ∈ X : f(x) = 0 for all f ∈ S} ⊆ X
For subset Y ⊆ X,

IX(Y ) = {f ∈ A(X) : f(x) = 0 for all x ∈ Y } ⊴ A(X),

is the ideal of all polynomials on X that vanish on Y .

The assumed bijective correspondence can now be refined as follows:

Conjecture 2.12. Let K be an algebraically closed field. Let X ⊆ An be an affine algebraic
subset. There is an inclusion reversing bijective correspondence:

{Affine algebraic subsets of X ⊆ An} ←→ {Radical ideals of A(X)}
Y 7→ IX(Y )

VX(S)←[ S

The bijective correspondences described above imply that every algebraic operation on
(radical) ideals admits a geometric interpretation.

We now illustrate this principle with several examples.

Example 2.13. We can give a geometric interpretation of various operations of ideals:

(1) Clearly, VX(0) = X and VX(A(X)) = ∅.
(2) For any two ideals I, J be ideals in A(X), note that I + J is the ideal generated by

I ∪ J . We have:

VX(I ∪ J) = VX(I + J)

= {x ∈ X : f(x) = 0 for all f ∈ I ∪ J}
= {x ∈ X : f(x) = 0 for all f ∈ I} ∩ {x ∈ X : f(x) = 0 for all f ∈ J}
= VX(I) ∩ VX(J).
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Algebraic Subsets Ideals of K[x1, . . . , xn]

An (0)
∅ K[x1, . . . , xn]
X A(X)

Y ∩ Z I + J
Y ∪ Z I ∩ J
Y ⊆ Z I : J

Y ∩ Z = ∅ I + J = A(X)

Algebra–geometry correspondence. Here VX(I) = Y and VX(J) = Z.

Hence, the ideal I ∪ J corresponds to the union of the algebraic sets VX(I) and
VX(J). In particular, if I + J = A(X), then I and J are coprime ideals, and

VX(I) ∩ VX(J) = ∅.

(3) For any two X-affine algebraic subsets Y,Z ⊆ X:

IX(Y ∪ Z) = {f ∈ A(X) : f(x) = 0 for all x ∈ Y ∪ Z}
= {f ∈ A(X) : f(x) = 0 for all x ∈ Y } ∩ {f ∈ A(X) : f(x) = 0 for all x ∈ Z}
= IX(Y ) ∩ IX(Z).

Hence, the ideal IX(Y ) ∩ IX(Z) corresponds to the union of the affine algebraic
subsets Y,Z ⊆ X.

(4) For any two X-affine algebraic subsets Y,Z ⊆ X:

IX(Y \ Z) = {f ∈ A(X) : f(x) = 0 for all x ∈ Y \ Z}
= {f ∈ A(X) : f(x)g(x) = 0 for all x ∈ Y and g ∈ IX(Z)}
= {f ∈ A(X) : f · IX(Z) ⊆ IX(Y )}
= IX(Y ) : IX(Z)

So taking the set-theoretic difference Y \ Z corresponds to quotient ideals.

Given X ⊆ An and Y ⊆ Am, we can also consider functions between affine algebraic
subsets.

Definition 2.14. Let X ⊆ An and Y ⊆ Am be affine algebraic sets. A polynomial
morphism from X to Y is a set-theoretic map

f : X → Y

such that there exist polynomials f1, . . . , fm ∈ K[x1, . . . , xn] satisfying

f(x) = (f1(x), . . . , fm(x)) ∈ Y

for all x ∈ X.

Given the algebra-geometry correspondence discussed above, a natural question arises:
what is the algebraic counterpart at the level of coordinate rings of a polynomial morphism
between affine algebraic sets? The answer is provided by the following definition:
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Definition 2.15. Let X ⊆ An and Y ⊆ Am be affine algebraic sets and f : X → Y be a
polynomial morphism. Then f induces a ring homomorphism

ϕ : A(Y )→ A(X)

g 7→ g ◦ f = g(f1, . . . , fm)

given by composing a polynomial function on Y with f to obtain a polynomial function on
X.

Remark 2.16. It is easy to check that the ϕ defined above is a K-algebra homomorphism.

Example 2.17. Let K = R, X = A1 (with coordinate x) and Y = A2 (with coordinates
y1 and y2). Then A(X) = R[x] and A(Y ) = R[y1, y2]. Consider a polynomial morphism of
affine algebraic sets,

f : X → Y

x 7→ (x, x2)

The image is obviously the standard parabola Z = V(y2 − y21).

x

y

f−→
x

y

The associated ring homomorphism A(Y ) = R[y1, y2] → R[x] = A(X) is given by com-
posing a polynomial function defined on Z with f , i.e., by plugging in x and x2 for y1 and
y2, respectively:

R[y1, y2]→ R[x]
g 7→ g(x, x2).

Example 2.18. Let f : X → Y be a polynomial morphism of affine algebraic sets, and let
ϕ : A(Y )→ A(X), g 7→ g ◦ f be the associated map between the coordinate rings.

(1) For any X-affine algebraic subset Z, we have

I(f(Z)) = {g ∈ A(Y ) : g(f(x)) = 0 for all x ∈ Z}
= {g ∈ A(Y ) : ϕ(g) ∈ I(Z)}
= ϕ−1(I(Z))

Hence, taking images of X-affine algebraic subsets corresponds to the contraction
of ideals.

(2) For any Y -affine algebraic subset Z, the zero locus of the extension I(Z) by ϕ is

V(ϕ(I(Z))) = {x ∈ X : g(f(x)) = 0 for all g ∈ I(Z)}
= f−1({y ∈ Y : g(y) = 0 for all g ∈ I(Z)})
= f−1(V(I(Z)))
= f−1(Z)
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Hence, taking inverse images of Y -affine algebraic subsets corresponds to the exten-
sion of ideals.

Remark 2.19. One can keep on asking similar questions:

(1) What X-affine algebraic sets correspond to maximal ideals in of A(X)?
(2) What X-affine algebraic sets correspond to prime ideals on of A(X)?

We will answer this question in Proposition 3.20 by arguing that maximal ideals in A(X)
correspond to points in X and prime ideals in A(X) correspond to irreducible1 X-affine
algebraic sets.

3. Algebra-Geometry Correspondence

We now set out to prove the algebra-geometry correspondence for affine algebraic sets.
To do so, we first need to define a topology on the set of affine algebraic sets. This can be
done via the following result:

Proposition 3.1. The following properties are true for affine algebraic sets in An:
(1) The empty set and the whole space are affine algebraic sets.
(2) The intersection of any family of affine algebraic sets is an affine algebraic set.
(3) The union of two affine algebraic sets is an affine algebraic set.

Proof. The proof proceeds in the following steps:

(1) The empty set is ∅ = V(1), and the whole space is An = V(0).
(2) If Yα = V(Tα) is any family of algebraic sets, then⋂

α

Yα = V

(⋃
α

Yα

)
,

so
⋂
α Yα is also an affine algebraic set.

(3) Let Y1 = V(T1) and Y2 = V(T2), where T1, T2 ⊆ K[x1, . . . , xn]. Then

Y1 ∪ Y2 = V(T1T2),

where T1T2 denotes the set of all finite sums of products fg with f ∈ T1 and g ∈ T2.
(a) If x ∈ Y1∪Y2, then x is a zero of every polynomial in T1T2 since x ∈ Y1 implies

f(x) = 0 for all f ∈ T1, and similarly for Y2.
(b) Conversely, suppose x ∈ V(T1T2) but x /∈ Y1. Then there exists f ∈ T1 such

that f(x) ̸= 0. For any g ∈ T2, since (fg)(x) = f(x)g(x) = 0 and f(x) ̸= 0, it
follows that g(x) = 0. Hence, x ∈ Y2.

This completes the proof. □

Proposition 3.1 implies that the collection of affine algebraic sets is closed under arbitrary
intersections and finite unions. This observation motivates the following definition of a
topology:

Definition 3.2. The (classical) Zariski topology on An is defined by taking open subsets
to be the complements of affine algebraic sets. This is a topology by Proposition 3.1.

1We will need to make sense of irreducible algebraic subsets as well.
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What are the basis open sets in the (classical) Zariski topology? Let U ⊆ An be open in
the Zariski topology. By definition, its complement U c is an affine algebraic set, so

U c = V(I)
for some ideal I ⊆ K[x1, . . . , xn]. Since

U c =
⋂
f∈I

V(f),

it follows that
U =

⋃
f∈I

V(f)c :=
⋃
f∈I

D(f),

where
D(f) = {x ∈ An | f(x) ̸= 0}.

Hence, the collection
{D(f) | f ∈ K[x1, . . . , xn]}

forms a basis for the Zariski topology. Sets of this form are called distinguished open sets.

Example 3.3. Let K be an algebraically closed field. Consider the Zariski topology on
A1. Since every ideal in K[x] is principal, every algebraic set is the zero locus of a single
polynomial. Given that K is algebraically closed, every nonzero polynomial f(x) ∈ K[x]
factors as

f(x) = c(x− a1) · · · (x− an),
for some c, a1, . . . , an ∈ K. Thus,

V(f) = {a1, . . . , an}.
Consequently, the (closed) algebraic sets in A1 are exactly the finite subsets (including the
empty set) and the entire space (corresponding to the zero polynomial). In particular, this
implies that the Zariski topology on A1 is not Hausdorff.

Example 3.4. Using properties of the classical Zariski topology, one can show that the
zero loci of transcendental functions are not necessarily algebraic sets. Consider the set

X = {(x, y) ∈ R2 | y − cosx = 0}
Assume that X is an affine algebraic set. Proposition 3.1 implies that W = X ∩ {(x, 0) |
x ∈ R} is an affine algebraic set since {(x, 0) | x ∈ R} is the zero set of g(x, y) = y. But
W is an infinite subset of R, and the only non-trivial affine algebraic subsets of R are finite
subsets (Example 3.3). Its Zariski closure is

X̄ = V(I(X)) = V(0) = R2

Proposition 3.5. (Hartshorne I.1.4) If we identify A2 with A1 × A1 in the natural way,
the Zariski topology on A2 is not the product topology of the Zariski topologies on the two
copies of A1.

Proof. Consider the affine algebraic set V(y − x) ⊆ A2. Clearly, V(y − x) is closed in the
Zariski topology. However, V(y−x) is not closed in the product topology on A2 = A1×A1

equipped with the Zariski topology on each factor. Indeed, if V(y − x) were closed in the
product topology, then its complement would be open. Any point in the complement would
then be contained in a basis open set of the product topology. Since open sets in the Zariski
topology on A1 are complements of finite sets, every basis open set in A2 is a product of
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cofinite sets and therefore must intersect V(y − x). This contradicts the assumption that
the complement is open, proving that V(y − x) is not closed in the product topology. □

We now use Hilbert’s Nullstellensatz (Proposition 30.7), we are now able to prove the
algebra-geometry correspondence (Conjecture 2.8).

Proposition 3.6. Let K be an algebraically closed field. There is an inclusion-reversing
bijection between radical ideals in K[x1, · · · , xn]and algebraic sets in An. More specifically,

(1) If T1 ⊆ T2 are subsets of K[x1, · · · , xn], then V(T2) ⊆ V(T1).
(2) If Y1 ⊆ Y2 are subsets of An, then I(Y2) ⊆ I(V1).
(3) For any ideal a in K[x1, · · · , xn], I(V(a)) =

√
a, the radical of a.

(4) For any subset Y ⊆ An, V(I(Y )) = Y , the closure of Y .

Remark 3.7. In what follows, let R = K[x1, · · · , xn].

Proof. (1), (2) are clear. The ⊇ inclusion (3) is clear. For ⊆ inclusion, assume that
f /∈
√
a. We first argue that: √

a =
⋂

a⊆m m maximal

m

The ⊆ inclusion is clear. For the opposite inclusion ⊇, let f ∈ R with f /∈
√
a; we have

to find a maximal ideal m ⊇ a with f /∈ m. Consider the multiplicatively closed set
S = {fn : n ∈ N}. Since f /∈

√
a, a ∩ S = ∅. Hence, a can be thought of as a prime ideal

in the S−1R. A standard Zorn’s lemma argument then shows that there is a prime ideal p
with p ⊇ a and p ∩ S = ∅ such that S−1p := pf is maximal. It only remains to show that p
is maximal in R. Consider the ring extension

k → R/p ↪→ (R/p)f = Rf/pf

Note that the second map is, in fact, an inclusion since R/p is an integral domain. Moreover,
Rf/pf is a field since pf is maximal and finitely generated as a k-algebra. So k ⊆ Rf/pf
is a finite field extension, and hence integral. But then R/p ⊂ Rf/pf is integral as well,
which means that R/p is a field since Rf/pf is. Hence, p is maximal. Now there is then a
maximal ideal m with m ⊇ a and f /∈ m. By Hilbert’s Nullstellensatz (Proposition 5.20), m
has to be of the form

I(a) = (x1 − a1, · · · , xn − an)
for some point a ∈ An. Now I(a) ⊇ a implies a ∈ V(I), and f /∈ I(a) means f(a) ̸= 0.
Hence, f /∈ I(V(I)). In particular, for any radical ideal a, we have I(V(a)) = a.

To prove (4), we note that Y ⊆ V(I(Y )), which is a closed set in the Zariski topology
on An, so clearly Y ⊆ V(I(Y )). On the other hand, let W be any closed set containing Y .
Then W = V(b) for some ideal b. So V(b) ⊇ Y , and by (3), I(V(b)) ⊆ I(Y ). But certainly
b ⊆ I(V(b)), so we have W = V(b) ⊇ V(I(Y )). Thus, V(I(Y )) = Y . In particular, if Y is
an algebraic subset of An, then V(I(Y )) = Y . □

We immediately have the following corollary:

Corollary 3.8. (Conjecture 2.8) Let K be an algebraically closed field. There is an inclusion-
reversing bijective correspondence:

{Closed affine Algebraic Sets of An} ←→ {Radical Ideals of K[x1, · · · , xn]}
X −→ I(X)

I(a)←− a
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We also have the following corollory:

Corollary 3.9. (Conjecture 2.12) Let K be an algebraically closed field. Let X ⊆ An be an
affine algebraic subset. There is an inclusion reversing bijective correspondence:

{Closed affine algebraic subsets of X ⊆ An} ←→ {Radical ideals of A(X)}
Y 7→ IX(Y )

VX(S)← [ S

Remark 3.10. Corollary 3.9 follows from Corollary 3.8. We omit details.

Example 3.11. If we had not assumed K to be algebraically closed, then Corollary 3.8
would break down in the simple example with the the prime (and hence radical) ideal

a = (x2 + 1) ⊆ R[x]

The ideal has an empty zero locus in A1 (over R of course), so we would obtain I(V(a)) =
I(∅) = R[x] ̸=

√
a = a.

Example 3.12. If X1, X2 are closed affine algebraic subsets, we can use Corollary 3.8 to
prove that

I(X1 ∩X2) =
√

I(X1) + I(X2).

Indeed, we have

I(X1 ∩X2) = I(V(I(X1)) ∩ V(I(X2))) = I(V(I(X1) + I(X2))) =
√
I(X1) + I(X2).

Moreover, if X1 ∩X2 = ∅ and X = X1 ∪X2, we have

A(X) ∼= A(X1)×A(X2).

Indeed, we obtain in A(X)

I(X1) ∩ I(X2) = I(X1 ∪X2) = I(X) = {0}.

On the other hand, from X1 ∩X2 = ∅, we have in A(X)√
I(X1) + I(X2) = I(X1 ∩X2) = I(∅) = ⟨1⟩,

and thus also I(X1) + I(X2) = ⟨1⟩. By the Chinese Remainder Theorem, we conclude that

A(X) ∼= A(X)/I(X1)×A(X)/I(X2) ∼= A(X1)×A(X2).

Remark 3.13. In light of Corollary 3.8 and Example 3.11, we almost exclusively assume
that K is an algebraically closed field. In particular, we will work over K = C.

We have now established a correspondence between affine algebraic sets of An and radical
ideals of K[x1, · · · , xn]. This correspondence allows us us translate from thinking about
affine algebraic sets as from either a geometric or an algebraic vantage point. Before moving
on, let’s look at an example:

Example 3.14. (Hartshorne I.1.1) Let Y1 be the plane curve y = x2 and let Y2 be the
plane curve xy = 1. The real locus of the plane curves is drawn below2. We claim that

2We shall only be able to plot the real locus of affine algebraic sets.
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x

y

A(Y1) = C[x, y]/(y − x2) is isomorphic to polynomial ring in one variable over C. Consider
the following morphism:

ϕ : C[x, y] −→ C[t]
x 7→ t

y 7→ t2

The map is clearly a C-algebra morphism. Note that the polynomial y− x2 is contained in
the kernel of ϕ. Therefore, ϕ descends to the map:

ϕ : C[x, y]/(y − x2) −→ C[t]
It is easily seen that the map:

ϕ : C[t] −→ C[x, y]
t 7→ x̄

is a C-algebra morphism that is the inverse of ϕ. Therefore,

C[x, y]/(y − x2) ∼= C[t].
On the other hand, A(Y2) = C[x, y]/(y − 1/x) is not isomorphic to polynomial ring in one
variable over C. In the coordinate ring, x has a unit, namely y = 1/x. However, the
indeterminate of a polynomial ring in one variable over C is never a unit.

Using the algebra-geometry correspondence, we can characterize irreducible affine alge-
braic sets.

Definition 3.15. Let X be a topological space. A non-empty subset Y ⊆ X is irreducible
if it cannot be expressed as the union Y = Y1 ∪ Y2 of two proper closed subsets of Y .

Example 3.16. Let K be an algebraically closed field. The following is a basic list of
examples of irreducible and reducible affine algebraic sets:

(1) If K is infinite, A1 is irreducible in the Zariski topology, because its only proper
closed subsets are finite, yet A1 is infinite3.

(2) The affine algebraic V(xyz) ⊆ A3 is not irreducible, as it can be written as a union
of three coordinate planes:

V(xyz) = V(x) ∪ V(y) ∪ V(z).

Proposition 3.17. (Hartshorne I.1.6) Any nonempty open subset of an irreducible topo-
logical space is dense and irreducible. If Y is a subset of a topological space X, which is
irreducible in its induced topology, then Y is also irreducible.

3Having K be infinite is crucial here.
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Proof. The proof has been commented out as it follows from standard results in point-set
topology. □

With the notion of irreducible sets in a topological space in mind, we can now define the
concept of an affine variety which are irreducible algebraic sets.

Definition 3.18. Let K be an algebraically closed field. An affine variety is an irreducible
affine algebraic set of An

Remark 3.19. An affine variety cannot be written as a union of two non-empty affine
algebraic sets.

Proposition 3.20. Let K be an algebraically closed field, and let Y ⊆ An be an affine
algebraic set. Y is as affine variety if and only if I(Y ) is a prime ideal.

Proof. Assume Y is irreducible. If fg ∈ I(Y ), then using that V(fg) = V(f) ∪ V(g), we
have

Y = Y ∩ V(fg) = (Y ∩ V(f)) ∪ (Y ∩ V(g)),
both being closed subsets of Y . Since Y is irreducible, we have either Y = Y ∩ V(f), in
which case Y ⊆ V(f), or Y ⊆ V(g). Hence either f ∈ I(Y ) or g ∈ I(Y ). Conversely,
assume that I(Y ) is a prime ideal and Y = Y1 ∪ Y2. If Y = Y1, we are done. Hence, assume
that Y ̸= Y1 := V(a1). Then there is a f1 ∈ a1 and y ∈ Y such that f1(y) ̸= 0. Writing
Y2 := V(a2), we have that for every f2 ∈ a2, f1f2 vanishes on Y and hence f1f2 ∈ I(Y ).
Since f1 /∈ I(Y ) and I(Y ) is a prime ideal, we have that f2 ∈ I(Y ). This implies that
a2 ⊆ I(Y ). But this implies that

Y ⊆ V(I(Y )) ⊆ V(a2) = Y2.

Hence, Y = Y2 and we are done. □

We have shown the following bijection:

{Closed, irreducible affine Algebraic Sets of An} ←→ {Prime Ideals of K[x1, · · · , xn]}
If X ⊆ An is an X-affine algebra set, we also have a bijection:

{Closed, irreducible affine Algebraic Subsets of X ⊆ An} ←→ {Prime Ideals of A(X)}
Example 3.21. Let K be an algebraically closed field. The following is a basic list of affine
varieties:

(1) An is irreducible since it corresponds to (0) which is a prime ideal (0) as K is a field.
(2) Let K = C and X = V(y2−x3−1). We claim that X is irreducible by showing that

the ideal I(y2 − x3 − 1) is prime in C[x, y]. We consider the quotient ring:

R = C[x, y]/(y2 − x3 − 1) ∼= C[x][y]/(y2 − x3 − 1)

Suppose y2 − x3 − 1 is reducible in C[x][y]. Then it must factor as:

y2 − x3 − 1 = (y − f(x))(y − g(x))
for some f(x), g(x) ∈ C[x]. This is because y2 = x3 + 1 in R. Expanding:

(y − f(x))(y − g(x)) = y2 − (f(x) + g(x))y + f(x)g(x)

Comparing coefficients with y2 − x3 − 1, we get:

f(x) + g(x) = 0

f(x)g(x) = −x3 − 1
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x

y

V(y2 − x3 − 1)

From the first equation, g(x) = −f(x). Substituting into the second:

f(x)(−f(x)) = −x3 − 1 =⇒ −f(x)2 = −x3 − 1 =⇒ f(x)2 = x3 + 1

This implies that x3 + 1 must be a perfect square in C[x]. However:
x3 + 1 = (x+ 1)(x2 − x+ 1)

which is not a square in C[x]. Hence, I(y2 − x3 − 1) is a prime ideal in C[x, y].

Remark 3.22. We have an additional bijection correspondences:

{Points in An} ←→ {Maximal Ideals of K[x1, · · · , xn]}
{Points of X ⊆ An} ←→ {Maximal Ideals of A(X)}

Here X ⊆ An is an affine algebra set. This can be easily proven given what we know now.

4. Morphisms of Affine Algebraic Sets

We first study the case of morphisms from an affine algebraic set to the affine algebraic
set A1 = K. Classical affine algebraic geometry studies the zero loci of polynomial functions,
which correspond to morphisms from An to A1, or more generally, from an affine algebraic
set X to A1, that is, elements of the coordinate ring A(X). However, a broader class of
functions is also important in this setting: rational functions. These only make sense in a
restricted context, since for an affine algebraic set X, the coordinate ring A(X) is not, in
general, an integral domain. As shown in Proposition 3.20, this is the case if and only if X
is an affine variety. Hence, we can make the following definition.

Definition 4.1. Let X be an affine variety, and let A(X) denote its coordinate ring. The
function field of X, denoted K(X), is defined to be the field of fractions of A(X):

K(X) := Frac(A(X)).

Elements of K(X) are called rational functions on X. A rational function f ∈ K(X) is said
to be regular at a point x ∈ X if there exists g, h ∈ A(X) such that f = g/h and h(x) ̸= 0.

Remark 4.2. One can check that Definition 4.1 is independent of the choice of represen-
tative fraction.

For x ∈ X, the set of rational functions that are regular at x forms a subring of K(X),
called the local ring of X at x:

OX,x := {f ∈ K(X) | f is regular at x}
The ring OX,x is indeed a local ring, with maximal ideal

mx := {f ∈ OX,x | f(x) = 0}.
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In fact, if x = (a1, . . . , an) ∈ X, and we write mx = (x1 − a1, . . . , xn − an) for the maximal
ideal in A(X), then

OX,x = A(X)mx .

To see this, note that since A(X) is an integral domain, the localization A(X)mx is naturally
a subring of K(X). An element f ∈ K(X) lies in A(X)mx if and only if it can be written
as a/b with b /∈ mx, which is equivalent to f being regular at x. If U ⊆ X is an open set,
we define

OX(U) := {f ∈ K(X) | f is regular at every point in U} =
⋂
x∈U
OX,x.

Note that each OX(U) is a sub-K-algebra ofK(X). Moreover, if V ⊆ U , then any f ∈ K(X)
that is regular on U is also regular on V , so there is an inclusion

OX(U) ⊆ OX(V ).

Remark 4.3. We will later see that OX is a sheaf.

Proposition 4.4. Let X be an affine variety.

(1) If a rational function g ∈ K(X) is regular at every point of X, then g is a polynomial
function. In other words,

OX(X) = A(X).

(2) If f ∈ A(X) and D(f) := {x ∈ X | f(x) ̸= 0}, then
OX(D(f)) = A(X)f .

Proof. (1) follows from (2) by taking f = 1. Clearly A(X)f ⊆ OX(D(f)). Conversely,
given g ∈ K(X), define the ideal

Ig := {b ∈ A(X) | bg ∈ A(X)}.
This ideal has the property that g is regular at a point x ∈ X if and only if x /∈ V(Ig). Note
that x /∈ V(Ig) if and only if there exists some b ∈ Ig with b(x) ̸= 0, which is equivalent
to g being of the form g = a/b with b(x) ̸= 0. Therefore, if g is regular on all of D(f), it
follows that V(Ig) ⊆ V(f). By Proposition 5.20, we conclude that fn ∈ Ig for some n > 0.
But then fng ∈ A(X), which shows that g ∈ A(X)f . □

Remark 4.5. Proposition 4.4 is a sort of ‘local-to-global principle’: being regular is a local
condition, which has to be verified near every point, but the conclusion is that a rational
function which is regular at every point can be represented globally by a polynomial function.

Example 4.6. Let U = A1 \ {0} = V(x). Then K(A1) = K(x) and OA1(U) = K[x, x−1].

We now turn to the notion of morphisms between affine varieties. We define morphisms
between affine varieties in a way that captures the algebraic structure encoded by regular
functions. To do this, we adopt a functorial perspective: a morphism of varieties will
be defined in terms of how it pulls back regular functions. The utility of this functorial
definition will become apparent later on when we derive an appropriate equivalence of
categories.

Definition 4.7. Let X,Y be affine varieties. A morphism between X and Y is a continuous
map f : X → Y such that the pullback of any regular function is again regular. That is, for
every open set V ⊆ Y and every g ∈ OY (V ), the composition g ◦ f lies in OX(f−1(V )).
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Remark 4.8. We write the pullback of f as f∗.

Given n regular functions f1, . . . , fn ∈ A(X), we can define a morphism

f : X → An

x 7→ (f1(x), . . . , fn(x)).

Let’s check that f is continuous. Let W = V(g1, . . . , gr) ⊆ An be a closed set., then

f−1(W ) = {x ∈ X | gi(f1(x), . . . , fn(x)) = 0 for all i = 1, . . . , r} = V(f∗(g1), . . . , f∗(gr)),

which is closed in X. Let g ∈ K(y1, . . . , yn) be a rational function on An, and assume g is
regular on an open set V ⊆ An. Let x ∈ f−1(V ) and set y = f(x). Locally around y, we
may write g = a/b where a, b ∈ K[y1, . . . , yn]. Then in a neighborhood of x ∈ f−1(V ), we
have

f∗(g)(x) =
a(f1(x), . . . , fn(x))

b(f1(x), . . . , fn(x))
.

After expanding, this can be written as a quotient of polynomials where the denominator
does not vanish at x. Hence f∗(g) ∈ OX(f−1(V )), and f is a morphism. In fact, we can
now argue that all morphisms with target affine variety An are of this form:

Proposition 4.9. Let X be an affine variety. Then every morphism f : X → An is of the
form

f : X → An

x 7→ (f1(x), . . . , fn(x)),

where fi ∈ A(X) for i = 1, . . . , n.

Proof. Let f : X → An be a morphism. The coordinate functions y1, . . . , yn are regular
functions on An, so their pullbacks f∗(yi) are regular on X. The morphism defined by these
functions,

X → An

x 7→
(
f∗(y1)(x), . . . , f

∗(yn)(x)
)
.

coincides with f , since both are determined by the same set of regular functions. □

Grothendieck emphasized studying affine algebraic sets via their coordinate rings rather
than the sets themselves. This is also the philosophy underlying the algebra-geometry
correspondence: the geometry of X reflects the algebra of its coordinate ring

A(X) = K[x1, . . . , xn]/I(X),

and vice versa. This can be formalized by arguing that we have an appropriate equivalence
of categories between affine algebraic sets and finitely generated reduced K-algebras. These
categories are defined as follows:

(1) The category AffVar of affine varieties and morphisms of affine algebraic varieties.

(2) The category fgAlgDom
K of finitely-generated K-algebras that are integral domains

and morphisms of K-algebras.

Proposition 4.10. Let K be an algebraically closed field. The categories AffVar and
fgAlgDom

K are equivalent.



SCHEME THEORY 19

Proof. Consider the functor that assigns to each affine variety X ⊆ An its coordinate
ring A(X) = K[x1, . . . , xn]/I(X). Clearly, A(X) is finitely generated as a K-algebra since
K[x1, . . . , xn] is finitely generated. Moreover, A(X) is reduced because I(X) is a radical

ideal. The functor is essentially surjective. Indeed, if A ∈ fgAlgDom
K we can choose a

presentation
A = K[x1, . . . , xn]/p

for some ideal p. Since A is an integral domain, p is a prime ideal. Then X = V(p) ⊆ An
is an affine variety with A(X) = A. We claim that

HomAffVar(X,Y ) −→ HomfgAlgDom
K

(A(Y ), A(X))

f 7→ f∗

is a bijection. We first show that the map is surjective. Let ϕ : A(Y ) → A(X) be a
morphism of K-algebras. Suppose Y ⊆ An, and let y1, . . . , yn be the coordinate functions
on An. Define fi := ϕ(yi) for i = 1, . . . , n. Then the functions f1, . . . , fn ∈ A(X) define a
morphism

f : X −→ An

x 7→
(
f1(x), . . . , fn(x)

)
This induces a map K[x1, · · · , xn]→ A(X) via the pullback (Definition 2.15). More explic-
itly for h ∈ K[x1, · · · , xn], we have

f∗(h)(x) = h(f(x)) = h(f1(x), . . . , fn(x)) = ϕ
(
h(y1, . . . , yn)

)
(x)

The last equality holds because both sides agree on the generators y1, . . . , yn, taking values
f1, . . . , fn, respectively. This shows that

f∗(h) = ϕ(h) = 0 for every h ∈ I(Y ),

since h is zero in A(Y ). Therefore, the image of f is contained in Y = V(I(Y )). This shows
that f∗ factors through A(Y ) = K[x1, · · · , xn]/I(Y ). Hence, the map is surjective. The
map is also injective since f∗ = ϕ. □

5. Spectrum of a Ring

Recall the classical algebra-geometry correspondence (Proposition 3.6). There are some
limitations of this correspondence:

(1) The bijection isn’t natural. since morphisms of affine (projective) algebraic sets
assumes an embedding of affine (projective) algebraic sets in some underlying affine
(projective) space.

(2) The classical algebra-geometry correspondence for affine (projective) algebraic sets
holds for algebraically closed fields. How does one study the analog of affine (pro-
jective) algebraic sets over non-algebraically closed fields?

We address these limitations by providing an intrinsic characterization of relevant con-
cepts for affine algebraic sets. The classical algebra-geometry correspondence states that
there we have bijections:

{Points of An} ←→ {Maximal ideals of K[x1, · · · , xn]}
{Closed irreducible affine algebraic sets An} ←→ {Prime ideals of K[x1, · · · , xn]}

We can now attempt to generalize to the case of an arbitrary commutative ring, R. Pre-
viously, we have kept track of the data consisting of all irreducible algebraic subsets of
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An, which correspond to prime ideals of R = K[x1, . . . , xn]. This leads us to the following
definition:

Definition 5.1. Let R be a commutative ring. The spectrum of a ring R, denoted as
SpecR, is the set of all prime ideals of R.

Remark 5.2. All rings, unless otherwise specified, will be commutative with an identity.
From now on, we shall use the phrase ‘let R be a ring.’ We will use the phrases the spectrum
of a ring and affine schemes interchangeably to refer to the set SpecR. We will justify the
use of the phrase affine schemes in Section 14 when we formally define schemes.

Remark 5.3. The construction R 7→ SpecR is functorial in R in a contravariant sense.
That is, given a ring homomorphism f : R→ S, there is an induced map:

F : SpecS → SpecR,

defined by sending a prime ideal p ⊆ S to its preimage f−1(p) ⊆ R, which is easily verified
to be a prime ideal. This establishes a contravariant functor

Spec : CRing→ Sets,

from the category of commutative rings with identity to the category of sets.

Example 5.4. The following is a list of basic examples of the spectrum of a ring:

(1) The spectrum of a ring is empty if and only if the ring is the zero ring.
(2) If R = K is a field, then the spectrum of K is a single point, (0). The corresponds

to the notion of a point in affine algebraic geometry.
(3) Let R = C[x1, . . . , xn]. Classical affine algebraic geometry can be reformulated as

the study of the scheme SpecC[x1, . . . , xn]. More generally, for any ring R, we define

AnR := SpecR[x1, . . . , xn],

which is called affine n-space over R. When the base ring R is clear from context,
we will simply write An.

(4) Let R = Z. We have

SpecZ = {(0)} ∪ {(p) | p prime}
Schemes over Z, Q, or more generally over number fields, play a central role in the
application of scheme theory to number theory.

Remark 5.5. Example 5.4(b) raises an important concern. There are many non-isomorphic
fields; however, the spectrum of all fields is the same singleton set. We will see later that
the structure sheaf will allow us to distinguish between non-isomorphic fields.

We now endow the spectrum of a ring with a topology. In affine algebraic geometry,
the Zariski topology is defined as the coarsest topology in which all affine algebraic sets
are closed. The definition of the Zariski topology on a a spectrum of a ring (or an affine
scheme) is motivated by its classical counterpart in affine algebraic geometry.

Definition 5.6. Let R be a ring. The Zariski topology on SpecR is given by declaring
the closed sets to be of the form,

V (S) = {p ∈ SpecR | S ⊆ p},
for all subsets S of R.

Remark 5.7. Note that V (S) = V (⟨S⟩).



SCHEME THEORY 21

Remark 5.8. If K is an algebraically closed field and R = K[x1, · · · , xn] the classical
algebra-geometry correspondence implies that V (S) can be identified with the set of all irre-
ducible affine algebraic sets in An that are contained in the affine algebraic set V(S).

Remark 5.9. Here is another way to think of V (S). For p ∈ SpecR, define the residue
field κ(p) to be the field of fractions of the integral domain R/p. For f ∈ R, note that we
have

V (f) = {p ∈ SpecR | f(p) = 0 in κ(p)}.
Here f(p) := (f) is the image of (f) in R/p. In other words, we can think of f ∈ R as a

function on SpecR, and f(p) is the element (f) in R/p. Consider R = C[z]. For f ∈ C[z],
note (f) = 0 in R/(z − a) if and only if f(a) = 0. More precisely, the evaluation map

Eva : C[z]→ C
f 7→ f(a)

induces an isomorphism C[z]/(z − a) ∼= C. For instance, we have

V (z2 + z + 1) = {(z − eiπ/3), (z − ei2π/3)}.

Let us verify that the Zariski topology on Spec(R) is indeed a topology. The argument
is similar to that of Proposition 3.1, but in this setting we must work purely algebraically
to check that the collection of closed sets satisfies the axioms of a topology.

Lemma 5.10. Let R be a ring. The following statements are true:

(1) V (0) = Spec(R), V (1) = ∅.
(2) If a and b are two ideals of A, then V (ab) = V (a) ∪ V (b).
(3) If {ai} is any set of ideals of A, then V (

∑
i a) =

⋂
i V (ai).

(4) If a and b are two ideals, V (a) ⊆ V (b) if and only if
√
b ⊆
√
a.

(5) V (a) = V (
√
a)

Proof. The proof is given below:

(1) This is clear.
(2) If a ⊆ p or b ⊆ p, then ab ⊆ p. Conversely, if ab ⊆ p, and if b is not contained in p,

for example, then there is a b ∈ b such that b /∈ p. Now, for any a ∈ a, ab ∈ p, so
we must have a ∈ p since p is a prime ideal. Thus, a ⊆ p.

(3) p contains
∑

i ai if and only if p contains each ai, simply because
∑

i ai is the smallest
ideal containing all of the ideals ai.

(4) Recall that the radical of a is the intersection can be defined as:
√
a =

⋂
a⊆p

p.

This shows that √
a ⊆
√
b ⇐⇒ V (a) ⊇ V (b)

(5) This follows from the definition of
√
a.

This completes the proof. □

Lemma 5.10 shows that finite unions and arbitrary intersections of sets of the form V (a)
are again of that form. Hence, these sets define the closed sets of a topology on Spec(R).

Example 5.11. Consider SpecZ. Let us describe the closed subsets. These are of the form
V (I) where I ⊆ Z is an ideal, so I = (n) for some n ∈ Z.
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(1) If n = 0, the closed subset is all of Spec(Z).
(2) If n ̸= 0, then n has finitely many prime divisors. Hence

V (n) = {(p1), . . . , (pkn) | pi is prime and pi | n}
For example, V (33) is {(3), (11)}.

We have seen that Spec induces a contravariant functor from CRings→ Sets (Remark 5.3).
Next, we check that the morphisms induced on Spec’s from a ring-homomorphism are in
fact continuous maps of topological spaces.

Lemma 5.12. Spec induces a contravariant functor

Spec : CRing→ Top,

from the category of CRing commutative rings to the category Top of topological spaces.

Proof. Let f : R→ S be a ring homomorphism. We claim that the induced map

F : SpecS → SpecR,

p 7→ f−1(p).

is continuous in the Zariski topology. Consider a closed subset V (I) ⊆ SpecR, where I ⊆ R
is an ideal. Then the preimage under F is given by

F−1(V (I)) = {p ∈ SpecS | f−1(p) ⊇ I}.
This is precisely the set of prime ideals p ⊆ S such that p ⊇ f(I), which is the definition of
the closed subset V (f(I)) ⊆ SpecS4. Thus,

F−1(V (I)) = V (f(I)) = V (⟨f(I)⟩),
showing that F is continuous. □

Note that we can also characterize the Zariski topology in terms of open sets. Indeed,
for any f ∈ R, define

Uf := {p ∈ SpecR | f /∈ p}.
Then Uf is the subset of SpecR consisting of prime ideals that do not contain f . This is
precisely the complement of the closed set V (f), so Uf is open in the Zariski topology.

Lemma 5.13. Let R be a ring. The sets Uf form a basis for the Zariski topology on SpecR.

Proof. Suppose U ⊆ SpecR is open. We have U = V (I)c for some ideal I. Note that we
have

V (I) =
⋂
f∈I

V (f) =⇒ U =
⋃
f∈I

V c(f) =
⋃
f∈I

Uf

This completes the proof. □

Example 5.14. Let R = SpecC[z]. For f ∈ C[z], the open set Uf consists of all prime
ideals (x− z) such that f(z) ̸= 0. Therefore,

V (f) = U cf
∼= {z ∈ C | f(z) = 0}

If f is not the zero polynomial, then V (f) is a finite subset of C. Otherwise, V (0) = C.
4For p ∈ SpecS, we have F (p) ∈ V (I) if and only if f−1(p) ⊇ I, which holds if and only if p ⊇ f(I), i.e.,

p ∈ V (f(I)).
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Proposition 5.15. Let R be a a ring. The collection of open sets Uf have the following
properties:

(1) U1 = SpecR and U0 = ∅
(2) Ufg = Uf ∩ Ug.
(3) Uf = ∅ iff f is nilpotent.
(4) Uf = SpecR iff f is a unit.
(5) More generally,

⋃
i∈I Ufi = SpecR if and only if the ideal generated by {fi}i∈I is R.

(6) Uf ⊆ Ug iff f ∈ √g.

Proof. The proof is given below:

(1) This follows because because prime ideals are not allowed to contain the unit element
and because every prime ideal contains 0.

(2) This follows because fg lies in a prime ideal p if and only if one of f , g does.
(3) This follows because Uf = ∅ iff every prime ideal contains f iff f is in the intersection

of all prime ideals, i.e., nilradical.
(4) This follows because Uf = SpecR iff no prime ideal contains f iff f is a unit.
(5) This follows because

⋃
i∈I Ufi = SpecR. if and only if the ideal generated by {fi}i∈I

is R. Note that
⋃
i∈I Ufi = SpecR iff that all prime ideals cannot contain all fi’s

iff for every prime ideal, p, there exists a i ∈ I such that fi /∈ p iff no prime ideal
contains the ideal generated by {fi}i∈I iff the ideal generated by {fi}i∈I is R.

(6) This follows directly from Lemma 5.10.

This completes the proof. □

Remark 5.16. For basic open sets, we will use the notation Uf , Vf , D(f) interchangeably

Remark 5.17. Let f : R → S be a ring homomorphism, and let F : SpecS → SpecR
denote the induced morphism of affine schemes. Then, for any r ∈ R, we have the identity

F−1(Ur) = Uf(r),

Let us define an operation that is, in a certain sense, an “inverse” to the process of
taking closed subsets in SpecR. This construction is analogous to the definition of I in
classical affine algebraic geometry, where one assigns to a subset of affine space the ideal of
all polynomials vanishing on it. This perspective will allow us to formulate and prove an
analogue of the algebra-geometry correspondence in the more general setting of spectrum
of a ring (or an affine scheme).

Definition 5.18. Let R be a ring. Given a subset S ⊆ Spec R, define

I(S) = {f ∈ R | f ∈ p for all p ∈ S} =
⋂
p∈S

p ⊆ R

Example 5.19. Let R = SpecC[z1, · · · , zn]. Then

I(S) =
⋂

(z−a)∈S

{f ∈ C[z1, · · · , zn] | f(a) = 0}

Identifying S ⊆ SpecC[z1, · · · , zn] with a subset of Cn, I(S) is the set of polynomials in
C[z1, · · · , zn] that vanish at all points of S. Hence, the operator I(·) generalizes the operator
I(·) discussed before.

Proposition 5.20. The I(·) operation has the following properties:
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(1) I(S) is an an ideal of R.
(2) I(·) is inclusion-reversing: if S1 ⊆ S2, then I(S2) ⊆ I(S1).
(3) I(S1 ∪ S2) = I(S1) ∩ I(S2)
(4) V (I(S)) = S.

(5) I(V (J)) =
√
J for an ideal J in R.

(6) (Nullstellensatz) We have the following bijection:

{Closed sets in SpecR} ←→ {Radical ideals in R}
S 7→ I(S)

V (a)←[ a

Proof. (1), (2) and (3) are clear. For (4), note that S ⊆ V (I(S)), because if p ∈ S, then
clearly

I(S) =
⋂
p∈S

p ⊆ p,

and so p ∈ V (I(S)). Conversely, if V (a) is any closed subset containing S, then this means
that for any b ∈ S, we have b ∈ V (a) and hence a ⊆ b. Taking the intersection over all b
in S, we see that I(S) ⊇ a. Since I reverses inclusions we get that V (I(S)) ⊆ V (a). This
shows that V (I(S)) is the smallest closed set which contains S. (5) follows because

I (V (a)) :=
⋂

p∈V (a)

p =
⋂
a⊆p

p =
√
a

(6) follows from (4) and (5). □

Proposition 5.20 is the analog of the classical algebra-geometry correspondence (Propo-
sition 3.6). While the classical correspondence connects radical ideals in a polynomial ring
with the geometry of their zero sets in affine space, Proposition 5.20 provides a similar
bridge in a more general setting.

6. Properties of Zariski Topology

We now discuss various topological properties of the Zariski topology on the spectrum of
a ring. These properties include closed points, compactness, characterization of irreducible
closed subsets. Understanding these features is essential for grasping the geometric intuition
behind the algebraic structure of the spectrum.

6.1. Closed Points. Note that Proposition 5.20(5) characterizes closed sets in the Zariski
topology. In particular, we can characterize closed points in the Zariski topology as well.

Proposition 6.1. Let R be a ring and p be a prime ideal. We have {p} = V (p). In
particular, closed points of Spec R correspond to the maximal ideals of R.

Proof. Observe that V (E) is a closed set that contains the point p if and only if E ⊆ p.
Hence, we have

{p} =
⋂
E⊆p

V (E) = V

⋃
E⊆p

E

 = V (p).

Hence, {p} is closed if and only if

{p} = {p} = V (p)



SCHEME THEORY 25

if and only if there doesn’t exist any prime ideal q of SpecR properly containing p if and
only if p is a maximal ideal. □

We have a bijection:

{Closed Points in Spec R} ←→ {Maximal Ideals of R}

Proposition 6.1 illustrates that the Zariski topology on SpecR behaves quite differently
from the Euclidean topology on manifolds. In particular, SpecR is not Hausdorff if R
contains a prime ideal that is not a maximal ideal. Consider the following example:

Example 6.2. Let R be an integral domain. Then (0) is a prime ideal that is not a maximal

ideal. Hence, (0) is not a closed set since (0) = R. In particular, SpecR is not Hausdorff.

Example 6.2 motivates the concept of a generic point.

Definition 6.3. Let R be a ring, A point p ∈ SpecR is called a generic point if {p} =
SpecR.

We conclude this section with a proof that SpecR is a T0 space. Recall that a topological
space, X, is T0 if x, y ∈ X are distinct points, then either there exists a neighborhood of x
that does not contain y, or there exists a neighborhood of y that does not contain x.

Proposition 6.4. Let R be a ring. SpecR is a T0 space.

Proof. Let p, q ∈ SpecR be distinct points. Then we have p ̸= q as ideals. WLOG assume
that q ̸⊆ p. Then there exists an element α ∈ q such that α /∈ p. The distinguished open
set Uα is then an open neighborhood of p that does not contain q. □

6.2. Irreducible Closed Sets. We have characterized the closed subsets of the spectrum
of a ring, R. We now turn to characterizing the irreducible closed subsets of SpecR. In
analogy with the classical algebra-geometry correspondence, these irreducible closed subsets
correspond precisely to the prime ideals of R.

Proposition 6.5. Let R be a ring. A closed subset Z ⊆ SpecR is irreducible if and only if
Z is of the form Z = V (p) for some prime ideal p ∈ SpecR.

Proof. First assume that Z = V (p) for some prime ideal p. By Proposition 5.20(5), we
have

Z = V (p) = V (I(p)) = {p}
If Z is reducible, then

p ∈ {p} ⊆ V (a) ∪ V (b)

Hence, p ∈ V (a) or p ∈ V (b) and since V (a), V (b) are closed sets we have Z = {p} ∈ V (a)
or V (b), contradicting that Z is reducible. Hence, Z is irreducible. Conversely, assume that
Z is a closed irreducible set. Let

Z = V (a) = V (
√
a)

for some ideal a ∈ SpecR. It suffices to show that
√
a is a prime ideal. Assume this is not

the case. Then there exist b, c ∈ R such that bc ∈
√
a but b, c /∈

√
a. If b = (b) and c = (c),

then bc ∈
√
a but

√
b,
√
c /∈
√
a. We claim that V (

√
a) ⊆ V (b) ∪ V (c). Note that

V (
√
a) ⊆ V (b)∪V (c) ⇐⇒

√
a = I(V (

√
a)) ⊇ I(V (b)∪V (c)) = I(V (b))∩I(V (c)) =

√
b∩
√
c
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Since b and c are principal ideals, we have
√
a ⊇
√
b ∩
√
c ⇐⇒

√
a ⊇ b ∩ c

The latter condition is clearly true. Hence, Z is reducible, a contradiction. □

We have a bijection:

{Closed irreducible Subsets of Spec R} ←→ {Prime Ideals of R}

Corollary 6.6. Let R be a ring. SpecR is irreducible if and only if the nilradical of R is
a prime ideal.

Proof. This follows from Proposition 6.5 and the fact that SpecR = V (0) and
√
0 is the

nilradical of R. □

Example 6.7. Let R be an integral domain and let ab ∈ N (R). By definition of N (R),
we have anbn = (ab)n = 0 for some n ∈ N. Since R is an integral domain, an = 0 or bn = 0
if and only if a or b is contained in N (R) if and only if N (R) is a prime ideal. Hence,
SpecR is irreducible.

An irreducible component of a topological space is a maximal irreducible subset. Recall
that any topological space can be written as a union of its irreducible components. We can
also characterize irrecucible components of the spectrum of a ring.

Proposition 6.8. Let R be a ring. The irreducible components of SpecR are the closed
sets V (p), where p is a minimal prime ideal of R.

Proof. A maximal irreducible subspace of SpecA must be closed, that is of the form V (a)
for some ideal a of A. Since it is irreducible, we can assume the ideal to be prime, so it is
V (p). Now p is minimal because V (p) is maximal. □

6.3. Compactness & Noetherian-ness. We first show that the spectrum of a ring is
always a compact topological space. This is a very convenient property to have. However,
a general scheme need not be compact, as we shall see later.

Proposition 6.9. Let R be a ring. Then SpecR is compact. More generally, Uf is compact
for every f ∈ R.

Proof. Assume that

U1 = SpecR =
⋃
i∈I

Uhi

is a union of basic open sets. This is true if and only if

V (1) =
⋂
i∈I

V (hi) = V

(∑
i∈I

hi

)
.

By Lemma 5.10, this implies 1 ∈
√∑

i(hi), or 1 ∈
∑

i(hi) for some n. This means that 1
can be expressed as a finite sum 1 =

∑
i bihi, bi ∈ R. Hence a finite subset of the hi’s will

do. □

Example 6.10. SpecR can have non-empty non-compact open sets. For instance, take
R = K[x1, x2, · · · ]. Then ⋃

n≥1

D(xn) ⊆ Spec(K[x1, x2, . . . ])
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is open but not quasi-compact. A similar argument shows that Uf is compact for every
f ∈ R.

We now discuss an additional topological property of the spectrum of a ring. Recall that
Noetherian rings form a special class of rings satisfying certain finiteness conditions. It is
natural to define an analogous notion of Noetherian-ness at the level of topological spaces,
yielding topological spaces that satisfy certain finiteness properties.

Definition 6.11. A topological space X is called Noetherian if it satisfies the descending
chain condition for closed subsets. Any sequence

Z1 ⊇ Z2 ⊇ · · · ⊇ Zn ⊇ · · ·

of closed subsets eventually stabilizes. That is, there is a r ∈ N such that

Zr = Zr+1 = · · · .

Example 6.12. An is a Noetherian topological space. Indeed, if

Y1 ⊇ Y2 ⊇ . . .

is a descending chain of closed subsets, then

I(Y1) ⊆ I(Y2) ⊆ . . .

is an ascending chain of ideals in R = K[x1, . . . , xn]. Since R is a Noetherian ring, this
chain of ideals is eventually stationary. But for each i, Yi = V(I(Yi)), so the chain Yi is also
stationary.

Noetherian topological spaces possess desirable properties, making them more tractable
due to the finiteness conditions imposed by the Noetherian property. We illustrate this with
the following example result:

Proposition 6.13. Suppose X is a Noetherian topological space. Then every nonempty
closed subset Z can be expressed uniquely as a finite union Z = Z1 ∪ · · · ∪ Zn of irreducible
closed subsets, none contained in any other.

Proof. Consider the collection, Σ, of closed subsets of X that cannot be expressed as a
finite union of irreducible closed subsets. We will show that it is empty. Assume that Σ ̸= ∅.
Since X is Noetherian, there is a minimal element in Σ. Call it Y . By construction, Y is
not irreducible. So we can write Y = Y ′ ∪ Y ′′ where Y ′ and Y ′′ are both proper closed
subsets of Y . Both of these by hypothesis can be written as the union of a finite number of
irreducible subsets, and hence so can Y , yielding a contradiction. Thus each closed subset
can be written as a finite union of irreducible closed subsets. We can assume that none of
these irreducible closed subsets contain any others, by discarding some of them. We now
show uniqueness. Suppose

Z = Z1 ∪ Z2 ∪ · · · ∪ Zr = Z ′
1 ∪ Z ′

2 ∪ · · · ∪ Z ′
s

are two such representations. Then Z ′
1 ⊂ Z1∪Z2∪· · ·∪Zr, so Z ′

1 = (Z1∩Z ′
1)∪· · ·∪(Zr∩Z ′

1).
Now Z ′

1 is irreducible, so one of these is Z ′
1 itself, say (without loss of generality) Z1 ∩ Z ′

1.
Thus Z ′

1 ⊆ Z1. Similarly, Z1 ⊆ Z ′
j for some j; but because Z ′

1 ⊆ Z1 ⊆ Z ′
j , and Z ′

1 is

contained in no other Z ′
i, we must have j = 1, and Z ′

1 = Z1. Thus each element of the list
of Z’s is in the list of Z ′’s, and vice versa, so they must be the same list. □
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Example 6.14 (Hartshorne I.1.3). Let K be a field, and let Y be the algebraic set in A3

defined by the two polynomials x2 − yz and xz − x. We have the following equalities of
ideals in K[x, y, z]:

(x2 − yz, xz − x) = (x2 − yz, x) ∩ (x2 − yz, z − 1)

= (x, yz) ∩ (x2 − y, z − 1)

= (x, y) ∩ (x, z) ∩ (x2 − y, z − 1).

Therefore, Y is the union of three irreducible components: two of them are lines, and the
third is a plane curve.

Proposition 6.15. (Hartshorne I.1.7) The following statements are true:

(1) The following conditions are equivalent for a topological space X:
(i) X is Noetherian.
(ii) Every nonempty family of closed subsets has a minimal element.
(iii) X satisfies the ascending chain condition for open subsets.
(iv) Every nonempty family of open subsets has a maximal element.

(2) A Noetherian topological space is compact.
(3) Any subset of a Noetherian topological space is Noetherian in its induced topology.
(4) A Noetherian space which is also Hausdorff must be a finite set with the discrete

topology.

Proof. The proof has been commented out as it follows from standard results in point-set
topology. □

We conclude by showing that if R is a Noetherian ring, then SpecR is a Noetherian
topological space.

Proposition 6.16. Let R be a Noetherian ring. Then SpecR is a Noetherian topological
space.

Proof. Suppose
V (I1) ⊇ V (I2) ⊇ . . .

is a descending sequence of closed subsets of SpecR. Using Lemma 5.10, we have that,√
I1 ⊆

√
I2 ⊆ . . . ,

is an ascending sequence of ideals in R. Since R is a Noetherian ring, this sequence stabilizes.
That is, there exist a r such that

√
Ir =

√
Ir+1 = · · · . Since V (I) = V (

√
I) for any ideal I

in R, we have that the descending sequence of closed subsets also stabilizers. Hence Spec(R)
is Noetherian. □

Example 6.17. Let R be a Notherian ring. Then R[x1] is a Noetherian ring. This is the
celebrated the Hilbert basis theorem (Proposition 27.6). Therefore, R[x1, · · · , xn] is also a
Noetherian ring. Hence, SpecR[x1, · · · , xn] is a Noetherian topological space. In particular,
SpecK[x1, · · · , xn] is a Noetherian topological space for any field K.

Remark 6.18. If SpecR is a Noetherian topological space, R need not be Noetherian. One
example is

R = K[x1, x2, x3, . . .]/(x1, x
2
2, x

3
3, . . .)

Then SpecR has one point, so it is a Noetherian topological space. But T is not a Noetherian
ring.
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6.4. Conectedness. We can now characterize when the spectrum of a ring is disconnected.
To do so, we invoke properties of the structure sheaf that is naturally endowed on the
spectrum of a ring (see Proposition 11.8). The structure sheaf itself will be introduced in
detail later, when we discuss sheaves in Part 2.

Proposition 6.19. Let R be a ring. SpecR is disconnected if and only if R is a direct
product of rings. More generally, the following are equivalent:

(a) SpecR is disconnected.
(b) There exist nonzero elements e1, e2 ∈ R such that e1e2 = 0, e21 = e1, e

2
2 = e2, and

e1 + e2 = 1 (these elements are called orthogonal idempotents).
(c) R is isomorphic to a direct product R1 ×R2 of two nonzero rings.

Proof. The proof is given below:

(1) (a) implies (c): Assume SpecR is disconnected. Then SpecR can be written as a
union of two disjoint clopen subsets. Let these subsets be V (a) and V (b) for some
ideals a, b ⊆ R. Noting that V (a) = Spec(R/a) and V (b) = Spec(R/b), we have:

(*) SpecR = V (a)
⊔
V (b) = Spec(R/a)

⊔
Spec(R/b) ∼= Spec(R/(a× b)).

Since we can recover the ring by taking global sections of the structure sheaf5, we
conclude that

R ∼= R/a×R/b.
(2) (c) implies (b): Simply take e1 = (1, 0) and e2 = (0, 1). It is straightforward to

verify that the desired properties hold.
(3) (b) implies (a): Since e1e2 = 0, for every prime ideal p ⊂ R, we must have either

e1 ∈ p or e2 ∈ p. Hence, the closed subsets V (e1) and V (e2) cover SpecR. Suppose
a prime ideal p lies in both V (e1) and V (e2). Then e1, e2 ∈ p, and so 1 = e1 + e2 ∈
p, implying p = R, which contradicts the definition of a prime ideal. Therefore,
V (e1) ∩ V (e2) = ∅, and the cover SpecR = V (e1) ∪ V (e2) is by two disjoint closed
subsets. It follows that SpecR is disconnected.

This completes the proof. □

Remark 6.20. The last equality in Equation (*) follows from the fact that the prime ideals
of the product ring R1 × R2 are precisely those of the form p1 × R2 and R1 × p2, where pi
is a prime ideal of Ri for i = 1, 2.

7. Examples

The purpose of this section is to present a collection of examples of spectra of various
rings. These examples serve to illustrate the diversity of behaviors that can arise and will be
revisited throughout the text as more theory is developed. We begin by examining examples
of spectra of rings that recover classical affine algebraic geometry as special cases.

Example 7.1. Let K be an algebraically closed field.

(1) Let’s describe SpecK[x], which is called the affine line over K. Since K is alge-
braically closed and K[x] is a PID, we have

SpecK[x] = {(x− a) | a ∈ K} ∪ {0}

5Structure sheaf will be discussed in the next section.
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We can identify each a ∈ C with the prime ideal (x− a). Thus, the non-zero prime
ideals of SpecK[x] correspond bijectively to the points of K.

(2) Consider the following spectrum of a ring:

SpecK[x, y].

The ring K[x, y] is not a principal ideal domain, since the ideal (x, y) is not principal.
Nevertheless, one can show that every prime ideal of K[x, y] is of one of the following
forms:

(0), (x− a, y − b), (f),

where a, b ∈ K, and f ∈ K[x, y] is an irreducible polynomial.

Remark 7.2. Note that the zero ideal (0) in K[x] is contained in every non-zero prime (in
this case, maximal) ideal. (0) is called the generic point of K[x]. Generic point of SpecR
will formally defined later.

A picture of SpecC[z]. This picture is taken from [Vak17].

We can also examine the spectra of fields that are not algebraically closed. This provides
one of the first indications that the language of schemes is well-suited for studying algebraic
geometry over arbitrary fields, not just algebraically closed ones.

Example 7.3. Let R = SpecR[x]. We have

Spec(R[x]) = {(0)} ∪ {(x− a) | a ∈ R} ∪ {p(x)) | p(x) is an irreducible quadratic}
Note that (0) and (x − a) for a ∈ R are all the maximal ideals of R[x]. Maximal ideals of
R[x] correspond to R. Each (p(x)) can be identified with a complex number with positive
imaginary part that is the root of p(x).

Remark 7.4. Example 7.3 highlights the key observation that, over a field that is not
algebraically closed, there exist points on the affine line whose residue fields are nontrivial
extensions of the base field. More precisely, if K is a field that is not algebraically closed,
then there exist points x ∈ A1 such that the residue field is a proper field extension of K.

One might ask: why do we identify an irreducible quadratic f(x) ∈ R[x] with its complex
root having positive imaginary part, rather than the conjugate root with negative imag-
inary part? This choice is a matter of convention, not mathematical necessity. The two
complex conjugate roots correspond to the same prime ideal (f(x)) in SpecR[x], since f(x)
is irreducible over R. Therefore, selecting the root with positive imaginary part is simply a
canonical way to represent the conjugate pair.
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x

y
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0.5 + 2i

−0.7 + 1i

A picture of SpecR[x]

Remark 7.5. Let K be a perfect field. Consider SpecK[x]. Since K is a field, K[x] is a
PID. Therefore,

SpecK[x] = {f(x)) | p(x) is an irreducible polynomial}

Since K is perfect, f has distinct roots in K6 and these roots r1, · · · , rn form an orbit of
K under the action of the Galois group, G, of the field extension K/K. Indeed, if any
non-trivial subset of S ⊊ {r1, · · · , rn} is G-invariant, then∏

i∈S
(x− ri)

would be an element of K[x] dividing f7, contradicting that f is irreducible. Conversely,
given any G-invariant finite subset S ⊊ K which has no non-trivial G-invariant subsets, the
polynomial ∏

s∈S
(x− s)

is in K and irreducible by the same logic. So we have a bijection between K/G and the
non-zero prime ideals of K[x].

Let us now discuss the spectrum of quotient of a ring. If I ⊆ R is an ideal, recall that
there is a bijection:

{Prime ideals of R/I} ←→ {Prime ideals of R containing I}

Thus we can picture SpecR/I as a subset of SpecR. In fact, SpecR/I ∼= V (I). In particular,
SpecR/(f) ∼= V (f) for f ∈ R.

Example 7.6. Consider the following examples:

(1) Consider K[x]/(x2). An elementary argument shows that

SpecK[x]/(x2) = {(x)}

6Because it is co-prime to its derivative.
7This follows from Galois theory.
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(2) Consider K[x]/(x(x− 1)). Using the Chinese Remainder Theorem:

K[x]/(x(x− 1)) ∼= K[x]/(x)×K[x]/(x− 1) ∼= K×K
Therefore, the spectrum of the ring is:

SpecK[x]/(x(x− 1)) = {(0)×K, K× (0)}

Remark 7.7. The classical algebraic geometry correspondence implies that if K is an al-
gebraically closed field , then points in Spec(K/I) correspond to the points on V(I), as well
as to the irreducible algebraic subsets of V(I). For example, points of SpecC[x, y]/(xy)
correspond to the points on the coordinate axes and the irreducible algebraic subsets of their
union. One should use this intuition in the general case for a arbitrary commutative ring
R.

Let’s now discuss the spectrum of a localized ring. Consider SpecS−1R, where S is a
multiplicatively closed subset of R containing 1. Recall that there is a bijection between
SpecS−1R and the set of prime ideals p ⊆ R such that p ∩ S = ∅.

{Prime ideals of S−1R} ←→ {Prime ideals of R that don’t intersect withS}

Example 7.8. Let R be a ring. Consider the following examples:

(1) Let Sf = {1, f, f2, . . .}. The prime ideals of Rf := S−1
f R correspond to the prime

ideals of R that do not contain f . Hence,

SpecRf = {Prime ideals of R that don’t contain f}
Since Uf ∩ Ug = Ufg, we have

SpecRf ∩ SpecRg = SpecRfg

(2) Let Sp = pc, where p is a prime ideal. The prime ideals of Rp := S−1
p R are precisely

the prime ideals of R that are contained in p. Hence,

SpecRp = {Prime ideals of R contained in p}

Remark 7.9. If R = C[x1, . . . , xn], the classical algebra-geometry correspondence implies
that we can picture SpecS−1

f C[x1, . . . , xn] as the set of all points in Cn that do not lie on

the zero set of f , along with irreducible affine algebraic sets not contained in the zero set of
f .

Local rings play a fundamental role in algebraic geometry, as they capture the behavior
of schemes at a single point. The spectrum of a local ring provides a simple but illustrative
example of a scheme with a distinguished closed point (corresponding to the maximal ideal)
and a generic point. These examples are crucial for understanding local properties of
schemes.

Example 7.10. Consider the localization of the polynomial ring K[x] at the prime ideal
(x), denoted by K[x](x). Its spectrum, Spec(K[x](x)), consists of exactly two prime ideals:

Spec(K[x](x)) = {(0), (x)}
This provides an example of a scheme with a unique closed point (x) and a generic point
(0).
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Part 2. Sheaves

A space, such as a topological space or a smooth manifold, can often be studied through
the algebra of functions defined on it. However, a generic space may admit few globally
defined functions—for instance, consider a non-normal topological space or bounded holo-
morphic functions on Cn. A more precise perspective is that the structure of a space can
be understood by studying locally defined functions. This richer perspective is formalized
using a mathematical object called a pre-sheaf. Pre-sheaves and sheaves are objects studied
in sheaf theory. We will use sheaves to endow the spectrum of a ring with a collection of
functions that generalize the polynomial and rational functions studied in classical affine al-
gebraic geometry. More generally, sheaves can be used to define objects like vector bundles
by specifying their spaces of sections over any open set and describing how those sections
restrict to one another and glue together. Hence, sheaves are an important tool in algebraic
geometry for keeping track of locally defined geometric data. By associating data—such
as functions, sections, etc.—to open subsets of a space and ensuring compatibility across
overlaps, sheaves enable a cohesive transition from local to global phenomena.

8. Definitions

Before we define sheaves, we first want to introduce the notion of pre-sheaves, which is
simpler and yet very helpful in understanding sheaves. Philosophically, pre-sheaves provide
a powerful framework for systematically organizing and locally defined data. More precisely,
given a topological space, X, the idea of a pre-sheaf is to associate each open set in X with
an object in a category, C in such a way that we can establish a map from a bigger open
set to a smaller open set inside it. More formally, we have the following definition:

Definition 8.1. Let X be a topological space and let C be a category. Let Open(X) denote
the category of open sets on X A C-valued pre-sheaf on X is a contravariant functor:

F : Open(X)→ C

Remark 8.2. If F is a pre-sheaf on X, we refer to F (U) as the sections of the pre-sheaf F
over the open set U . We sometimes use the notation Γ(U,F ) to denote F (U). If U ⊆ V ,
we write ρV,U , resV,U or |U for the morphism between F (V ) and F (U).

Given a pre-sheaf on X, a natural question to ask is the extent to which its sections
over an open set U ⊆ X are determined by their restrictions to the open subsets of U . A
sheaf is roughly speaking a pre-sheaf where the aforementioned question can be answered
affirmatively.

Definition 8.3. Let X be a topological space and let C be a category admitting all limits8.
A C-valued sheaf on X is a pre-sheaf if the following diagram is an equalizer for every
open cover U = {Ui}i∈I of any open set U :

F (U)
∏
i F (Ui)

∏
i,j F (Ui ∩ Uj)

The first map in Definition 8.3 is the product of the restriction maps

resU,Ui : F (U)→ F (Ui),

8It would be sufficient to require that C admits all products and equalizers. However, this assumption
implies that C admits all limits.
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and the pair of arrows are the products of the two sets of restrictions:

resUi,Ui∩Uj : F (Ui)→ F (Ui ∩ Uj),
resUj ,Ui∩Uj : F (Uj)→ F (Ui ∩ Uj).

If C = Sets,Ab, R-Mod, the condition in the definition of a sheaf simplify to the conditions:

(1) (Identity Axiom) If {Ui}i∈I is an open cover of U , and f1, f2 ∈ F (U), and f1|Ui =
f2|Ui for all i, then f1 = f2.

(2) (Gluing Axiom) Suppose {Ui}i∈I is an open cover of U . Suppose for each i we
have fi ∈ F (Ui) such that fi = fj in F (Ui∩Uj). Then there is a unique f ∈ F (U)
such that f |Ui = fi.

We can package the above argument in the form an equalizer diagram to reconstruct Defi-
nition 8.3. For each open cover U =

⋃
i∈I Ui of an open set U ⊆ X, there is a sequence

0 −→ F (U)
α−→
∏
i∈I

F (Ui)
β−→
∏
i,j∈I

F (Ui ∩ Uj),

where the maps α and β are defined by the assignments

α(s) = (s|Ui)i∈I ,

β ((si)i∈I) =
(
si|Ui∩Uj − sj |Ui∩Uj

)
i,j∈I .

Then F is a sheaf if and only if these sequences are exact. Indeed, exactness at F (U)
means that α is injective, i.e., that s|Ui = 0 for all i ∈ I implies s = 0. Exactness in the
middle means that kerβ = Imα; that is, elements (si) ∈

∏
F (Ui) satisfying

si|Ui∩Uj = sj |Ui∩Uj for all i, j ∈ I
come from a global section s ∈ F (U) such that s|Ui = si.

Remark 8.4. We’ll mostly be working with Ab, R-Mod, CRing.

In some cases, it is assumed a priori that F(∅) is a terminal object in C. For instance,
if C = Ab, it is often assumed a priori that F(∅) = 0, where 0 denotes the trivial abelian
group. However, we show that this is actually a consequence of the definition of a sheaf.

Lemma 8.5. Let X be a topological space and let C be a category with all limits and a
terminal object, T . If F : Open(X)→ C is a sheaf, then F (∅) ∼= T .

Proof. Let U = ∅. Since the product over objects in C indexed over ∅ is a terminal object,
the equalizer condition becomes

F (∅) T T
g IdT

IdT

The morphism g : F (∅) → T is unique since T is a terminal object. Let X ∈ C and let
f : X → T be a unique morphism from X to T . The equalizer condition states that there
exists a unique morphism f ′ : X → F (∅) such that the following diagram commutes:

F (∅) T T

X

g IdT

IdT

f
f ′ f



SCHEME THEORY 35

On the other hand, any morphism f ′ : X → F (∅) makes the left-most triangle commute.
Therefore F (∅) is an object such for any X there exists a unique morphism X → F (∅). In
other words, F (∅) ∼= T . □

Category theory teaches us to always define morphisms between mathematical objects.
We now define morphisms of pre-sheaves, and similarly for sheaves. In other words, we will
describe the category of pre-sheaves and the category of sheaves

Definition 8.6. Let X be a topological space and F and G be C-valued pre-sheaves. A
morphism of pre-sheaves, φ : F → G , is a natural transformation. That is, for each
open set U ⊆ X there exists a morphism from F (U)→ G (U) such that whenever U ⊆ V ,
the following diagram

F (V ) G (V )

F (U) G (U)

φ(V )

resV,U resV,U

φ(U)

commutes.

Remark 8.7. We denote by φ(V ) : F (V )→ G (V ) the morphism on sections over an open
set V ⊆ X, and we write its restriction to an open subset U ⊆ V as

φ(V )|U : F (V )|U → G (V )|U .

If C is a concrete category, and s ∈ F (V ), the commutativity of the restriction diagram
(written in componentwise notation) is expressed by the equation:

φ(s)|U = φi(s|U ),

where φi : F |Ui → G |Ui is the given morphism on a piece of an open cover {Ui}i∈I , and
U ⊆ Ui ∩ V .

Remark 8.8. If F and G are sheaves of abelian groups, R-modules etc. then we require
all the maps φ(U) to be homomorphisms in the appropriate category.

Definition 8.6 makes the collection all pre-sheaves on X into a category, which we denote
as PreShv(X,C). The category of sheaves on X, which we denote as Shv(X,C), is then a full
subcategory of the category of pre-sheaves on X satisfying the identity and gluing axioms.

Example 8.9. Note the following basic examples:

(1) Consider the simplest case where X = {∗} is a one-point space. Then the category
of presheaves PreShv(X,C) is equivalent to C itself.

(2) There is a natural forgetful functor

Shv(X,C)→ PreShv(X,C),

reflecting that every sheaf is in particular a presheaf.

9. Examples

Sheaves offer a unified language to study and solve problems that involve patching local
solutions into a global context. This makes them essential tools in diverse fields, including
algebraic geometry, topology, and complex analysis. Let’s look at some examples of sheaves.
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Example 9.1. Let C = Sets and let X = {∗} be a one-point topological space. Lemma 8.5
implies that a C-valued sheaf on X is defined by F (∗) = S and F (∅) = {pt}, where
S ∈ Sets.

Sheaves of functions form an important example of sheaves. For instance, the assignment
that sends each open set U ⊆ X to the ring of functions on U defines a sheaf. These
examples are central in areas such as differential geometry and complex analysis.

Example 9.2. The following is a list of some examples of sheaves of functions:

(1) If X is a topological space, the pre-sheaf of continuous functions, C , defined by
U 7→ C (U), where C (U) is the abelian group of continuous functions on U (with
usual restrictions), is a sheaf.

(2) If X is a topological space, the pre-sheaf of nowhere vanishing continuous func-
tions, C×, defined by U 7→ C×(U), where C×(U) is the abelian group of no-where
vanishing continuous functions on U (with usual restrictions), is a sheaf.

(3) IfX = Cn, the pre-sheaf of holomorphic functions, O, defined by U 7→H (U), where
H (U) is the abelian group of holomorphic functions on U (with usual restrictions),
is a sheaf.

(4) If X = Cn, the pre-sheaf of nowhere vanishing holomorphic functions, O×, de-
fined by U 7→ H ×(U), where H ×(U) is the abelian group of non-where vanishing
holomorphic functions on U (with usual restrictions), is a sheaf.

Note that F (∅) = 09 is forced by Lemma 8.5 in all examples above.

Remark 9.3. We can easily generalize Example 9.2 by considering the sheaf of functions
restricted to open subsets of the appropriate space. Moreover, all the examples discussed
above are, in fact, examples of R-module valued sheaves with R = R,C as appropriate.

Arguably the most important example of a sheaf of functions in algebraic geometry is
the sheaf of regular functions on an affine variety. This is the sheaf of functions that can be
written as rational functions—that is, quotients of polynomials—that are regular on their
domain of definition.

Example 9.4. (Sheaf of Regular Functions) Let K be an algebraically closed field, and let
X ⊆ An be an affine variety. For an open set U ⊆ X, let RX(U) be the ring of all rational
functions which are regular on U :

RX(U) = {f ∈ K(X) | f is regular on U} .

Note that if V ⊆ U , then RX(U) ⊆ RX(V ), so this defines a pre-sheaf by letting the
restriction maps be the inclusion maps. The sheaf axioms are also satisfied.

(1) The identity axiom holds because if f ∈ K(X) restricts to zero in some RX(U),
then this simply means that f = 0 in K(X).

(2) The gluing axiom holds because if {fi ∈ RX(Ui)} is a collection of rational functions
that agree on the overlaps Ui ∩ Uj of an open covering, then they are all equal to
the same element f ∈ K(X). This rational function f must in turn be regular on
all of U =

⋃
i Ui because if p ∈ U , then p lies in some Uj , and hence f = fj can be

written as a/b with b(p) ̸= 0.

It follows that RX defines a CRing-valued sheaf, called the sheaf of regular functions on X.

9Here 0 is the trivial abelian group.
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The next examples concern constant pre-sheaves and sheaves, which, despite their sim-
plicity, play a foundational role in the development of sheaf cohomology. They also provide
key intuition for understanding how local data can fail to glue globally.

Example 9.5. Let X be a topological space and let C = Ab. Let A ∈ Ab with the discrete
topology. The following are two examples of Ab-valued pre-sheaves:

(1) For any non-empty open set U ∈ Open(X), let A(U) = A. Clearly, A is a pre-sheaf
with restriction maps the identity. This is called the constant pre-sheaf.

(2) For any non-emptyset open set U ∈ Open(X), let A(U) be the abelian group of
all continuous maps of U into A. Then with the usual restriction maps (as in the
previous example), we obtain a sheaf. Note that each function in A(U) is locally
constant for each open set of X. This is called the constant sheaf.

Once again, F (∅) = 0 is forced by Lemma 8.5.

Remark 9.6. Let A be the constant sheaf. Note that for every connected open set U ,
A(U) ∼= A since the image of a continuous map from a connected set to a discrete space is
constant. This justifies the terminology.

Example 9.7. All examples discussed in Example 9.2 are examples of sheaves of R-modules
with R = R,C as appropriate.

Example 9.8. Let X be a topological space and let 0 denote the trivial abelian group. Fix
any abelian group, A, and x ∈ X. Consider the assignment

iAx (U) =

{
A if x ∈ U,
0 if x /∈ U.

This is can be made into a pre-sheaf if for open sets U, V ⊆ X such that V ⊆ U , the map
iAx (U)→ iAx (V ) is defined such that:

(1) If x /∈ U , then the map is simply the identity morphism 0→ 0
(2) If x ∈ V , then the map is simply the identity morphism A→ A
(3) If x ∈ U \ V , then the map is simply the unique morphism A→ 0.

It is easy to verify that this defines a pre-sheaf. Let {Ui}i∈I for an open cover for an open
set U ⊆ X. The identity and gluing axioms are essentially satisfied since U contains x if
and only if some Ui contains x. This is called the skyscraper sheaf.

Next, we consider the sheaf of sections, which is fundamental in relating sheaf theory to
geometry by associating sheaves to vector bundles and other fibered structures.

Example 9.9. (Sheaf of Sections) Let X,Y be topological space and let π : Y → X be
a continuous map. Recall that a section of π is a continuous map σ : X → Y such that
π ◦ σ = IdX . For an open non-empty set U ⊆ X, define E (U) to be the set of sections of π
on U . That is,

E (U) = {σ : U → Y | σ is continuous and π ◦ σ = IdU}.
The empty set is sent to the singleton set and the restriction maps are are given by restriction
of functions. This is called the pre-sheaf of sections of π. In fact, pre-sheaf of sections of
π is a sheaf of sets. Indeed, since sections are indeed continuous function, it is clear that
the identity axiom is satisfied. Similarly, the gluing axiom is also satisfied if we note that if
{Ui}i∈I is an open cover of of U and σi ∈ E (Ui) such that σi = σj ∈ E (Ui ∩ Uj), then the
function σ : U → Y such that σ|Ui = σi is indeed a section.
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Remark 9.10. If Y is a topological group, the sheaf of sections is a sheaf of groups.

Remark 9.11. If Y = X × R, and π is projecting onto the first factor, then sections of
π are just continuous maps X → R. In other words, the sheaf of sections generalizes the
sheaf of real-valued continuous functions.

Finally, we examine presheaves that fail to satisfy the sheaf axioms and thus are not
sheaves. These examples illustrate the necessity of the gluing and locality conditions in
the definition of a sheaf, and understanding such presheaves is crucial for constructing
sheafifications and for deeper insights in sheaf cohomology.

Remark 9.12. A pre-sheaf may not be a sheaf. Here are two examples:

(1) (Identity axiom fails) Let X = {∗1, ∗2} with the discrete topology. Let F be a
pre-sheaf of abelian groups defined as follows:

F ({∗1, ∗2}) = Z, F ({∗1}) = Z2, F ({∗2}) = Z2, F (∅) = 0,

with the obvious homomorphisms Z → 0 and Z → Z2 However, this is not a sheaf.
Indeed, X = {∗1} ∪ {∗2}. Then 2, 4 ∈ Z such that these elements restrict to the 0
element in Z2. However, 2 ̸= 4.

(2) (Gluing axiom fails) Let X = R, and let F (U) be the abelian group of bounded
functions on non-empty open sets U . Then F defines a pre-sheaf but not a sheaf.
Indeed, let X =

⋃∞
i∈Z(i, i+1] and let fi ≡ i on (i, i+1]. Since Vi ∩Vj = ∅ for i ̸= j,

trivially we have that fi = fj on each Vi ∩ Vj = ∅ for i ̸= j. However, there is not
f ∈ F (R) such that f |(i,i+1] = fi; otherwise, f must be an unbounded function.

The constant pre-sheaf is usually not a sheaf. Let X be a topological space with two open
sets, U1, U2, such that U1 ∩ U2 = ∅. Let A ∈ Ab be a non-trivial abelian group and let A be
the corresponding constant pre-sheaf on X. Specifically,

A(U) =

{
A, U ̸= ∅,
0, U = ∅.

Let’s show that the gluing axiom fails. Let a1 ̸= a2 ∈ A such that ai ∈ A(Ui) for i = 1, 2.
Let U = U1∪U2. The overlap condition is trivially satisfied. However, it is clear we cannot
find any a ∈ A(U) such that

a|U1 = a1 and a|U2 = a2,

Hence, this constant pre-sheaf is not a sheaf. Conceptually, if we view elements of A(U) as
constant functions U → A, this example illustrates that we are attempting to take constant
functions on U1 and U2 with different values and glue them to obtain a constant function
on U1 ∪ U2, which is impossible.

10. Stalks

Stalks are fundamental tools in sheaf theory, providing a way to study the behavior of a
sheaf at a single point. This construction allows us to isolate and analyze local data while
still capturing the global structure of the sheaf. Stalks play a crucial role in understanding
the local-to-global correspondence in mathematics, as they bridge the gap between local
properties (encoded in sections over open sets) and global phenomena. Let’s first motivate
the definition of a stalk with the help of an example.
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Example 10.1. Let X = Cn and let O denotes the sheaf of holomorphic functions on X.
For each x ∈ X and open set U containing x, we define an equivalence relation on O(U)

f ∼ g ⇐⇒ there exists an open set W ⊆ U containing p such that f |W = g|W
The equivalence class of a function f ∈ O(U) is called the germ of f at x and is denoted
by [f ]x. The stalk of O at x, denoted Ox, is the vector space of all germs of holomorphic
functions at x. Addition and scalar multiplication of germs are defined by performing these
operations on any representatives that are defined on the same open set. For example,
addition is defined as:

[f ]x + [g]x = [f + g]x

Let’s check that addition is well-defined. Assume that [f ]x = [f ′]x and [g]x = [g′]x. Then
there exist open sets V,W ⊆ U such that f |V = f ′|V and g|W = g′|W . It is clear that on
V ∩W ⊆ U , we have

f + g|V ∩W = f ′ + g′|V ∩W

This shows addition is well-defined. Similarly, it can be checked that scalar multiplication
is well-defined.

Remark 10.2. Ox is actually a ring. This can be checked easily. In fact, Ox is a local
ring. Let mx ⊆ Fx denotes germs vanishing at x. This certainly forms an ideal. In fact,
the ideal is maximal since Fx/mx

∼= C. This is the unique maximal ideal since any germ
not contained in mx is invertible.

The construction given above can be applied to continuous or smooth functions on an ap-
propriate space. We can now give the general definition of a stalk of a pre-sheaf, abstracting
away from the previous example.

Definition 10.3. Let X be a topological space and let C be a category admitting filtered
colimits. Let F be a C-valued pre-sheaf on X. The stalk of a pre-sheaf, F , at a point
x ∈ X, denoted by Fx, is

Fx = lim−→
x∈U

F (U)

Remark 10.4. The stalk of a sheaf is the stalk of the underlying pre-sheaf.

If C = R-Mod, then colimits exist in C and the characterization of colimit of a directed
system allows us to unpack the definition of the stalk of a pre-sheaf. For example, let F
be a R-Mod-valued pre-sheaf on a topological space X. For each x ∈ X, the collection
of R-modules F (U), where U ranges over all open sets containing x, together with the
restriction maps, forms a direct system with the relation U ≤ V if U ⊇ V . The intersection
of two open sets containing p serves as a common upper bound. Definition 10.3 defines the
stalk of F at x as the direct limit of this system.

Remark 10.5. Let’s recall the direct limit of a directed system of R-modules. Recall that
a directed set (I,≤) is a non-empty set I with a binary relation, ≤, that is reflexive and
transitive, and where every pair of elements has a common upper bound. A direct system
of R-modules consists of a family {Mα}α∈I of R-modules indexed by a directed set I, along
with R-module homomorphisms fαβ :Mα →Mβ for α ≤ β, satisfying

fαα = IdMα , α ∈ I
fβγ ◦ fαβ = fαγ , α ≤ β ≤ γ
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The direct limit (or colimit in this case) is defined by defining an equivalence relation on∐
α∈IMα such that

mα ∼ mβ ⇐⇒ there exists some γ ∈ I such tht α, β ≤ γ and fαγ(mα) = fβγ(mβ) ∈Mγ

The direct limit of the direct system is denoted as

lim−→
α∈I

Mα =

(∐
α∈I

Mα

)
/ ∼

It is easy to check that lim−→α∈IMα is R-module. For example, addition is defined by

[mα] + [mβ] = [fαγ(mα) + fβγ(mβ)],

where γ is some upper bound for α and β. This can be checked to be well-defined because
all maps fαβ are homomorphisms. Other operations are defined in a similar manner.

Example 10.6. Let X,Y be topological space and let π : Y → X be a local homeomor-
phism. Let E be the pre-sheaf of sections. We show that for each x ∈ X, we have

Ex ≃ Ex = π−1(x)

For each x ∈ X such that x ∈ U , define

ηU : E (U)→ Ex,

s 7→ s(x)

We use the maps ηU to induce a map on the colimit:

η : Ex = lim−→
x∈U

E (U)→ Ex,

[s] 7→ s(x)

We check that η is well-defined. Let [s1], [s2] ∈ Fx such that [s1] = [s2] If s1, s2 are defined
such that s1 : U1 → E and s2 : U2 → E, then there is a neighborhood of x ∈ W ⊆ U1 ∩ U2

such that s1|W = s2|W . In particular, s1(x) = s2(x). Hence η is well-defined. We claim that
η is a bijection. First, we show that η is surjective. Because π is a local homeomorphism,
given e ∈ Ex = π−1(x), we can find open neighborhoods Oe of e and Ux of x = π(e) such
that

π|Oe : Oe → Ux

is a homeomorphism. Then
(π|Oe)

−1 : Ux → Oe

is a section of π, and

η((π|Oe)
−1) = (π|Oe)

−1(x) = (π|Oe)
−1(π(e)) = e.

Hence η is surjective. Now we prove that η is injective. Suppose η[s1] = η[s2]. Then
s1(x) = s2(x). By using properties of local homeomorphisms, we can check that there is an
open neighborhood of x on which s1, s2 agree. That is, [s1] = [s2]. Thus, η is injective.

Example 10.7. Let R be the sheaf of regular functions on an affine variety. Then the
stalk Rx is the local ring OX,x.

Category theory teaches us to focus on the properties of morphisms between objects
rather than the objects themselves. Consequently, we infer the concept of the stalk of a
morphism of sheaves from the following result:
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Lemma 10.8. Let X be a topological space. Let C be a category admitting filtered colimits
and let F ,G be C-valued pre-sheaves on X. There is a functor

Sx : PreShv(X,C)→ C

called the stalkification at x functor for each x ∈ X. In particular, if there is a morphism
φ : F → G , there is an induced morphism on stalks φx : Fx → Gx for each x ∈ X.

Proof. (Sketch) The functor is defined by mapping F to its stalk Fx for each x ∈ X. If
φ : F → G is a morphism of sheaves, then the morphism φx : Fx → Gx is induced by the
universal property of colimits. It is straightforward to verify that this construction defines
a functor. □

Remark 10.9. If C = R-Mod, then the morphism φx : Fx → Gx of stalks can be described
concretely. It is the morphism φx : Fx → Gx such that φx([f ]x) = [φ(f)]x. Let’s check that
this is well-defined. Suppose [f ]x = [f ′]x such that f ∈ F (U) and f ′ ∈ F (U ′). Then there
exists an open set W ⊆ U ∩ U ′ containing x such that f |W = f ′|W . We have

F (f)|W = F (f |W ) = F (f ′|W ) = F (f ′)|W
Hence [F (f)]x = [F (f ′)]x. It is easy to check that Fx is a morphism in C.

Sheaves are an important tool for keeping track of locally defined data. Therefore, we
expect that many properties of sheaves can be checked at the level of stalks. We discuss
some properties of sheaves that can be determined by looking at the corresponding stalks.
Here is a sample proposition when C = R−Mod.

Proposition 10.10. Let X be a topological space and F be a sheaf of R-modules on X.

(1) (Sections are determined by stalks) For U ∈ Open(X), the natural map

h : F (U)→
∏
x∈U

Fx

is a monomorphism. Equivalently, the natural map

h : F (U)→
∏
x∈U

Fx

is injective. That is, if f, g ∈ F (U) then f = g if and only if fx = gx for all x ∈ U .
(2) (Morphisms are determined by stalks) Let φ,ψ : F → G be a morphism of

sheaves such that φx = ψx for each x ∈ X. Then φ = ψ.

Proof. The proof is given below:

(1) The forward direction is trivial. Conversely, assume that fx = gx for each x ∈ U .
For a fixed x0 ∈ U , fx0 = gx0 if and only if there exists a neighborhood x0 ∈ Ux0 ⊆ U
such that

f |Ux0
= g|Ux0

.

If we take all such neighborhoods Ux for all x ∈ U , we get an open cover for
U = ∪x∈UUx, and by the definition of sheaves,

F (U)→
∏
x∈U

F (Ux)

is injective. Hence, f = g.
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(2) Consider the following diagram:

F (U) G (U)

∏
x∈U Fx

∏
x∈U Gx

The top map is either φ(U) or ψ(U) and the bottom map is the corresponding
induced map on stalks at each p. Since the diagram commutes by assumption, the
following diagram commutes:

F (U) G (U)
∏
x∈x Gx

φ(U)

ψ(U)

Since the second map is a monomorphism by (1), we have φ(U) = ψ(U) for each
open set U . Hence, φ = ψ.

This completes the proof. □

Remark 10.11. Proposition 10.10 is false for general pre-sheaves. Let X = {∗1, ∗2} with
the discrete topology. Let F be a pre-sheaf of abelian groups defined as follows:

F ({∗1, ∗2}) = Z, F ({∗1}) = Z2, F ({∗2}) = Z2, F (∅) = 0,

with the obvious homomorphisms Z→ 0 and Z→ Z2. Note that F∗1 ,F∗2
∼= Z2 × Z2.

(1) Let U = X. Note that the map

Z = F (U)→
∏
x∈U

Fx
∼= Z4

2

is clearly not injective. Hence, a section is not necessarily determined by stalks for
a general pre-sheaf.

(2) Let φ be a morphism of F . Let φ be such that φ(X) : Z → Z is the identity
map. The consistency conditions for φ to be a sheaf morphism implies that the
maps Z2 → Z2 are identity maps. However, if φ(X) is changed to φ′(X) : Z → Z
which is multiplication by n map where n is the odd, consistency conditions for φ′

to be a sheaf morphism implies that the maps Z2,→ Z2 are identity maps. In either
case, the induced maps on stalks are identity. This shows that morphisms are not
necessarily determined by stalks for a general pre-sheaf.

11. Structure Sheaf

We now look at an example of a sheaf, called the structure sheaf, that is important
in algebraic geometry. We have endowed the spectrum of a ring with the structure of
a topological space. For a commutative ring R, to view SpecR as a geometric space,
we equip it with a sheaf analogous to the sheaf of regular functions on an affine variety
(Example 9.4). The structure sheaf on SpecR is constructed by considering the “regular
fnunctions” associated with the ring R.
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11.1. Sheaves Defined on a Basis. We first need to look at the concept of sheaves defined
on a basis. Let C = CRing. We can also take C = Ab, R-Mod. Sheaves are defined with
Open(X) as the domain category for a topological space X. Given a basis B for X, we can
attempt to track the sheaf data at the level of open sets in B.

Definition 11.1. Let X be a topological space with basis B. A CRing-valued B-pre-sheaf
is a contravariant functor:

F : OpenB(X)→ CRing

Here OpenB(X) is the category of open sets of X in B. A CRing-valued sheaf B pre-sheaf is
a CRing-sheaf if the following diagram is an equalizer for every open cover U = {Ui}i∈I ⊆
B of any open set U ∈ B:

F (U)
∏
i F (Ui)

∏
V⊆Ui∩UjV ∈B F (V )

Lemma 11.2. Let X be a topological space with basis B, and let F be a CRing-valued
B-sheaf. We have

F (U) ∼= lim←−
V⊆U
V ∈B

F (V ).

Proof. An element of lim←−F (V ) defines a section on each base open set V , and these sec-
tions are compatible with restriction. Thus, by the gluing axiom this collection corresponds
to a unique section over U , since the base open sets V ∈ B clearly form a cover of U . This
gives a unique map

lim←−
V⊆U
V ∈B

F (V ) −→ F (U)

such that for every base open set W ⊆ U , the following diagram commutes:

lim←−V⊆U
V ∈B

F (V ) F (U)

F (W )

Since any object with morphisms to each F (V ) factors uniquely through the limit, this
implies that F (U) satisfies the same universal property. This concludes the proof. □

The primary motivation for introducing B-sheaves is encapsulated in the following propo-
sition, which states that, as anticipated, any B-presheaf can be extended to a presheaf on
X by approximating open sets in X through open sets in the basis B.

Proposition 11.3. Let X be a topological space with basis B. Every CRing-valued B-sheaf
F extends to a CRing-valued sheaf F on X, which is unique up to isomorphism.

The idea of proof of Proposition 11.3 is to define F (U) as the set of all possible gluings
of sections of F over open sets in B that cover U . More precisely, a section s ∈ F (U) is
given by a collection of sections

si ∈ F (Vi)

for some open cover {Vi}i∈I of U with Vi ∈ B, such that

si|W = sj |W
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for any W ∈ B with W ⊆ Vi ∩ Vj . The only drawback is that each section depends on the

choice of a covering {Vi}. To define the group F (U) in a manner that is independent of
any particular cover, we consider the largest cover of U , consisting of all open sets V ∈ B
such that V ⊆ U .

Proof. Let U ⊆ X be any open subset, and let BU ⊆ B denote the collection of open sets
in B contained in U . Using Lemma 11.2, define

F̄ (U) := lim←−
V ∈BU

An element of F (U) is therefore given by a compatible family of sections sV ∈ F (V ). Note
that we have

F (U) :=

 (sV ) ∈
∏

V ∈BU

F (V ) : sV |W = sW , for all W ⊆ V with W,V ∈ BU

 .

Note that if U1 ⊆ U , then BU1 ⊆ BU , and the projection maps induce restriction maps

F (U)→ F (U1).

This makes F into a pre-sheaf. The sheaf axioms are easily verified. Moreover, if U is an
open set in B, there is a canonical isomorphism

F (U)
∼−→ F (U),

sending a section t ∈ F (U) to the collection (sV )V ∈BU
where sV = t|V . The inverse is

given by the projection onto the “U -th component”. □

11.2. Structure Sheaf. To motivate the definition of the structure sheaf, let us recall
the case when X ⊆ An is an affine variety, and A(X) denotes its coordinate ring. For a
distinguished open subset D(f) ⊆ X, we have

OX(D(f)) = A(X)f ,

where A(X)f is the localization of A(X) at the element f (Proposition 4.4). Moreover, if
D(g) ⊆ D(f), the corresponding restriction map

OX(D(f))→ OX(D(g))

is given by the canonical localization map A(X)f → A(X)g. In fact, the sheaf OX is
completely determined by the values OX(D(f)) = Af for each f ∈ A. Indeed, we have

OX(U) =
⋂

D(f)⊆U

OX(D(f)).

Motivated by this discussion, we can define a pre-sheaf on a basis of open subsets of the
spectrum of an arbitrary ring R.

Definition 11.4. Let R be a ring, and let B denote the basis of distinguished open subsets
of SpecR. The B-structured sheaf is contravariant functor

S : OpenB(SpecR) −→ CRing

Uf 7−→ Rf

We now show that S is a B-sheaf. The result is proved using an algebraic lemma, which
is also stated below.
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Proposition 11.5. Let R be a ring, and let B denote the basis of distinguished open subsets
of SpecR.

(1) Let g1, . . . , gr ∈ R be elements generating the unit ideal. For any R-module M , the
following sequence is exact:

0→M
α−→

r⊕
i=1

Mgi
β−→

r⊕
i,j=1

Mgigj ,

where the maps α and β are defined by

α(s) = (s/1, . . . , s/1),

β(s1, . . . , sr)i,j = si/1− sj/1.

(2) S is a CRing-valued B-sheaf.

Proof. The proof is given below:

(1)
(2) Let Uf is a distinguished open subset of SpecR. First assume that {Ufi}ri=1 is a

finite open cover of Uf . Applying (1) to the ring Rf and the module M = Rf , we
obtain an exact sequence:

0 −→ Rf
α−→

r⊕
i=1

Rfi
β−→

r⊕
i,j=1

Rfifj .

The sheaf axioms are verified by the exactness of the sequence constructed above.
Now assume that {Ufi}i∈I is a general open cover of Uf . Since Uf is compact, there
exists a finite subset J ⊆ I such that {Ufj}j∈J forms a finite subcover of Uf . We
check the two sheaf axioms:
(a) If s ∈ Rf maps to zero in Rfi for every i ∈ I, then in particular, it maps to

zero in Rfi for each i ∈ J . The argument above for the finite cover case implies
that s = 0 in Rf .

(b) Let si ∈ Rfi be compatible elements for i ∈ I. That is

si/1 = sj/1

Rfifj for all i, j ∈ I. The argument above provides a unique element s ∈ Rf
such that si = s/1 ∈ Rfi for all i ∈ J . We show that this element s also induces
the sections si for all i ∈ I. Fix an index α ∈ I. Consider the finite covering

{Ufi}i∈J∪{α}
of Uf . The argument above implies there exists an element s′ ∈ Rf such that
s′/1 = si in Rfi for all i ∈ J and s′/1 = sα in Rfα . Since both s and s′ restrict
to the same elements in Rfi for all i ∈ J , uniqueness implies that s = s′ in Rf .
Hence, s/1 = sα in Rfα as well.

Hence, S is a B-sheaf.

This completes the proof. □

The discussion above shows that the assignment Uf 7→ Rf define a sheaf on the basis of
distinguished open sets of SpecR. We now extend this to a sheaf on the entire space, giving
the precise definition of the structure sheaf.
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Definition 11.6. Let R be a ring. The structure sheaf, OSpecR , is the unique sheaf
extending the B-sheaf, S . In particular, OSpecR is defined as:

OSpec(R)(U) =

{
(si) ∈

∏
i∈I

Rfi

∣∣∣∣∣ si = sj in Rfifj for all i, j ∈ I

}
,

Remark 11.7. Proposition 11.3 implies that Definition 11.6 is well-defined.

Proposition 11.8. Let R be a ring.

(1) OSpecR(SpecR) ∼= R.
(2) For any p ∈ SpecR, we have

OSpecA,p
∼= Rp.

Proof. We defined OSpecR so that OSpecR(Uf ) ∼= Rf for every f ∈ R. Taking f = 1, we
obtain

OSpecR(SpecR) ∼= R

For (2), since the distinguished open sets form a basis for the topology, the stalk of OSpecR

at a point p ∈ SpecR can be computed as the direct limit

OSpecR,p
∼= lim−→

p∈Uf

OSpecR(Uf ) ∼= lim−→
f /∈p

Rf .

We claim that the natural map lim−→f /∈pRf → Rp induced by the maps Rf → Rp for f /∈ p is

an isomorphism.

(a) Any element a/s ∈ Rp, with s ∈ pc, lies in the image of the canonical map Rs → Rp.
Hence, the map is surjective.

(b) Suppose an element a/fn ∈ Rf maps to zero in Rp. This means there exists s ∈ pc

such that as = 0 in R. Then a/fn = 0 in Rg, where g = sf . Hence, the element
vanishes in the direct limit. Hence, the map is injective.

Hence, we have
OSpecR,p

∼= lim−→
f /∈p

Rf ∼= Rp

This completes the proof. □

Example 11.9. The structure sheaf carries essential algebraic information beyond the
underlying topological space. Let K be an algebraically closed field. Then SpecK consists
of a single point, (0) (Example 5.4). However, we have

OSpec(K)(K) ∼= K
Hence, the structure sheaf distinguishes non-isomorphic algebraically closed fields whose
spectra are homeomorphic as single points.

12. Gluing Sheaves

A central theme in modern geometry and topology is the principle of constructing global
objects from compatible local data. In the theory of sheaves, this idea is made precise
through the process of gluing. The ability to glue sheaves is fundamental not only to the
construction of sheaves themselves but also to many deeper results, such as the formulation
of sheaf cohomology and the development of schemes in algebraic geometry. We discuss
how to glue morphisms of sheaves and sheaves.
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Remark 12.1. We work with sheaves taking values in a concrete category, such as CRing
(the category of abelian groups) since sheaves defining schemes discussed later on take values
in concrete categories. Arguments below can be adapted to apply to C-valued sheaves, where
C is a locally small category, by using the Yoneda embedding to reduce to the case of set-
valued sheaves.

Gluing morphisms of sheaves is the easiest of case.

Proposition 12.2. Let X be a topological space and {Ui}i∈I is an open cover of X. Let
F and G be sheaves on X taking values in a concrete category such as CRing. Suppose we
are given, for each i ∈ I, a morphism of sheaves φi : F |Ui → G |Ui such that for all i, j ∈ I,
the restrictions agree on overlaps:

φi|Ui∩Uj = φj |Ui∩Uj .

Then there exists a unique morphism of sheaves φ : F → G satisfying

φ|Ui = φi

for all i ∈ I.

Proof. Let V ⊆ X be an open set, and let s ∈ F (V ). We define φ(s) ∈ G (V ). The open
sets Vi := Ui ∩ V form an open cover of V . For each i ∈ I, consider the section

φi(s|Vi) ∈ G (Vi).

We have
φi(s)|Vi∩Vj = φi(s|Vi∩Vj ) = φj(s|Vi∩Vj ) = φj(s)|Vi∩Vj ,

which shows that the sections φi(s|Vi) agree on the overlaps Vi ∩ Vj . By the gluing axiom
for the G , there exists a unique section φ(s) ∈ G (V ) such that φ(s)|Vi = φi(s|Vi) for all
i ∈ I. We define φ(s) to be this glued section. By construction, φ|Ui = φi for all i ∈ I. For
uniqueness, suppose φ and ψ are two morphisms of sheaves such that φ|Ui = ψ|Ui for all
i ∈ I. Let V ⊆ X be an open set, and let s ∈ F (V ). Then for each i ∈ I, we have

φ(s)|Vi = φi(s|Vi) = ψi(s|Vi) = ψ(s)|Vi .
Thus, φ(s) and ψ(s) agree on the open cover {Vi} of V . By the identity axioms for the
sheaf G , it follows that φ(s) = ψ(s). Hence, φ = ψ as morphisms of sheaves. □

We now discuss how to glue sheaves. Suppose we are given a sheaf Fi on each open set
Ui of an open cover {Ui}i∈I of a topological space X. The goal is to construct a global sheaf
F on X such that F |Ui

∼= Fi for each i ∈ I. A necessary condition for such a sheaf F to
exist is that the local sheaves Fi must be isomorphic on the overlaps Ui ∩ Uj . Moreover,
by providing a collection of isomorphisms on the intersections together with compatibility
on triple overlaps (i.e., satisfying the cocycle condition), this gluing data becomes not only
necessary but also sufficient to construct such a global sheaf.

Proposition 12.3 (Hartshorne II.1.22). Let X be a topological space with open cover
{Ui}i∈I . Suppose we are given:

(1) for each i ∈ I, a sheaf Fi on Ui taking values in a concrete category such as CRing,
(2) for each pair i, j ∈ I, an isomorphism of sheaves

τji : Fi|Uij

∼−→ Fj |Uij ,

where Uij := Ui ∩ Uj,
satisfying the following cocycle conditions:
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(a) τii = IdFi
for all i ∈ I,

(b) τji = τ−1
ij for all i, j ∈ I,

(c) τki = τkj ◦ τji over Uijk := Ui ∩ Uj ∩ Uk for all i, j, k ∈ I.
Then there exists a sheaf F on X taking values in a concrete category such as CRing,
together with isomorphisms

νi : F |Ui

∼−→ Fi,

such that for all i, j ∈ I, the following compatibility condition holds over Uij:

νj = τji ◦ νi|Uij .

Moreover, the sheaf F , together with the isomorphisms {νi}, is unique up to unique iso-
morphism.

Proof. A section of F over an open set V ⊆ X is given by a collection of compatible
sections si ∈ Fi(Vi), where Vi := Ui ∩ V , satisfying the condition that for all i, j ∈ I, the
identifications

τji(si|Vij ) = sj |Vij in Fj(Vij)

hold, where Vij := Uij ∩ V . In particular, we have:

F (V ) :=

{
(si)i∈I ∈

∏
i∈I

Fi(Vi)

∣∣∣∣∣ τji(si|Vij ) = sj |Vij for all i, j ∈ I

}
.

The restriction maps are defined componentwise: if W ⊆ V , then the restriction map is

F (V )→ F (W )

(si)i∈I 7→ (si|Wi)i∈I .

This is well-defined because the transition isomorphisms τji are compatible with restrictions;
that is,

τji(si|Wij ) = sj |Wij whenever τji(si|Vij ) = sj |Vij .
We next check the two sheaf axioms.

(1) (Identity Axiom) Let s = (si) ∈ F (V ) be a section, and suppose that s|Vα = 0 for
every open set Vα in an open cover {Vα}α∈Λ of V . Then, for each i and α, we have

si|Ui∩Vα = 0 in Fi(Ui ∩ Vα).
Since the sets {Ui ∩ Vα}α∈Λ form an open cover of Ui ∩ V , and each Fi is a sheaf
on Ui, it follows that

si = 0 in Fi(Ui ∩ V ).

As this holds for every i, we conclude that

s = 0 in F (V ).

(2) (Gluing Axiom) Let {sα}, with sα ∈ F (Vα), be a compatible family of sections over
an open cover {Vα}α∈Λ of V . Compatibility means that for all α, β,

sα|Vαβ
= sβ|Vαβ

,

where Vαβ := Vα ∩ Vβ. Fixing i ∈ I, this induces a compatible family of sections

sα,i := sα|Ui∩Vα ∈ Fi(Ui ∩ Vα).
Since each Fi is a sheaf on Ui, the sections {sα,i}α glue uniquely to a section

si ∈ Fi(Ui ∩ V ).
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By construction, the compatibility condition on the transition maps holds:

τij(sj)|Uij∩V = si|Uij∩V ,

since this equality holds on each Vα ∩ Uij and the sα are compatible. Hence, the
tuple s = (si) defines an element of F (V ), which by construction restricts to sα on
each Vα.

We now construct isomorphisms

νi : F |Ui

∼−→ Fi.

To avoid getting confused by the indices, we fix the index 0 ∈ I. Suppose V ⊆ U0 is an
open set. The projection map

ν0,V : F (V )→ F0(V ),

(si)i∈I 7→ s0.

induces a well-defined sheaf morphism

ν0 : F |U0 → F0.

We claim that ν0 is an isomorphism. Note that we have νβ ◦ τβ0 ◦ ν0. Indeed for V ⊆ U0β

we have

τβ0
(
ν0(s)

)
= τβ0(s0) = sβ = νβ(s).

We first show that ν0 is injective. If s = (si) ∈
∏
i∈I Fi(V ) is a section such that s0 = 0 ∈

F0(V ), then for all i ∈ I we have

si = si|V ∩U0 = τi0(s0) = 0,

and hence s = 0. We now show that ν0 is surjective. Take any section σ ∈ F0(V ) over
some V ⊆ U0 and define

s :=
(
τi0(σ|V ∩Ui∩U0)

)
i∈I .

Note that for every i, j ∈ I, we have

τji
(
τi0(σ|V ∩Ui∩Uj∩U0)

)
= τj0(σ|V ∩Ui∩Uj∩U0).

Therefore, s defines an element of F (V ). As τ00(σ|V ∩U0∩U0) = σ by the first gluing condi-
tion, we also have ν0(s) = σ. This shows that ν0 is an isomorphism. The proof of uniqueness
is skipped. □

13. Pushword & Pullback Functors

Our discussion of sheaves has so far been confined to a single topological space X. How-
ever, it becomes essential to understand how sheaves defined on different topological spaces
relate to one another in scheme theory. We now discuss the pushforward and pullback
functors that allow us to related sheaves defined on different topological spaces

Remark 13.1. We assume all sheaves are sheaves of R-modules.
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13.1. Pushforward Functor. Given a continuous map between topological spaces, we can
ask how the sheaves on X and Y are related. We discuss the pushforward construction in
this section. This notion will play a crucial role in the definition of (locally) ringed spaces in
Section 14, which combines the notion of the spectrum of a ring with its associated structure
sheaf.

Definition 13.2. Let X,Y ∈ Top and f : X → Y be a continuous map. If F is a sheaf on
X the pushforward sheaf, f∗F , on Y defined by

(f∗F )(U) := F (f−1(U)),

for every open set U ⊆ Y and the restriction maps

(f∗F )(U)→ (f∗F )(V )

are defined to be those induced by the restriction maps of F , for open sets V ⊆ U ⊆ Y .

Let’s check that the direct image pre-sheaf is in fact a pre-sheaf. We begin with a simple
observation. Since f is continuous, the preimage of any open set in Y is still an open set in
X, and the operation of taking preimages preserves inclusions. Consequently, f naturally
induces a functor f−1 from Open(Y ) to Open(X). Moreover, by reversing the arrows in
both categories, f−1 retains its functoriality. Now, let F be a pre-sheaf of R-modules over
X, and consider the following diagram:

f∗(G ) : Openop(Y )
f−1

−−→ Openop(X)
A−→ R-Mod.

This gives the desired contravariant functor. Hence, the direct image pre-sheaf if indeed a
pre-sheaf. If F is a sheaf, it is clear that the direct image pre-seaf is in fact a sheaf.

Example 13.3. The following is a basic list of computations of the pushforward.

(1) Let i : {x} ↪→ X be the inclusion of a closed point x into X, and let A be an abelian
group, regarded as a constant sheaf on {x}. The pushforward sheaf is the skyscraper
sheaf (Example 9.8):

i∗(A)(U) =

{
A if x ∈ U,
0 otherwise.

(2) Let i : U ↪→ X be the inclusion of an open set U into X. If F is a sheaf on U , we
have

i∗(F )(V ) = F (V ∩ U)

(3) Let π : X ↪→ {∗} be the map from X to a one point topological space. If F is a
sheaf on X, we have

π∗(F )(∗) = F (X) = Γ(F )

Hence, π∗ computes the global sections.

We can now define a functor:

f∗ : PreShv(X,R-Mod)→ PreShv(Y,R-Mod)
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Let’s verify that f∗ is indeed a functor. If φ : F → F ′ is a morphism of pre-sheaves on X,
we have the following commutative diagrams for open sets U ⊆ V ⊆ Y :

f∗F (U) = F (f−1(U)) F (f−1(V )) = f∗F (V )

f∗F ′(U) = F ′(f−1(U)) F ′(f−1(V )) = f∗F ′(V )

φf−1(U) φf−1(V )

Thus, φf−1(−) defines a pre-sheaf morphism φf−1(−) : f∗F → f∗F ′. Hence, f∗ is indeed a
functor called the direct image functor. f∗ also restricts to a functor

f∗|Shv : Shv(X,R-Mod)→ Shv(Y,R-Mod)

This illustrates the functorial nature of sheaf-theoretic constructions—something we will
explore further in later sections.

13.2. Inverse Image Functor. We now discuss the inverse image functor. Let f : X → Y
be a continuous map between topological spaces, and let G be a sheaf on Y . Our goal is
to determine whether it is possible to induce a pre-sheaf on X via f . Since the continuous
image of an open set in X need not be open in Y , there is no immediate way to assign an
R-module to each open set of X simply by composing with f . Nevertheless, we can emulate
the construction of stalks by taking a colimit over all open neighborhoods in Y containing
the image of a given open set in X.

Definition 13.4. Let X,Y be topological spaces and let f : X → Y be a continuous
function. Let G be a pre-sheaf on Y . The inverse image pre-sheaf f∗G on X is defined
by the assignment

(f∗G )(U) = lim−→
W⊇f(U)

G (W )

where U ⊆ X is any open set, and the colimit is taken over all open sets W ⊆ Y containing
f(U).

Let’s verify that f∗G is a pre-sheaf. Notice that if U ⊆ V ⊆ X are open sets of X, then
containing f(V ) will automatically contain f(U). Thus, we obtain a natural restriction map
from the universal property of the direct limit:

lim−→
W⊇f(V )

G (W )→ lim−→
W⊇f(U)

G (W ).

Hence, f∗G is a pre-sheaf.

Example 13.5. Let Y be a topological space and let G is a pre-sheaf of R-modules on Y .
We compute the inverse image pre-sheaf in some basic cases:

(1) Let W ⊆ Y be an open set and let f : W → Y be the inclusion map. Let U ⊆ W
be an open set. Note that U = U ′ ∩W where U ′ ⊆ Y is an open set. We have

(f∗G )(U) = lim−→
V⊇U ′∩W

G (V ) = G (U ′ ∩W )

Hence, f∗G = G |W
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(2) Let X = {∗} and let f : {∗} → Y be a continuous function such that f(∗) = y.
Note that we have

(f∗G )(∅) = lim−→
y∈∅

G (W ) = ∅,

(f∗G )(W ) = lim−→
y∈W

G (W ) = Gy.

Hence f∗G = Gy. Therefore stalks are just a special kind of inverse image pre-sheaf.

We can now define a functor:

f∗ : PreShv(Y,R-Mod)→ PreShv(X,R-Mod).

Let’s verify that f∗ is indeed a functor. If φ : G → G ′ is a morphism of pre-sheaves on Y ,
m the universal property of colimits yields the following diagram:

G (W ) G ′(W )

lim−→W⊇f(U)
G (W ) lim−→W⊇f(U)

G ′(W )

φ(W )

The functorality axioms are not hard to verify. Hence, f∗ is indeed a functor.

Example 13.6. The inverse image pre-sheaf may not be a sheaf. Take X = {∗1, ∗2} with
the discrete topology and let Y = {∗}. Let f : X → Y be the constant map. Let G ({∗}) = A
be a non-trivial abelian group. Clearly, G is a sheaf of abelian groups on Y . We have

(f∗G )(U) = lim−→
V⊇f(U)

G (V ) = A

for each open set U ⊆ X. Hence, f∗G = A is the constant pre-sheaf which is not a sheaf.

Definition 13.7. Let X,Y be topological spaces and let f : X → Y be a continuous func-
tion. Let G be a sheaf of R-modules on Y . The inverse image sheaf is the sheafification
of the inverse image pre-sheaf.

Remark 13.8. Note that we have a functor

Shv(Y,R-Mod)
f∗−→ PreShv(X,R-Mod)

Sh−→ Shv(X,R-Mod)

By a abuse of notation, we continue to denote this functor by f∗.

We have introduced two induced sheaf functors f∗ and f∗ for any continuous map f :
X → Y . Since these two functors operate forward and backward between Shv(X,R-Mod)
and Shv(Y,R-Mod), one might conjecture that they form an adjoint pair. This is indeed
the case.

Proposition 13.9. (Hartshorne II.1.18) The inverse image functor is left adjoint to the
direct image functor. That is, for sheaves F and G on X and Y respectively, there is a
bijection

HomShv(X,R-Mod)(f
∗G ,F ) = HomShv(Y,R-Mod)(G , f∗F )
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Proof. We can exploit the adjunction between sheafification and forgetful functors to
assume WLOG that f∗ is a functor between pre-sheaf categories. In other word, it suffices
to prove there is a bijection of sets

HomPreShv(X,R-Mod)(f
∗G ,F ) = HomShv(Y,R-Mod)(G , f∗F ).

Let φ ∈ HomShv(Y,R-Mod)(G , f∗F ). Fix any open set U ⊆ X and let W ⊆ Y be an open set

such that f(U) ⊆W . We have a morphism φ(W ) : G (W )→ F (f−1(W )). By the universal
property of colimits, we have the following commutative diagram:

G (W ) F (f−1(W ))

lim−→W⊇f(U)
G (W ) F (U)

φ(W )

β1(φ)(U)

It is not hard to see that β1(φ)(U) is compatible with restriction maps in pre-sheaves over
X. Therefore, β1(φ) is a pre-sheaf morphism from f∗F to G . This defines the map β1:

β1 : HomShv(Y,R-Mod)(G , f∗F )→ HomPreShv(X,R-Mod)(f
∗G ,F )

If we take the direct image of f∗G , we have the following equality

f∗f
∗G (W ) = f∗G (f−1(W )) = G (W )

Thus, we have the identity f∗f
∗ = IdShv(Y ). This implies that for any pre-sheaf morphism

ψ : f∗G → F , we can obtain a sheaf morphism

f∗(ψ) : G = f∗f
∗G = B → f∗F

This defines the map β2:

β2 : HomPreShv(X,R-Mod)(f
∗G ,F )→ HomShv(Y,R-Mod)(G , f∗F )

We claim that that β1 and β2 are inverses to each other. It is easy to see that β2 ◦β1(φ) = φ
by observing the following commutative diagram:

G (W ) F (f−1(W ))

lim−→W⊇f(U)
G (W )

φ(W )

(β1(φ))(f−1(W ))

On the other hand, β1 ◦ β2(ψ) = ψ by the uniqueness from the universal property of the
colimit. Diagram omitted. This completes the proof. □
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Part 3. Schemes

The theory of schemes is the foundation of modern algebraic geometry. It provides a
unified framework that generalizes classical varieties and allows one to rigorously handle
objects defined by arbitrary commutative rings.

14. Locally Ringed Spaces

Geometrically, a spectrum of a ring with its structure sheaf encodes both the topological
space of prime ideals of R and the ring of functions defined locally on this space. This
naturally leads to a more general framework: a category of geometric spaces equipped with
a sheaf of rings. To capture this structure abstractly, we introduce the category of locally
ringed spaces, which formalizes the essential features of affine schemes and provides the
appropriate categorical setting in which schemes naturally reside. We first define a ringed
space.

Definition 14.1. A ringed space is a pair (X,FX), where X is a topological space and
FX is a CRing-valued sheaf on X. A morphism of ringed spaces from (X,FX) to (Y,GY )
is a pair (f, f#), where f : X → Y is a continuous map and

f# : GY → f∗FX

is a morphism of sheaves of rings on Y .

Remark 14.2. The adjunction between the pushforward and pullback functors (Proposi-
tion 13.9) shows that the notion of a morphism of ringed spaces could equivalently have
been defined in terms of the pullback of sheaves of commutative rings rather than pushfor-
wards of sheaves of commutative rings. This perspective highlights the fundamental role of
the adjunction.

Remark 14.3. The definition of morphisms of ringed spaces given in Definition 14.1 is
inspired by the classical setting of affine varieties, where morphisms are continuous maps
compatible with the pullback of regular functions. In particular, if X,Y are morphisms of
affine varieties defined over an algebraically closed field, a morphism of affine varieties

f : X → Y

is precisely a continuous map such that the pullback defines a ring homomorphism

RY (U)→ RX(f
−1(U)),

where RX,Y are the sheaf of regular functions on X,Y respectively and U ⊆ Y is an open
set (Definition 4.7). In other words, we have a morphism of sheaves RY → f∗RX .

In a ringed space (X,FX), it is natural to ask how to evaluate a section at a point. Given
an open set U ⊆ X, a section f ∈ FX(U), and a point x ∈ U , the germ fx ∈ FX,x captures
the local behavior of f near x, but does not in itself define evaluation unless the stalks
carry additional structure. In typical examples—such as the structure sheaf on SpecR or
the sheaf of smooth functions on a manifold—the stalks are local rings. Each stalk FX,x has
a unique maximal ideal mx consisting of germs vanishing at x, and evaluation corresponds
to the image of fx in the residue field FX,x/mx. This motivates the notion of a locally
ringed space, where the stalks are required to be local rings, ensuring that evaluation at
points is well-defined.
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Definition 14.4. A ringed space (X,FX) is a locally ringed space if for each point
x ∈ X, the stalk FX,x is a local ring with unique maximal ideal mx. A morphism of locally

ringed spaces (f, f#) : (X,FX) → (Y,FY ) is a morphism of ringed spaces such that the
induced map

f#x : FY,y → FX,x

maps my into mx for every x ∈ X, y ∈ Y such that f(x) = y.

Remark 14.5. We now clarify the definition of a morphism between locally ringed spaces.
Let f : X → Y be a morphism of topological spaces and suppose x ∈ X with f(x) = y.
The morphism of sheaves f# : OY → f∗OX induces, for every open subset V ⊆ Y , a ring
homomorphism

f#(V ) : OY (V )→ OX(f
−1(V )).

As V varies over all open neighborhoods of y, the preimages f−1(V ) form a cofinal system
of open neighborhoods of x. Passing to colimits, we obtain an induced map on stalks:

f#x : OY,y = lim−→
y∈V

OY (V ) −→ lim−→
x∈f−1(V )

OX(f
−1(V )) = OX,x.

Hence, any morphism of ringed spaces (f, f#) gives rise to a local map of stalks at each
point x ∈ X. In the context of locally ringed spaces, we require that this induced map

f#x : OY,y → OX,x

be a local homomorphism of local rings10.

Example 14.6. Let R be a ring. (SpecR,OSpecR) is a locally ringed space.

Remark 14.7. It can be checked that locally ringed spaces assemble into a category, denoted
LocRing. Let’s verify that the composition of morphisms of locally ringed spaces is well-
defined. Given morphisms

(f, f#) : (X,FX)→ (Y,FY ),

(g, g#) : (Y,FY )→ (Z,FZ).

we define the morphism X → Z by the composition g ◦ f on the level of topological spaces.
The associated sheaf map (g ◦ f)# is defined, for an open set U ⊆ Z, by the composition

FZ(U)
g#U−−→ FY (g

−1(U))
f#
g−1(U)−−−−−→ FX((g ◦ f)−1(U))

An isomorphism of locally ringed spaces is a morphism f : X → Y . That is, f is a
homeomorphism of topological spaces and for every open set U ⊆ Y , the map

f#U : FY (U)→ FX(f
−1(U))

is an isomorphism of rings.

10That is, if (A,mA) and (B,mB) are local rings, a ring homomorphism φ : R → S is called local if
φ−1(mB) = mA.
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15. Affine Schemes

Having introduced the spectrum of a ring and constructed the structure sheaf on this
space, we are now ready to give the formal definition of an affine scheme.

Definition 15.1. Let R be a ring. An affine scheme is a pair (SpecR,OSpecR) consisting
of the topological space SpecR together with the structure sheaf, OSpecR.

Example 15.2. Let X = SpecZ. Then the points of X are the prime ideals generated by
prime numbers, together with the zero ideal. Since Z is a principal ideal domain (PID),
every open subset of X is a distinguished open set. In particular, for the distinguished open
set Un, we have

OSpecZ(Un) = Z
[
1

n

]
.

Note that X does not have an analogue in the category of (classical) affine varieties, AffVar.

Example 15.3. (Hartshorne II.2.11) We describe the affine scheme SpecFp[x]. Since Fp[x]
is a PID, the set of prime ideals is in 1-1 correspondence with irreducible monic polynomials
in Fp[x]. Therefore,

SpecFp[x] = {(0)} ∪ {(f) | f is an irreducible monic polynomial in Fp[x]},
When f = 0, then OSpecFp[x],0 = SpecFp[x](0) ∼= SpecFp(x) and the maximal idea m0 is the
zero ideal since SpecFp(x) is a field. When f is a non-zero irreducible monic polynomial of
degree n, note that by definition,

SpecFp[x](f) = {g/h : g, h ∈ SpecFp[x] f ∤ h}
Recall that SpecFp[x](f) is a local ring since (f) is a prime ideal and that the unique
maximal ideal of SpecFp[x](f) is given by:

m(f) = {a/b : a, b ∈ SpecFp[x] f ∤ b f | a}
Here m(f) is the ideal m = (f) localized at (f).

Let AffSch be the full subcategory of LocRing consisting of locally ringed spaces isomor-
phic to the spectrum of some ring. We now come to the all-important result: the category
AffSch is equivalent to CRing opposite category of commutative rings, establishing a deep
duality between algebra and geometry.

Proposition 15.4. AffSch is equivalent to the category Ringsop.

Remark 15.5. We write AffSch ≃ CRingop.

Proof. Consider the functor:

Γ : AffSch −→ Ringsop

(SpecR,OSpecR) 7→ OSpecR(SpecR) = R

We show that Γ is fully faithful and essentially surjective. The latter follows since Proposi-
tion 11.8 implies that OSpecR(SpecR) ∼= R. We now show that Γ is fully faithful by showing
that for any R,S ∈ CRing, the map

τR,S : HomRings(R,S) −→ HomAffSch(SpecS, SpecR)

defined by Lemma 5.12 is bijective. Let φ : R → S be a ring homomorphism, and let
f : SpecS → SpecR induced map as in Lemma 5.12. We must show that f induces a



SCHEME THEORY 57

morphism on the structure sheaves in order for it to define a morphism of locally ringed
spaces. It suffices to define the morphism

f# : OSpecR → f∗(OSpecS)

on distinguished open sets. First note that

OSpecR(Uh) ∼= Rh,

OSpecR(f
−1(Uh)) ∼= Sφ(h).

There is a ring homomorphism R→ S → Sφ(g). Since the image of g is invertible in Sφ(g),
the universal property of localization gives an induced ring homomorphism Rg → Sφ(g).

This defines f# and shows that τR,S is well-defined. The candidate for the inverse map is
given by

γR,S : HomAffSch(SpecS, SpecR) −→ HomRings(R,S)

defined by taking global sections. It is clear that γR,S ◦ τR,S is the identity map. We now
show that τR,S ◦γR,S is the identity map. Suppose given a morphism of locally ringed spaces

(f, f#) : SpecS → SpecR

Taking global sections, f# induces a homomorphism of rings φ : R→ S. Given p ∈ SpecS,
we obtain a morphism of local rings on stalks, which is compatible with φ and localization,
yielding the following commutative diagram:

R S

Rf(p) Sp

φ

Since f# is a local homomorphism, it follows that φ−1(p) = f(p) 11. This shows that the
underlying map f coincides with the canonical map

SpecR
f−→ SpecS

induced by φ. It then follows that f# is also the structure sheaf morphism induced by
φ, so that the morphism (f, f#) of locally ringed spaces is indeed induced by the ring
homomorphism φ. This shows τR,S ◦ γR,S is the identity map □

Example 15.6 (Hartshorne II.2.5). Z is the initial object in CRing because any commuta-
tive ring R, there exists a unique ring homomorphism

φ : Z→ R

1 7→ 1R

Therefore, Proposition 15.4 implies that SpecZ is the final object in AffSch. It follows that
in AffSch, for any affine scheme SpecR, there exists a unique morphism

SpecR→ SpecZ.

11Suppose r /∈ f(p). Then the image of r in Rf(p) is a unit, so f#
p (r) is a unit in Sp. Hence, φ(r) /∈ p,

i.e., r /∈ φ−1(p). Conversely, assume r /∈ φ−1(p), so that φ(r) /∈ p, and thus the image of φ(r) is a unit in
Sp. Since f#

p : Rf(p) → Bp is a local homomorphism, the preimage of a unit is a unit. Therefore, the image

of r in Rf(p) is a unit, which implies r /∈ f(p). Thus, we conclude that f(p) = φ−1(p).
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We have established the category of affine schemes and demonstrated the fundamental
result:

The category of affine schemes is equivalent
to the opposite category of commutative rings.

However, this does not capture the full scope of schemes. To illustrate the limitation,
consider the analogy with complex manifolds, which are geometric spaces locally modeled
on (Cn,H ), where H denotes the sheaf of holomorphic functions. In this analogy, the
category of affine schemes corresponds to the local models (Cn,H ). Therefore, a general
scheme is a topological space equipped with a sheaf of rings that is locally isomorphic to
an affine scheme. Schemes are discussed in the next section.

16. General Schemes

A scheme is a locally ringed space that is locally isomorphic to an affine scheme. This
construction mirrors the classical notion of a smooth manifold: whereas a manifold is a
topological space locally modeled on open subsets of Rn, equipped with a sheaf of smooth
functions, a scheme is built by gluing together spectra of rings, each with a corresponding
sheaf of regular functions. This local-to-global approach allows schemes to capture both
geometric and aripropetic information in a unified framework.

Definition 16.1. A scheme is a locally ringed space (X,FX) such that every x ∈ X has
an open neighborhood x ∈ Ux such that (Ux,FX |Ux) is an affine scheme.

Example 16.2. Let R be a ring. Then (SpecR,OSpecR) is a (affine) scheme.

A morphism of schemes is defined as a morphism of the underlying locally ringed spaces.
That is, it consists of a continuous map between the underlying topological spaces together
with a morphism of structure sheaves that respects the local ring structure at each point.
This definition places the category of schemes, denoted by Sch, as a subcategory of the
category of locally ringed spaces, LocRing.

Remark 16.3. The category of affine schemes, denoted AffSch, is a full subcategory of Sch.

Remark 16.4. If f : (X,FX) → (SpecR,OSpecR) is a morphism of schemes, there is an
induced morphism of sheaves

f# : OSpecR → f∗FX ,

which on global sections induces a ring homomorphism

R ∼= Γ(SpecR,OSpecR)→ Γ(X,FX).

This yields a map

α : Hom((X,FX), (SpecR,OSpecR))→ Hom(R,Γ((X,FX))).

A generalization of Proposition 15.4 states that the map α is bijective. In particular, this
shows that SpecZ is a final object in the category Sch since Z is initial in CRing. Similarly,
Spec 0 is initial in Sch since 0 is final in CRing.
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16.1. Basic Topological Properties. We establish some basic topological properties of
schemes. The topological space underlying a scheme is not generally expected to be Haus-
dorff. Indeed, as we have seen, even an affine scheme is not Hausdorff. However, an affine
scheme is a T0-space, and since any scheme can be covered by affine open subsets, we expect
that a general scheme is also a T0-space.

Proposition 16.5. Let X be a scheme. Then X is a T0-space

Proof. e can cover X by affine open subsets. If x and y are contained in a common affine
open subset, then the T0-property follows from the fact that any affine scheme is a T0-space
(Proposition 6.4). Otherwise, there exists an affine open neighborhood of one point, say x,
which does not contain the other point y. □

We now turn to a basic property of generic points in a scheme.

Proposition 16.6. [Hartshorne II.2.9] If X is a scheme, then every non-empty irreducible
closed subset Z ⊆ X has a unique generic point, ξ.

Proof. The proof is given below:

(1) Assume first that X is an affine scheme. Since Z ⊂ X is a closed and irreducible
subset, there exists a prime ideal p ⊂ A such that Z = V (p). In particular, p ∈ Z,
and by Proposition 6.1, we have

{p} = V (p) = Z.

(2) Now assume that X is a general scheme. Let x ∈ Z ̸= ∅, and let U ⊂ X be a
non-empty affine open subset containing x. Consider the set V := U ∩Z. Then V is
a non-empty closed and irreducible subset of U . By (1), there exists a point ξ ∈ U
such that

{ξ} = V ⊆ Z,

where the closure is taken in U . Consider {ξ} in X. Observe that we can write Z
as the union of two closed subsets:

Z = {ξ} ∪ (U c ∩ Z) .

Since Z is irreducible and Z ̸= U c ∩ Z, it follows that Z = {ξ}.
(3) We now show uniqueness. Assume that there exist two distinct points ξ1,2 such that

{ξ1,2} = Z. Since X is a T0-space (Proposition 16.5), there exists an open subset
U ⊆ X such that ξ1 ∈ U and ξ2 /∈ U . However, this contradicts the assumption
that ξ1 ∈ {ξ2}, which implies that every open neighborhood of ξ1 must also contain
ξ2. Thus, ξ1 = ξ2.

This completes the proof. □

16.2. Relative Schemes. Let S be a scheme. A scheme over S is simply a scheme X
equipped with a morphism

X → S

A scheme over S is also called as S-scheme. S is also called the base scheme. If we have an
S-scheme, then the morphism X → S allow us to think of X as being defined relative to S,
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much like families of algebraic varieties or solutions to polynomial equations depending on
parameters. A morphism of schemes over S is then a commutative diagram

X Y

S

f

This allows us to define the category of schemes over a base scheme S, denoted by SchS .
Note that SchS is the slice category of Sch over S.

Example 16.7. let K be a field and let V be an affine variety, that is, the spectrum of a
finitely generated K-algebra

A(V ) = K[x1, . . . , xn]/p,

where p is a prime ideal. The inclusion K ↪→ A(V ) induces a morphism of schemes

V → SpecK.

17. Open and Closed Subschemes

We discuss open and closed subschemes. These constructions are essential for under-
standing how schemes are built from and relate to their local pieces.

17.1. Open Subschemes. Recall that an open subset of a smooth manifold naturally
inherits the structure of a manifold. We ask whether an analogous statement holds for
schemes.

Proposition 17.1. [Hartshorne II.2.1 & II.2.2] Let (X,FX) be a scheme.

(1) If (X,FX) ∼= (SpecR,OSpecR) is an affine scheme, then the locally ringed space
(Uf ,OX |Uf

) is isomorphic to (SpecRf ,OSpecRf
).

(2) Let U ⊆ X be any open subset. Then (U,FX |U ) is a scheme.

Proof. The proof is given below:

(1) Recall that we have the following bijective correspondence:

{Prime ideals of Rf} ←→ {Prime ideals of R that don’t contain f}
Hence, SpecRf ∼= Uf as sets. This correspondence extends to the level of topological
spaces. Indeed, {SpecRg}g∈R is a basis for the topology on SpecR. On the other
hand, the sets

{SpecRf ∩ SpecRg}g∈R
form a basis for the topology on SpecRf , and this is also a basis for the subspace
topology on Uf . To conclude that SpecRf ∼= Uf as locally ringed spaces, it remains
to verify that the structure sheaves agree under this identification. This follows
from the construction of the structure sheaf: the stalks at a prime ideal p in Uf
are isomorphic to Rp, and since f /∈ p, the element f is invertible in Rp. Thus,
localization at f does not affect the local behavior at such prime ideals.

(2) For each x ∈ U let x ∈ Vx be an open set such that

(Vx,FX |Vx) ∼= (SpecRx,OSpecRx).

Because x ∈ U ∩Vx is an open set in (SpecRx,OSpecRx), there exists a distinguished
open set x ∈ Uf ⊆ U ∩ Vx. By (1),

(Uf ,OX |Uf
) ∼= (SpecRf ,OSpecRf

).
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x

y

The scheme SpecK[x, y] \ {(0, 0)}

Thus (U,FX |U ) is a scheme.

This completes the proof. □

Remark 17.2. Proposition 17.1 implies that the underlying topological space of every
scheme has a base of open affine schemes

Remark 17.3. We refer to (U,OX |U ) as an open sub-scheme of X.

Example 17.4. The open set U = A1 \ V (x) is an open subscheme of the affine line
A1
k = Spec(K[x]). Note the isomorphism of schemes (Example 3.14)

U ∼= Spec(K[x, x−1]) = Spec

(
K[x, y]

(xy − 1)

)
.

Armed with the notion of an open subscheme, we are now ready to examine an example
of a scheme that is not affine. This example is geometrically well-motivated and illustrates
that the passage from affine schemes to general schemes is both natural and necessary.

Example 17.5. Let K be a field. Consider the affine scheme (SpecK[x, y],OSpecK[x,y]). Let

X = SpecK[x, y]− {(x, y)}
Note that X = Ux ∪ Uy. Hence, X is an open set of our affine scheme. Therefore,
(X,OSpecK[x,y]|X) is an open sub-scheme. We show that this sub-scheme is not an affine
scheme. We compute OSpecK[x,y]|(X). We find rational functions defined on Ux and Uy that
agree on the intersection Ux ∩ Uy = Uxy. Clearly, rational functions that have only powers
of x in the denominator and also only powers of y in the denominator must, in fact, be
polynomials. Thus, we conclude12:

OSpecK[x,y](X) ∼= K[x, y].

More precisely, we have the following sequence of rings:

0 −→ OSpecK[x,y](X)
α−→ K[x, y]x ⊕K[x, y]y

β−→ K[x, y]xy

Here α(s) =
(
s|Ux , s|Uy

)
and β(a/xn, b/ym) = a/xn − b/ym. OSpecK[x,y](X) is identified

with the kernel of β, which consists of pairs (a/xn, b/ym) such that

a

xn
=

b

ym
in K[x, y]xy.

12In other words, the removal of the origin does not introduce any new global regular functions.
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This equality implies that aym = bxn in K[x, y]. Since K[x, y] is a UFD, we conclude that

a = cxn and b = cym

for some c ∈ K[x, y]. Hence, any element in the kernel is of the form (c, c) with c ∈ K[x, y].
Hence, OSpecK[x,y](X) ∼= K[x, y]. If X were affine, then

SpecK[x, y]− {(x, y)} ∼= X ∼= OX(X) ∼= SpecK[x, y]

However, X is not homeomorphic to SpecK[x, y]. Every proper ideal in an affine scheme
has a nonempty vanishing locus, yet the ideal (x, y) has empty vanishing locus in X.

We now study an important class of morphisms of schemes, namely, open immersions.
Open immersions correspond to the inclusion of open subschemes, and as such, reflect the
local nature of the scheme structure.

Definition 17.6. Let (X,FX), (Y,FY ) be schemes. An open immersion is a morphism
of schemes f : (X,FX) → (Y,FY ) such that f induces an isomorphism of locally ringed

spaces ρ : (X,FX)
∼−→ (U,FY |U ), where U ⊆ Y is an open subset. That is, f factors as the

composition

(X,FX) (U,FY |U )

(Y,FY )

ρ
∼

f

Remark 17.7. Note that if X is a subset of Y , then the image under the open immersion,
which can be identified with (X,FX), is an open subscheme of (Y,FY ). The difference
between open immersions and open subschemes is a bit confusing, and not too important:
at the level of sets, open subschemes are subsets, while open immersions are bijections onto
subsets.

Proposition 17.8. The following is a basic list of properties of open immersions.

(1) A composition of open immersions is an open immersion.
(2) If f : X → Y is an open immersion, then for any open subset V of Y , the restricted

morphism f−1(V )→ V is an open immersion.
(3) If f : X → Y is a morphism of schemes such that if there is an open cover {Vi} of

Y for which each restricted morphism f−1(Vi) → Vi is an open immersion, then f
is in an open immersion.

Proof. (1) is clear since an open subscheme of an open subscheme is an open subscheme
(of the original scheme). (2) follows using the fact that a non-empty intersection of open
subschemes (U,FY |U ) and (V,FY |V ) is an open subscheme (U∩V,FY |U∩V ). (3) follows be-
cause an arbitrary union of open subschemes is an open subscheme, and that isomorphisms
of schemes follow the propety given by assumption. □

Remark 17.9. f : X → Y is an open immersion. If Y is compact, then X need not be
compact. Indeed, consider

f :
⋃
n≥1

Uxn ↪→ Spec(K[x1, x2, . . . ])

Clearly, f is an open immersion since it is an isomorphism onto the open subscheme de-
termined by

⋃
n≥1D(xn). Spec(K[x1, x2, . . . ]) is compact, but

⋃
n≥1D(xn) is not compact.
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Additionally, if f : X → Y is a morphism of schemes such that if there is an open cover
{Vi} of X for which each restricted morphism Vi → f(Vi) is an open immersion, then f
need not be in an open immersion. Consider:

f : SpecK[x]
∐

SpecK[y] ↪→ SpecK[z]

be defined by the obvious inclusion map on each component 13. Clearly, f is an open
immersion when restricted to SpecK[x] or SpecK[y]. However, f is not an open immersion
itself since it is not even an injective map of the underlying sets.

17.2. Closed Subschemes. Intuitively, we expect a closed subscheme of a scheme X to be
a scheme Z together with a morphism Z ↪→ X that identifies Z with a closed subset of X,
endowed with a scheme structure compatible with that of X. However, a given closed subset
may admit multiple distinct scheme structures. This fact introduces additional subtlety in
the definition of a closed subscheme, in contrast to the relatively straightforward case of
open subschemes. The prototypical example we aim to formalize as a closed subscheme is
given by closed subsets of SpecR for some ring R. Let R be a ring and let a be an ideal
of R. If a is an ideal of R, then the ring homomorphism R → R/a induces a morphism of
schemes

f : SpecR/a→ SpecR

Since the R → R/a is surjective, the map f is a homeomorphism onto the closed subset
V (a) of SpecR, and the map of structure sheaves

OSpecR → f∗OSpecR/a

is surjective as we now show.

Lemma 17.10. [HartshornII.2.18(c)] Let φ : R → S be a surjective ring homomorphism.
If Y = SpecS and X = SpecR, then f : Y → X is a homeomorphism of Y onto a closed
subset and the morphism

f# : OX → f∗OY

is surjective.

Proof. We have S ∼= R/ kerφ which implies that

SpecS ∼= Spec(R/ kerφ) = V (kerφ),

Since we already know that the induced map f is continuous and its image is the closed
subset V (kerφ), it follows that f is a homeomorphism onto its image, which is a closed
subset of SpecR. It suffices to show that f# is surjective on stalks14. Let q ∈ SpecS, and
consider the corresponding prime ideal φ−1(q) ∈ SpecR. Then we have the identifications

OSpecR,φ−1(q)
∼= Rφ−1(q),

OSpecS,q
∼= Sq.

Since φ : R → S is surjective, the induced map on localizations Rφ−1(q) → Sq is also

surjective. It follows that the morphism of sheaves f# is surjective. □

13Disjoint union of schemes is a coproduct in the category of schemes so f is indeed well-defined.
14This statement is proved in other notes, which discuss further details on sheaves.
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Remark 17.11. Let Y = SpecS and X = SpecR. We also have a converse to Lemma 17.10.
That is, if f : Y → X is a morphism that is a homeomorphism onto a closed subset of X,
and the induced morphism of sheaves

f# : OX → f∗OY

is surjective, then f is a closed immersion. This is [Har13, Exercise II.2.18(d)].

The discussion above motivates the following definition:

Definition 17.12. Let (X,FX) and (Z,FZ) be schemes. A morphism ι : Z → X is called
a closed immersion if there exists an open cover {Ui}i∈I of subschemes of X such that
for each i ∈ I:

(1) the preimage ι−1(Ui) is affine subscheme, and
(2) the induced ring homomorphism

ι# : FX(Ui)→ FZ(ι
−1(Ui))

is surjective.

We say that Z is a closed subscheme of X.

Concretely, the schemes X and Z can be covered by affine open subsets Ui = Spec(Ri),
such that ι−1(Ui) = Spec(Si) for each i. The induced ring homomorphism Ri → Si is sur-
jective, which implies that Si ∼= Ri/ai for some ideal ai ⊆ Ri. Consequently, the restriction
ι−1(Ui)→ Ui corresponds to the morphism of affine schemes

Spec(Ri/ai)→ SpecRi.

Remark 17.13. A composition of closed immersions is a closed immersion. This is clear.
Moreover, if f : X → Y is a morphism of schemes such that if there is an open cover {Vi}
of Y for which each restricted morphism f−1(Vi)→ Vi is a closed immersion, then f is in a
closed immersion. (1) in Definition 17.12 can be checked easily. On the induced morphism
of sheaves, we have:

(fi)∗(FZ

∣∣
f−1(Ui)

) = (f∗FZ)
∣∣
Ui

Hence f∗ is surjective if and only if (fi)∗ is surjective for all i.

18. Gluing Schemes

We will encounter a variety of constructions that demonstrate how to glue schemes and
morphisms of schemes. These are essential techniques that enable us to build schemes
and morphisms from local data, following a bottom-up approach. We begin by discussing
how to glue morphisms of schemes when given morphisms defined on an open cover of the
underlying topological space of a scheme.

Proposition 18.1. Let X and Y be schemes, and let B be a basis for the topology on X.
Suppose we are given a family of morphisms

{fU : U → Y }U∈B,

such that for all V,U ∈ B with V ⊆ U , the restriction satisfies

fU |V = fV .

Then there exists a unique morphism of schemes φ : X → Y such that for every U ∈ B,
the restriction of φ to U agrees with φU , i.e.,

f |U = fU .
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Proof. Define a map f : X → Y by setting f(x) := fU (x), where U ∈ B is any open
neighborhood of x. The assumption fU |V = fV for V ⊆ U ensures this is well-defined.
Since each fU is continuous and B is a basis, it follows that f is continuous. We now define
a morphism of sheaves

f# : FY → f∗FX .

Let W ⊆ Y be an open set. For any basic open set U ∈ B such that U ⊆ f−1(W ), we have
a morphism

f#U (W ) : FY (W ) −→ FX |U
(
f−1
U (W )

)
= FX

(
f−1(W ) ∩ U

)
= FX(U).

If V ⊆ U , we have the following commutative diagram:

FY (W ) FX(U)

FX(V )

f#U (W )

f#V (W )

resU,V

which is induced on sheaves by the relation

fV = fU |V = fU ◦ iV ,

where iV : V ↪→ U is the inclusion. For any element s ∈ FY (W ), the family of sections{
f#U (W )(s) ∈ FX(U)

}
U∈B, U⊆f−1(W )

defines a unique element of FX(f
−1(W )). It is clear that this definition is in fact a homo-

morphism. □

Corollary 18.2. Let X and Y be schemes, and let B be a base for the topology on X.
Suppose we have a family of open subsets {UW }W∈B covering Y such that

UV ⊆ UW whenever V ⊆W in B.

Assume there is a family of morphisms of schemes

fW :W → UW , for each W ∈ B,

satisfying the following compatibility conditions if V ∈ B is contained in WL

(1) f−1
W (UV ) = V ,

(2) fW |UV = fV .

Then there exists a unique morphism of schemes f : X → Y such that

f |W = fW for all W ∈ B.

Proof. For any W ∈ B, let iW : UW ↪→ Y denote the inclusion morphism. The family of
morphisms

gW := iW ◦ fW :W → Y

satisfies the hypotheses of Proposition 18.1. □

Remark 18.3. A similar argument as in Proposition 18.1 shows that if X and Y are
schemes, and {Ui}i∈I is an open cover of X by open subschemes, then a compatible family of
morphisms fi : Ui → Y can be uniquely glued to obtain a morphism of schemes f : X → Y .
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We now turn to the central construction: the gluing of schemes. The overarching idea is
as follows. Suppose we are given a family of schemes {Xi}i∈I , possibly infinite, which we
intend to assemble into a single scheme X. To understand this construction on the level
of topological spaces, observe that to incorporate each Xi into X as a subspace, a natural
starting point is the disjoint union

⊔
iXi. This construction includes each Xi as an open

subset, but as a disjoint union, the images of different Xi remain separate. In general,
however, we desire the images of distinct schemes Xi and Xj to intersect in a meaningful
way within X. Therefore, to achieve a genuine gluing, it is necessary to impose additional
data describing the local identifications. Specifically, for each pair (i, j), we select open
subschemes Uij ⊆ Xi that play the role of the intersection Xi ∩Xj inside X. These open
subsets will serve to identify parts of Xi and Xj compatibly, providing the local structure
needed to glue the family {Xi} into a scheme X.

Proposition 18.4. (Hartshorne II.2.12) Let {Xi}i∈I be a possibly infinite. family of scheme.
For each pair of indices i, j ∈ I, suppose we are given an open subscheme Uij ⊆ Xi. Assume
further that for each i, j ∈ I, we are given an isomorphism of schemes

φij : Uij
∼−→ Uji

satisfying the following conditions:

(1) For each i, φii = IdXii.
(2) For each i, j, φji = φ−1

ij ;

(3) For each i, j, and k, φij(Uij ∩ Uik) = Uji ∩ Ujk,
(4) φik = φjk ◦ φij on Uij ∩ Uik

There is a scheme X, together with morphisms ψi : Xi → X for each i, such that:

(1) ψi is an isomorphism of Xi onto an open subscheme of X.
(2) The ψi(Xi)’s cover X.
(3) ψi(Uij) = ψi(Ui) ∩ ψj(Xj).
(4) ψi|Uij = ψj |Uji ◦ φij

Proof. We begin by constructing a topological space, which we then equip with a sheaf
of commutative rings. Let Y denote the disjoint union of the topological spaces underlying
the schemes Xi. Define an equivalence relation on Y by declaring:

x ∼ y ⇐⇒ φij(x) = y

whenever x ∈ Uij ⊆ Xi and y ∈ Uji ⊆ Xj , with φij : Uij → Uji an isomorphism of schemes.
Let X = Y/ ∼ be the quotient topological space, and let π : Y → X be the natural
projection. A subset U ⊆ X is declared open if and only if π−1(U) is open in Y . Since Y
is the disjoint union of the Xi, this is equivalent to the condition that π−1(U) ∩Xi is open
in Xi for all i. In particular, for each i, the set π(Xi) ⊆ X is open, because

π−1(π(Xi)) ∩Xj = Uji

for all j. It follows that the composition of the inclusion Xi ↪→ Y with the projection π
defines a continuous map ψi : Xi → X, which is a homeomorphism onto its image. Denote
the open subset ψi(Xi) ⊆ X byWi. Then the sets {Wi} form an open cover of X. Moreover,
the compatibility condition ψi = ψj ◦ φij holds on Uij , and we observe that

ψi(Uij) =Wi ∩Wj .
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Now define a sheaf of commutative rings Fi on Wi by pushforward along ψi:

Fi = ψi,∗FXi ,

that is, for any open subset U ⊆Wi, we set

Fi(U) = FXi(ψ
−1
i (U)).

For any open set V ⊆ Xj contained in Uji, the isomorphism of schemes φij induces an
isomorphism of structure sheaves:

φ#V
ji : FXj (V )→ FXi(φ

−1
ij (V )).

Observe that for any open set U ⊆Wi ∩Wj , we have ψ−1
j (U) ⊆ Uji, and moreover,

φ−1
ij (ψ−1

j (U)) = (ψj ◦ φij)−1(U) = ψ−1
i (U).

Hence, for such U , the map φ#
ji yields an isomorphism

φ
#,ψ−1

j (U)

ji : FXj (ψ
−1
j (U))→ FXi(ψ

−1
i (U)),

which induces an isomorphism of sheaves

σji : Fj |Wi∩Wj → Fi|Wi∩Wj .

The collection {σij} satisfies the cocycle conditions: for each i, we have σii = id, since

φ#
ii is the identity. Moreover, for any triple i, j, k, the following cocycle condition holds on

Wi ∩Wj ∩Wk:
σik = σjk ◦ σij .

That is, for any open subset U ⊆Wi ∩Wj ∩Wk, the following diagram commutes:

Fi(U) Fj(U)

Fk(U)

σij

σik
σjk

Therefore, the family of sheaves {Fi} satisfies the gluing conditions. By the sheaf-gluing
theorem, there exists a unique sheaf of rings FX on X, together with isomorphisms

ψ#
i : FX |Wi

∼−→ Fi

such that on each overlap Wi ∩Wj , the transition condition

ψ#
j = σij ◦ ψ#

i

is satisfied. Thus, (X,FX) is a locally ringed space. Since each ψi : Xi → X is an open
immersion, and since eachXi is a scheme, it follows that (X,FX) is a scheme as well, covered
by the open subschemes ψi(Xi) ∼= Xi. Moreover, for any j, the intersection ψi(Xi)∩ψj(Xj)
is equal to ψi(Uij), and the gluing isomorphisms satisfy ψi = ψj ◦ φij on Uij , completing
the construction. □

Example 18.5. (Affine line with two origins) Let K be an algebraically closed field. Con-
sider the schemes

X1 = SpecK[s],

X2 = SpecK[t].
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Define the open subschemes U12 ⊆ X1 and U21 ⊆ X2 by U12 = Us and U21 = Ut, respectively.
Let φ12 : U12 → U21 be the isomorphism of schemes induced by the ring isomorphism

K[t, t−1]
∼−→ K[s, s−1]

which sends t 7→ s. By Proposition 18.4, this data determines a scheme obtained by gluing
X1 and X2 along U12

∼= U21. The resulting scheme is commonly referred to as the affine
line with two origins.

A1
x

0x

A1
y

0y

Glued along A1 \ {0}

The affine line with two origins: two copies of A1 glued along the complement
of the origin.

Let us now discuss an example of a scheme that retains more geometric information than
a classical affine algebraic set. This illustrates the power of the scheme concept.

19. Reduced, Integral and Noetherian Schemes

Although the notion of a scheme is extremely general and flexible, this generality comes
at a cost: various pathologies may arise in the absence of additional structure. To obtain
schemes that more closely resemble classical geometric objects, or that exhibit desirable
behavior under common constructions, it is often useful to restrict attention to schemes
satisfying certain structural conditions. We introduce several important classes of schemes
defined by properties of their rings of sections. In particular, we consider reduced, integral,
and Noetherian schemes.

19.1. Reduced Schemes. Consider an element of a ring R that vanishes at every point
of SpecR; that is, an element contained in every prime ideal of R. One might initially
expect such an element to be zero; however, this need not be the case. The condition of
lying in all prime ideals is precisely equivalent to belonging to the nilradical of the ring,
which may be nonzero15. In other words, thinking of elements of R as functions on SpecR,
the zero function need not be the only function that vanishes everywhere on SpecR. This
observation naturally motivates the following definition.

Definition 19.1. Let (X,FX) be a scheme. We say that X is a reduced scheme if for
every open subset U ⊆ X, the ring FX(U) has no non-zero nilpotent elements; that is,
FX(U) is a reduced ring.

Remark 19.2. Note that reduced schemes eliminate the problem mentioned at the beginning
of this section. Indeed, if (X,FX) is a reduced scheme f, g ∈ FX(U) are such that f = g ∈
Fx for each x ∈ U then f = g.

Proposition 19.3. (Hartshorne II.2.3) Let (X,FX) be a scheme. (X,FX) is reduced if
and only if the stalk FX,x is a reduced ring for all x ∈ X.

15Geometrically, this means that a function vanishes at every point of the spectrum of a ring if and only
if some power of it is zero.
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Proof. Assume that (X,FX) is a reduced scheme. For each point x ∈ X, the stalk is
given by

FX,x = lim−→
x∈U

FX(U),

where the limit is taken over all open neighborhoods U of x. Since each FX(U) is a reduced
ring by assumption, and the colimit of reduced rings is again reduced, it follows that FX,x

is a reduced ring. Conversely, assume that FX,x is a reduced ring for all x ∈ X.

(1) Suppose that X is an affine scheme, (X,FX) ∼= (SpecR,OSpecR). Then OSpecR,p
∼=

Rp is a reduced ring for all p ∈ SpecR. This implies that R is a reduced ring16.
(2) For a general scheme (X,FX), we can cover X by an open affine cover {Uα}α, where

each Uα is an open subset isomorphic to SpecRα for some ring Rα. By (1), each
Uα is a reduced affine scheme. Let U ⊆ X be any open subset. Since the collection
{Uα} covers X, the family {Uα∩U}α forms an open cover of U . Suppose r ∈ FX(U)
is nilpotent. Then for each α, the restriction of r to FX(Uα ∩ U) is also nilpotent.
Since FX(Uα ∩ U) is a subring of FX(Uα), and each FX(Uα) is reduced, it follows
that the restriction of r to FX(Uα ∩ U) must be zero. By the sheaf property, this
implies that r = 0 in FX(U). Hence, (X,FX) is a reduced scheme.

This completes the proof. □

Corollary 19.4. A ring R is a reduced ring if and only if Spec R is reduced.

Proof. This follows from Proposition 19.3. □

Example 19.5. Let K be a field. The following is a basic list of examples of reduced and
non-reduced schemes:

(1) Since K is a reduced ring, SpecK[x1, . . . , xn] is a reduced scheme.
(2) SpecK[x]/(x2) is a non-reduced scheme. This is because K[x]/(x2) is not a reduced

ring: the element x is nonzero, but satisfies x2 = 0 in K[x]/(x2).

Remark 19.6. The equations x = 0 and x2 = 0 define the same affine algebraic set in A1.
Indeed, they both correspond to the single point 0. However, as schemes, the schemes

X := Spec
K[x]

(x)
and Y := Spec

K[x]

(x2)

are different. While topologically they are identical, consisting of only one point, the space
of global sections of X is isomorphic to K, whereas the space of global sections of Y is a
two-dimensional K-algebra. This illustrates how schemes retain information that is lost in
the classical affine algebraic geometry.

What if a scheme is not reduced? To any scheme X, one can associate a reduced scheme
Xred, which has the same underlying topological space as X, but is equipped with a mor-
phism of schemes

Xred → X.

We call Xred the reduced scheme associated with X. For example, if X = SpecR is affine,
then

Xred := Spec(R/N (R)),

16This follows from a commutative algebra fact that R is reduced if and only if Rp is reduced for all
p ∈ SpecR.
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where N (R) denotes the nilradical of R. The natural projection homomorphism

R→ R/N (R)

induces the corresponding morphism of schemes Xred → X. More generally, we have the
following result:

Proposition 19.7. (Hartshorne II.2.3) Let (X,FX) be a scheme. Let FX,red be the sheaf
associated to the presheaf U 7→ FX(U)red. Then (X,FX,red) is a scheme, and there is a
morphism of schemes r : (X,FX,red)→ (X,F ), which is a homeomorphism on the underly-
ing topological spaces. Moreover, (X,FX,red) satisfies the following universal property: for
any morphism f : Y → X of schemes with Y reduced, there exists a unique morphism

θ : Y → Xred

such that the following diagram commutes:

Y Xred

X
f

θ

r

Remark 19.8. The scheme (X,FX,red) constructed in Proposition 19.7 is the reduced
scheme associated to X.

Proof. Let B denote the base for the topology of X consisting of all open affine schemes.
Let FX,red be the sheaf associated to the B-sheaf

Uα = SpecRα 7→ Rα/N (Rα),

Then (X,FX,red) is a scheme. Indeed, it suffices to observe that Spec(Rα/N (Rα)) is
naturally homeomorphic to Spec(Rα) for any ring Rα. Moreover, the family of morphisms
defined on each open affine subset of X by the projection

Rα → Rα/N (Rα)

satisfies Corollary 18.2, and therefore gives rise to a morphism of schemes

r : (Xred,FX,red)→ (X,FX),

as required. Given any morphism f : Y → X, and for each open affine subset U ⊆ X, we
have an induced homomorphism

f#U : FX(U)→ FY (f
−1(U)),

whose kernel contains the nilradical of FX(U) since Y is reduced. Hence, there exists a
unique morphism

θ#U : FX,red(U)→ FY (f
−1(U))

such that the following diagram commutes:

FX(U)

FX,red(U) FY (f
−1(U))

f#U
r#U

θ#U

These maps define a unique morphism of sheaves θ# : FX,red → f∗FY and hence a unique
morphism of schemes θ : Y → Xred as required. □
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19.2. Integral Schemes. We have seen that reduced schemes eliminate the pathological
behavior caused by nilpotent elements. However, another natural condition we may wish to
impose is that the scheme be “irreducible” in a global sense. An integral scheme is one that
is both reduced and irreducible. This condition ensures that the structure sheaf behaves
like the function field of an affine variety.

Definition 19.9. Let (X,F ) be a scheme. We say that X is an integral scheme if for
every open subset U ⊆ X, the ring FX(U) is an integral domain.

Proposition 19.10. Let (X,F ) be a scheme. Then (X,F ) is an integral scheme if and
only if it is both reduced and irreducible.

Proof. An integral scheme is necessarily reduced, since integral domains contain no nonzero
nilpotent elements. Moreover, if X is not irreducible, then there exist disjoint nonempty
open subsets U1, U2 ⊆ X such that X = U1 ∪ U2. In this case, by the sheaf property, we
have

FX(X) = FX(U1 ∪ U2) = FX(U1)×FX(U2),

which is not an integral domain. Hence, an integral scheme must be both reduced and
irreducible. Conversely, assume that X is both irreducible and reduced. Let U ⊆ X be an
affine open subset, so that U ∼= SpecR for some ring R. Since X is irreducible, U = SpecR
is irreducible as a topological space (Proposition 6.15). This implies that the nilradical of R
is a prime ideal (Corollary 6.6). On the other hand, since X is reduced the nilradical of R
is trivial; that is, it is the zero ideal. Combining these two facts, we see that the zero ideal
is prime, which means R is an integral domain. Therefore, FX(U) is an integral domain,
where U is an open set corresponding to an affine scheme. Since the property of being an
integral domain is local and we have verified it for an arbitrary affine open subset U ⊆ X,
it follows that X is an integral scheme. The argument is similar to the analogous argument
given in Proposition 19.3. □

Corollary 19.11. Let R be a ring. Then SpecR is an integral if and only if R is an integral
domain.

Proof. If R is an integral domain, then SpecR is irreducible by Corollary 6.6, and reduced
by Corollary 19.4. Conversely, if SpecR is both irreducible and reduced, then by the
definition of an integral scheme and the identification OSpecR(SpecR) ∼= R, it follows that
R is an integral domain. □

Proposition 16.6 implies that an integral scheme, X, has a unique generic point ξ, which
is characterized by the property that X = {ξ}. We now that the local ring FX,ξ of the
generic point ξ of an integral scheme X is a field. Indeed, FX,ξ is defined as the direct limit

FX,ξ = lim−→
U⊆X

FX(U) = lim−→
U⊆X
U affine

FX(U).

If fξ ∈ FX,ξ, then fξ is the equivalence class of a pair (U, f), where U is an open affine subset
and f ∈ FX(U). Since FX(U) is an integral domain, f defines a non-empty distinguished
open subset Uf ⊆ U . Now,

OX(Uf ) = FX(U)f ,

and hence the pair
(
Uf , f

−1
)
represents the element f−1

ξ ∈ FX,ξ.

Proposition 19.12. Let X be an integral scheme with generic point ξ.



72 JUNAID AFTAB

(1) (Hartshorne II.3.6) Let U = SpecR be any open affine subset of X containing ξ.
Then the restriction homomorphism

FX(U)→ FX,ξ

induces an isomorphism

Frac(R) ∼= FX,ξ.

(2) By identifying FX(U) and FX,x as subrings of FX,ξ, we have

FX(U) =
⋂
x∈U

FX,x.

Proof. The proof is given below:

(1) The point ξ is also the generic point of U , and FX,ξ = FU,ξ. Observe that ξ
corresponds to the zero ideal.

(2) WLOG we may assume that U is affine, say U = SpecR. Let γ ∈ FracR be
contained in all the localizations Rp for every p ∈ SpecR. Let

I = {a ∈ R | aγ ∈ R}

Then, recalling the definition of localization, for every p, there exists some a ∈ I \p.
This implies that I is not contained in any prime ideal, and therefore I = R. In
particular, 1 ∈ I, so γ ∈ R.

This completes the proof. □

Definition 19.13. Let (X,F ) be an integral scheme with generic point ξ. The field FX,ξ

by K(X). We call K(X) the field of rational functions (or the function field of X) and
an element of K(X) is called a rational function on X.

Remark 19.14. We say that f ∈ K(X) is regular at x ∈ X if f ∈ OX,x. Proposition 19.12
affirms that a rational function which is regular at every point of an open subset U ⊆ X is
contained in FX(U).

Example 19.15. If K is algebraically closed, then SpecK[x1, · · · , xn] is an integral affine
scheme. Its generic point corresponds to the zero ideal, and its field of rational functions is
K(x1, · · · , xn). A rational function is thus given by a quotient of two polynomials, and it
is regular on the whole space if and only if it is given by a single polynomial.

19.3. Noetherian Schemes. In many situations, it is useful to impose finiteness conditions
on schemes to ensure manageable behavior both algebraically and topologically. One such
condition comes from the notion of Noetherian rings. A Noetherian scheme is a scheme that
is locally built from Noetherian rings and satisfies a finiteness condition on its topology.
These schemes form a broad and important class that includes most examples of interest in
algebraic geometry.

Definition 19.16. Let X be a scheme.

(1) X is called a locally Noetherian scheme if it admits an open affine cover {SpecRi}i∈I
such that each Ri is a Noetherian ring.

(2) X is called a Noetherian scheme if it is locally Noetherian and quasicompact;
equivalently, if it admits a finite open affine cover {SpecRi}ni=1 with each Ri a
Noetherian ring.
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In the definition of a locally Noetherian scheme, we do not require every open affine
subset of X to be the spectrum of a Noetherian ring. Thus, while it is immediate from the
definition that the spectrum of a Noetherian ring is a Noetherian scheme, the converse is
less obvious. Establishing this converse amounts to proving that Noetherian-ness is a local
property of schemes.

Proposition 19.17. A scheme X is locally Noetherian if and only if for every open affine
subset U = SpecR, R is a Noetherian ring. In particular, an affine scheme X = SpecR is
a Noetherian scheme if and only if the ring R is a Noetherian ring.

Proof. Skipped. Details can be found in [Har13]. □
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Part 4. Properties of Schemes

We now introduce various properties of schemes. We first discuss the affine communica-
tion lemma, which allows us to determine when certain properties are local for schemes. We
then discuss fiber products of schemes, which provide a natural categorical framework for
many constructions in algebraic geometry. We will then introduce introduce various types
of morphisms of schemes. The number of such properties can become quite large—and, at
times, quite intricate or even frustrating to track. To aid in navigating this growing list,
the following table summarizes some key classes of morphisms discussed below and their
interpretations.

Morphism Type Interpretation

Quasi-compact Preimages of compact opens are compact
Finite type Locally modeled by finitely generated algebras over the base
Separated Analog of the Hausdorff condition in topology
Proper Analog of compactness condition in topology
Affine Preimages of affine opens are affine
Finite Affine and of Finite Type

20. Affine Communication Lemma

We discuss the notion of properties that can be verified affine-locally, a concept we
have already encountered. For instance, in Section 19, we stated that Noetherian-ness is
a local property: a scheme is locally Noetherian if and only if every open affine subset is
the spectrum of a Noetherian ring. The Affine Communication Lemma (Proposition 20.2)
generalizes this observation, allowing us to prove arbitrary properties of schemes, morphisms
of schemes, etc., by verifying the property on an open affine cover and then extending it to
every open affine subset.

Remark 20.1. We also proved certain properties of schemes—such as being reduced or
integral—by establishing them on an open cover of affine schemes and then extending the
results to arbitrary open subsets of the scheme. This observation is also in the spirit of
Proposition 20.2: one proves a property for open affine subschemes that cover a scheme and
then extends the property to arbitrary open subsets.

Proposition 20.2. (Affine Communication Lemma) Let X be a scheme. Suppose P is a
‘property’ that is satisfied by an open cover U of X by affine schemes of X. Assume that
P satisfies the following conditions

(1) P preserved by restriction: if SpecR ↪→ X has property P, then for all f ∈ R,

SpecRf ↪→ SpecR

has property P as well.
(2) P is preserved by finite gluing: if R = (f1, . . . , fn) and SpecRfi ↪→ X has property

P for all i, then SpecR ↪→ X has property P as well.

Then every open affine subscheme of X satisfies P.

Before proving Proposition 20.2, we briefly explain how it is used in the theory of schemes:
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(1) Properties of Schemes: Let P be a property of affine schemes that satisfies
conditions (1) and (2) of Proposition 20.2. Then we may extend P to a property of
arbitrary schemes by declaring that a scheme X satisfies P if and only if there exists
an open affine cover {Ui} of X such that each Ui satisfies P. By Proposition 20.2, it
then follows that every open affine subscheme of X satisfies P. Any such property
P is referred to as a local property of schemes.

(2) Properties of Morphisms (Local on Target): Let P be a property of morphisms
from an arbitrary scheme to an affine scheme. Suppose that for each morphism
f : Y → X of schemes, P satisfies conditions (1) and (2) of Proposition 20.2 when
f is restricted to an affine scheme in the codomain. Then we can extend P to a
property of morphisms on arbitrary schemes. Any such property P is referred to
as local on the target.

(3) Properties of Morphisms (Local on Source): Let P be a property of morphisms
from an affine scheme to an arbitrary scheme. Suppose that for each morphism
f : Y → X of schemes, P satisfies conditions (1) and (2) of Proposition 20.2 when
f is restricted to an affine scheme in the domain. Then we can extend P to a
property of morphisms on arbitrary schemes. Any such property P is referred to
as local on the source.

We first prove the following lemma:

Lemma 20.3. Let (X,FX) be a scheme, and let SpecR and SpecS be affine open sub-
schemes. The intersection SpecR∩SpecS is a union of open subsets that are distinguished
open subsets of both SpecR and SpecS.

Proof. Suppose p ∈ SpecR∩SpecS. Since p is contained in basic open sets in SpecR and
SpecS, there exist f ∈ R and g ∈ S such that

p ∈ SpecSg, SpecRf ⊆ SpecR ∩ SpecS.

We now claim that SpecSg is a distinguished open subset of SpecR. Restriction defines a
morphism

S = FX(SpecS)→ FX(SpecRf ) = Rf .

Let g̃ be the image of g under this map. Then the points of SpecRf where g vanishes
coincide with the points where g̃ vanishes. Hence,

SpecSg = Spec
(
(Rf )g̃

)
= SpecRfg̃.

This completes the proof. □

Remark 20.4. One way to interpret the above argument is that a distinguished open subset
of a distinguished open subset is itself distinguished in the original scheme.

Proof. (Proposition 20.2) Suppose SpecR ⊆ X is an open affine subscheme. By assump-
tion, there exists an open cover U = {SpecSα}α of X by affine open subschemes such that
each SpecSi satisfies P. By Lemma 20.3, the intersection SpecSα ∩SpecR can be covered
by open subsets which are distinguished open subsets of SpecR (and hence of X). By
(1), each of these distinguished open sets satisfies P. Therefore, SpecR admits a cover by
distinguished open subsets SpecRf that satisfy P. Since SpecR is quasi-compact, we may
extract a finite subcover, and by (2) it follows that SpecR itself satisfies P. □
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21. Fiber Products

The fiber product of schemes is a fundamental construction that generalizes the Cartesian
product to the category of schemes over a base. It enables one to pull back schemes along
morphisms, allowing the comparison and manipulation of families of schemes in a base-
compatible way. It also allows us to unambiguously define product of affine algebraic sets
and plays a central role in defining families of schemes. In what follows, let S be a fixed
scheme. We first recall the definition of the fiber product in the context of schemes over S.

Definition 21.1. Let X,Y be schemes over S. The fiber product of X and Y , denoted as
X ×S Y , is the product in SchS . That is, if I is the small category,

•

• •
then X ×S Y , is a terminal object fitting into the diagram:

Z

X ×S Y X

Y S

f

g

Example 21.2. Since SpecZ is a final object in Sch, it follows by categorical considerations
17 that the fiber product over SpecZ coincides with the usual product:

X ×SpecZ Y = X × Y.

A priori, it is not clear that the fiber product of schemes exists. However, if it does
exist, then it is unique up to isomorphism by standard category-theoretic arguments. We
now argue that the fiber product indeed exists. As usual, our strategy is to proceed in a
bottom-up manner, by first establishing the result in the case of affine schemes.

Lemma 21.3. Let X,Y be affine S-scheme where S is an affine scheme. Then X ×S Y
exists.

Proof. Assume that

X ∼= SpecR

Y ∼= SpecS

S ∼= SpecT

Recall that the pushout in CRing is the tensor product. Since AffSch ∼= CRingOp, we can
immediately conclude by applying the Spec functor

SpecR×SpecT SpecS ∼= Spec(R⊗T S)
This completes the proof. □

Example 21.4. The following is a basic list of computations of fiber products of affine
schemes:

17If S is a final object in a category C, then for any two objects X,Y ∈ C, we have X ×S Y ∼= X × Y .
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(1) Let K be a field. Let X = Spec(K[x]) and Y = Spec(K[y]) be affine schemes over
K. We have

X ×SpecK Y ∼= Spec(K[x]⊗K K[y]) ∼= Spec(K[x, y])

(2) Let K be a field. More generally, let X = Spec(K[x1, · · · , xn]) := An and Y =
Spec(K[y1, · · · , ym]) := Am be affine schemes over K. We have

An ×SpecK Am = X × Y
∼= Spec (K[x1, . . . , xn]⊗K K[y1, . . . , ym])

∼= Spec (K[x1, . . . , xn, y1, . . . , ym])

∼= An+m.

Hence, in the case of affine varieties over a field K the fiber product agrees with
the geometric intuition: the product of affine n-space and affine m-space over K is
affine (n+m)-space over K. Thus, the fiber product construction recovers expected
geometric behavior in a categorical framework.

(3) Let K be a field.

V = Spec

(
K[x1, . . . , xn]

(f1, . . . , fm)

)
⊆ An and W = Spec

(
K[y1, . . . , yr]

(g1, . . . , gs)

)
⊆ Ar

The fiber product V ×SoecK W is the affine algebraic set in An+r cut out by the
vanishing of the polynomials f1, . . . , fm, g1, . . . , gs where the variables xi and yj are
considered to be independent. That is,

V ×SpecK W = Spec

(
K[x1, . . . , xn, y1, . . . , yr]

(f1, . . . , fm, g1, . . . , gs)

)
⊆ An+r.

(4) The fiber product over SpecZ of two nonzero affine schemes may be the zero scheme:

SpecZ/m×SpecZ SpecZ/n ∼= Spec (Z/m⊗Z Z/n) = SpecZ/(m,n).

When (m,n) = 1, we have Z/(m,n) ∼= 0, so the fiber product is the empty scheme.
However, if we instead work in the category of schemes over a field K, such issues
do not arise. Since any K-algebra contains a copy of K, the tensor product of two
nonzero K-algebras is nonzero. Consequently, the fiber product of two nonempty
schemes over K is always non-empty.

More generally, we have the following result:

Proposition 21.5. Let X,Y be schemes over a scheme X. Then X ×S Y exists and is
unique up to unique isomorphism.

Since schemes are constructed by gluing affine schemes along open subsets, the existence
of fiber products of schemes should follow from the existence of fiber products of affine
schemes over affine bases (Lemma 21.3). The gluing mechanism should then allow us to
construct fiber products of arbitrary schemes over arbitrary base schemes. The argument
will repeatedly rely on the same guiding principle: schemes glue, and morphisms of schemes
glue.

Proof. (Proposition 21.5) Uniqueness is clear.
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(1) We first argue that if X and Y are schemes over a base scheme S, and if U ⊆ X is
an open subset, then whenever the fiber product X ×S Y exists, the fiber product
U ×S Y also exists and is given by the open subset

p−1
1 (U) ⊆ X ×S Y,

where p1 : X×SY → X is the projection such that the following diagram commutes:

Z

p−1
1 (U) U

X ×S Y X

Y S

θ

g

f

p1

We verify that p−1
1 (U) satisfies the universal property of the fiber product U ×S Y .

Let Z be a scheme and suppose we are given morphisms f, g as shown in the diagram
above. The composition U ↪→ X followed by f gives a morphism Z → X compatible
with g over S. Then by the universal property of X ×S Y , there exists a unique
morphism θ : Z → X ×S Y making the diagram commute. Since f(Z) ⊆ U , the
image of θ is contained in p−1

1 (U) ⊆ X ×S Y , so θ factors uniquely through p−1
1 (U),

giving a morphism Z → p−1
1 (U). This proves that p−1

1 (U) satisfies the universal
property and thus realizes the fiber product U ×S Y .

(2) We now argue that if X and Y are schemes over a base scheme S, and if {Xj}j∈I
is an open cover of X such that for each j, the fiber product Xj ×S Y exists, then
the fiber product X ×S Y also exists. Indeed, for each pair i, j ∈ I, define

Uij := p−1
i (Xi ∩Xj) ⊆ Xi ×S Y,

where pi : Xi ×S Y → Xi is the projection. Then Uij is a fiber product for Xi ∩Xj

and Y over S, which exists by (1). By the universal property of fiber products, and
in particular their uniqueness up to unique isomorphism, for each pair i, j there is
a unique isomorphism

φij : Uij → Uji

that is compatible with all structure morphisms and projections. These isomor-
phisms satisfy the cocycle condition18 and therefore allow us to glue the {Xj ×S

18We skip the details checking that the morphisms φij satisfy the hypothesis of the theorem that allows
us to glue scheames. We refer the reader to see this link for the relevant diagram chasing details.

http://therisingsea.org/notes/hartshorne2-3.pdf
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Y }j∈J along the {Uij}i,j∈J to obtain a scheme X ×S Y , making the following dia-
gram commute:

Xji Xij

Uij Uji

Xi S Xj

Xi ×S Y Y Xj ×S Y

φij

The projection morphisms p1 and p2 are defined by gluing the projections from the
pieces Xi ×S Y . Given a scheme Z and morphisms f : Z → X, g : Z → Y , let
Zi = f−1(Xi). Then we get maps θi : Zi → Xi ×S Y , hence, by composition with
the inclusions Xi ×S Y ⊂ X ×S Y , we get maps ϕj : Zi → X ×S Y . These maps
agree on intersections Zi ∩Zj , so we can glue the morphisms to obtain a morphism
ϕ : Z → X ×S Y , compatible with the projections and f and g. Uniqueness is clear.

Xi ×S Y Xi

Zi

Y S

X ×S Y X

Z

Y S

φ

f

g

(3) We have established that the fiber product of affine schemes exists. It follows that
for any scheme X and affine schemes Y and S, the fiber product X ×S Y exists. By
symmetry, interchanging the roles of X and Y , we conclude that the fiber product
exists for any schemes X and Y over an affine base scheme S.

(4) Given arbitrary schemes X, Y , and S, let q : X → S and r : Y → S be the given
morphisms. Let {Sj} be an open affine cover of S, and define Xj = q−1(Sj) and
Yj = r−1(Sj). Then Xj ×Sj Yj exists, since the fiber product of schemes over an
affine base exists. Moreover, this same scheme serves as a fiber product for Xj and
Y over S. Indeed, given morphisms f : Z → Xj and g : Z → Y over S, the image of

Z under the composite Z
g−→ Y

r−→ S must lie in Sj , and hence the image of Z under
g lies in Yj . Thus, Xj ×S Y exists for each j. Applying the same gluing argument
again, we conclude that the fiber product X ×S Y exists.
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This completes the proof. □

Remark 21.6. If S is a fixed scheme, then in the category of schemes over S, the scheme
S itself is the final object. In this context, categorical considerations imply that

X ×S S ∼= X.

More generally, for any two S-schemes X and Y , we recover the usual product of schemes
when the base is a final object:

X ×S Y ∼= X × Y.

We now turn to discussing various applications and examples of fiber products. We
begin by introducing the notion of base change/extension. Using this concept, we proceed
to compute fiber products of affine schemes in several illustrative cases.

21.1. Base Change/Extension. Let S be a fixed scheme, which we regard as the base
scheme. If S′ is another scheme equipped with a morphism S′ → S, then for any scheme X
over S, we define the base change of X along S′ → S as the fiber product

X ′ := X ×S S′,

which is naturally a S′-scheme. For example, if S = SpecK for a field K, and S′ = SpecK′

where K′ is a field extension of K, then X ′ is the base extension of X to the larger field K′.

X ×SpecK SpecK′ X

SpecK′ SpecK

Example 21.7. Consider the R-valued points of the circle defined by the scheme

Spec
(
R[x, y]/(x2 + y2 − 1)

)
.

If we wish to instead consider the C-valued points, observe that

Spec(R[x, y]/(x2 + y2 − 1))

is a SpecR-scheme, and SpecC is a SpecR-scheme. The base extension (fiber product) is
then

Spec
(
R[x, y]/(x2 + y2 − 1)

)
×SpecR SpecC ∼= Spec

(
R[x, y]/(x2 + y2 − 1)⊗R C

)
∼= Spec

(
C[x, y]/(x2 + y2 − 1)

)
.

We now use the machinery of base extension to develop tools for computing fiber products
in practice.

(1) Suppose S is a subring of R. It is a basic algebraic fact that

R⊗S S[t] ∼= R[t].

As a consequence, we have an isomorphism of schemes:

SpecR[t] ∼= SpecR×SpecS SpecS[t].

Thus, the following diagram is a fiber product square, and SpecR[t] is the fiber
product obtained by adding extra variables:
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SpecR[t] SpecS[t]

SpecR SpecS.

(2) Suppose φ : S → R is a ring homomorphism, and let I ⊆ S be an ideal. It is a basic
algebraic fact that the extension of I to R, denoted by Ie = I ·R, satisfies

R

Ie
∼= R⊗S

S

I
.

As a consequence, there is an isomorphism of schemes

Spec

(
R

Ie

)
∼= SpecR×SpecS Spec

(
S

I

)
.

For example, we compute C⊗R C:

C⊗R C ∼= C⊗R (R[x]/(x2 + 1))

∼= (C⊗R R[x])/(x2 + 1)

∼= C[x])/(x2 + 1)

∼= C[x])/(x− i)× C[x])/(x+ i) ∼= C× C

As a result:

Spec(C×R C) ∼= SpecC
∐

SpecC

(3) Consider the base change of affine schemes by localization. Suppose ϕ : B → A is a
ring homomorphism, and let S ⊆ B be a multiplicative subset. Since ϕ(S) ⊆ A is
also multiplicative, it is an algebraic fact that

ϕ(S)−1A ∼= A⊗B S−1B.

As a consequence, we have an isomorphism of schemes:

Spec
(
ϕ(S)−1A

) ∼= SpecA×SpecB SpecS−1B.

We say that localizations is preserved by base change,

21.2. Product of Morphisms. Let f : X → Z and g : Y → H be morphisms of S-
schemes. Consider the following commutative diagram:

X ×S Y X

Z ×S Y Z

Y S

Y S

p1

p2

f×1

f

π2

π1

The front and back faces of the cube are cartesian squares denoting base change. The
morphisms f ◦ p1 and 1Y ◦ p2 form a commutative diagram with the morphisms Z → S
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and H → S. Hence, by the universal property of the fiber product Z ×S H, there exists a
unique morphism

f × 1 : X ×S Y → Z ×S H
making the above diagram commute. Similarly, consider the following diagram:

Z ×S Y Z

Z ×S H Z

Y S

H S

π1

π2

1×g

q2

q1

g

The front and back faces of the cube are cartesian squares denoting base change. The
morphisms 1Z ◦ π1 and g ◦ π2 form a commutative diagram with the morphisms Z → S
and H → S. Hence, by the universal property of the fiber product Z ×S H, there exists a
unique morphism

1× g : Z ×S Y → Z ×S H
making the above diagram commute.

X ×S Y X

Z ×S H Z

Y S

H S

p1

p2

f×g
f

q2

q1

h

Composing the two morphisms above yields the product morphism:

f × g : X ×S Y → Z ×S H.

21.3. Fibers of Morphisms. An important application of fiber products is the definition
of fibers of a morphism. Given a morphism of schemes f : X → Y and a point y ∈ Y , the
fiber of f over y is defined as the fiber product

Xy := X ×Y Spec(κ(y)),

where κ(y) = FY,y/my denotes the residue field at the point y. This construction captures
the geometric intuition of ‘the set of points inX lying over y,’ but in a way that is compatible
with the structure of schemes.

Remark 21.8. Note that X ×Y Spec(κ(y)) is well-defined because there exists a morphism
Spec(κ(y))→ Y defined as the composition of the following two morphisms:
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(1) The natural inclusion

Spec(κ(y))→ Spec(FY,y),

induced by the quotient map FY,y → FY,y/my = κ(y).
(2) The canonical map

Spec(FY,y)→ Y,

which is defined by the structure of Y as a locally ringed space. This morphism
is constructed as follows: any point y ∈ Y determines a local ring FY,y, and for
every affine open neighborhood U = SpecR ⊆ Y containing y, there is a natural
ring homomorphism A→ FY,y given by localization. These homomorphisms define
a compatible system of morphisms of schemes

Spec(FY,y)→ SpecR ↪→ Y,

and by gluing, this yields a morphism Spec(FY,y)→ Y . Intuitively, this map sends
each prime ideal p ⊆ FY,y to the unique point of Y whose stalk maps to p under the
localization maps.

Fibers play a central role in many aspects of algebraic geometry, including the study of
how the geometry of X varies with y ∈ Y . We want to prove that this definition coincides
with the purely topological one.

Proposition 21.9. (Hartshorne II.3.10) Let X,Y be schemes. If f : X → Y is a morphism
of schemes, and y ∈ Y is a point, then the topological space underlying Xy is homeomorphic
to f−1(y) with the induced topology.

Proof. It suffices to consider the case of affine schemes. The general case then follows by
means of open affine coverings. Assume that X = SpecS and Y = SpecR. Identify the
point y ∈ Y with a prime ideal p ∈ SpecR. In this setting, the fiber product of schemes
corresponds to the following diagram of commutative rings:

R S

Frac(R/p) S ⊗R Frac(R/p)

φ

Moreover, we have the following identification of the fiber over y:

Xy := X ×Y Specκ(y)

= SpecS ×SpecR SpecRp/pRp

= Spec (S ⊗R Rp/pRp)

∼= Spec
(
S−1(S/pe)

)
,

where S = φ(R\p) is the multiplicatively closed subset of S consisting of images of elements
in R \ p, and pe denotes the extension of the ideal p in S via φ. Finally, the set-theoretic
fiber

f−1(y) = {q ∈ SpecS | φ−1(q) = p}
consists precisely of those prime ideals q ⊆ S such that q ∩ S = ∅ and pe ⊆ q. This set
corresponds exactly to

Spec
(
S−1(S/pe)

)
.

This completes the proof. □
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Example 21.10. We compute SpecZ[x]. The inclusion Z→ Z[x] induces a morphism

SpecZ[x]→ SpecZ.
To understand the prime ideals of SpecZ[x], it suffices to analyze the fibres of this morphism.
The fibre over the prime ideal ⟨0⟩ is given by

Spec (Q⊗Z Z[x]) = SpecQ[x],

which corresponds to all irreducible polynomials over Q together with the zero ideal. Sim-
ilarly, the fibre over ⟨p⟩ is

SpecFp[x],
which consists of the irreducible polynomials over Fp along with its zero ideal. (Note that
the zero ideals correspond to those in Z.)

22. Finite Type Morphisms

We discuss morphisms of schemes that exhibit finiteness properties, with a primary focus
on those of finite type. Such morphisms play a central role in algebraic geometry, as they
generalize classical notions of algebraic finiteness and provide control over the complexity
of morphisms between schemes.

22.1. Quasicompact Morphisms. Before discussing morphisms of finite type, it is impor-
tant to first understand quasicompact morphisms, as they form a foundational finiteness
condition. Many properties of finite type morphisms build upon or refine the notion of
quasicompactness.

Definition 22.1. Let X,Y be schemes. A morphism f : X → Y of schemes is quasicom-
pact if the preimage of every open affine subscheme of Y is a compact set in X.

Quasicompact morphisms are particularly tractable, as finite open coverings are generally
easier to handle in practice than infinite ones. Moreover, many schemes that arise in
geometric or arithmetic applications are quasicompact.

Lemma 22.2. Let X,Y be schemes. A morphism f : X → Y of schemes is quasicompact
if and only if the preimage of every compact open subset of Y is compact subset in X.

Proof. Suppose f is quasicompact. Then any compact open subset U ⊆ Y can be covered
by finitely many affine open subsets {Vi}ni=1. Since f is quasicompact, f−1(Vi) is compact
for each i = 1, · · · , n. Therefore, the pre-image f−1(U) =

⋃n
i=1 f

−1(Vi) is a finite union
of compact open subsets, and hence compact. The converse follows from the fact that an
affine scheme is compact. □

Proposition 22.3. The following is a list of properties of quasicompact morphims.

(1) A composition of two quasicompact morphisms is quasicompact.
(2) Any morphism from a Noetherian scheme is quasicompact.
(3) (Hartshorne II.3.2) A morphism f : X → Y is quasicompact iff there is a cover of

Y by affine open subsets {Ui}i∈I such that f−1(Ui) is a compact subset.

Proof. The proof is given below:

(1) This follows immediately from Lemma 22.2.
(2) This follows because every open subset of a Noetherian topological space is itself

compact.



SCHEME THEORY 85

(3) The forward direction is immediate. For the reverse direction, we apply the Affine
Communication Lemma (Proposition 20.2).
(a) Suppose that

f−1(SpecS) =
n⋃
i=1

SpecRi

is a finite affine open cover, so that f−1(SpecS) is compact. Then for any
s ∈ S, we have

f−1(SpecSs) =

n⋃
i=1

Spec(Ri)ri ,

where each ri ∈ Ri is the image of s under the induced morphism S → Ri cor-
responding to the restriction of f to SpecRi. Since localization preserves com-
pactness of affine open sets, each Spec(Ri)ri is compact, and so f−1(SpecSs)
is compact as a finite union of compact open sets.

(b) Suppose

SpecS =
n⋃
j=1

SpecSsj

is an open affine cover, and that each preimage f−1(SpecSsj ) is quasicompact.
Then

f−1(SpecS) =
n⋃
j=1

f−1(SpecSsj )

is a finite union of compact spaces, and hence itself a compact set.
Both conditions of the Affine Communication Lemma (Proposition 20.2) are satis-
fied, and the claim follows.

This completes the proof. □

22.2. Finite Type Morphisms. Recall that an affine algebraic set is the spectrum of a
finitely generated K-algebra. To describe this situation for more general schemes we make
a general definition concerning morphisms of schemes.

Definition 22.4. Let X,Y be schemes and f : X → Y be a morphism of schemes.

(1) f is of locally finite type if there exists an open covering {Ui}i of Y by affine
schemes Ui = SpecSi such that the preimage Vij := f−1(Ui) can be covered by open
affine subsets {SpecRij}i,j with the property that the induced ring homomorphisms
Si → Rij make each Rij a finitely generated Si-algebra.

(2) f is of finite type if, in addition, each f−1(Ui) can be covered by finitely many
such affine subsets Vij .

Remark 22.5. In both cases, the associated morphism of rings is said to be finite, and the
target ring is a finitely generated algebra over the source ring.

Observe that the property of the morphism f is defined in terms of an open affine covering
of the target scheme Y . This reflects a common paradigm: a property P, initially formulated
for morphisms between affine schemes, is required to hold only locally on Y , that is, on an
open affine cover. The equivalence between verifying the property P globally on Y and
verifying it on such a covering is guaranteed by the Affine Communication Lemma (see
Proposition 20.2).
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Proposition 22.6. (Hartshorne II.3.1) Let X,Y be schemes. A morphism f : X → Y is
locally of finite type if and only if for every open affine subset V = SpecS ⊆ Y and every
open affine subset U = SpecR ⊆ f−1(V ), R is a finitely generated S-algebra.

Proof. The reverse implication is straightforward. For the forward direction, we apply the
Affine Communication Lemma (Proposition 20.2). Fix an affine open subset V = SpecS ⊆
Y . Without loss of generality, assume Y = SpecS.

(1) Assume that

f−1(SpecS) =
⋃
i∈I

SpecRi,

where each Ri is a finitely generated S-algebra. That is, for each i, there exist
elements rij1 , . . . , rijl ∈ Ri such that

Ri = S[rij1 , . . . , rijl ].

Equivalently, each Ri is a finitely generated algebra over S via a ring homomorphism
φi : S → Ri. Fix an element s ∈ S. Since each Ri is a unital S-algebra, we have

φi(s) = s · 1Ri ∈ Ri.

For any s ∈ S, note that

f−1(SpecSs) =
⋃
i∈I

Spec(Ri)φi(s).

Moreover, for any prime ideal p ⊆ S such that s /∈ p, the fiber f−1(p) corresponds
to a prime ideal q ⊆ Ri for some i, and hence φi(s) /∈ q. This shows that the
localization (Ri)φi(s) is defined and is a finitely generated algebra over Ss.

(2) Assume that there exist elements s1, . . . , sn ∈ S such that the ideal generated by
these elements is the unit ideal, i.e. (s1, . . . , sn) = S, and for each j,

f−1(SpecSsj ) =
⋃
i∈I

SpecRi,

where each Ri is a finitely generated Ssj -algebra. Since

SpecS =

n⋃
j=1

Usj =
n⋃
j=1

SpecSsj ,

we have

f−1(SpecS) =

n⋃
j=1

f−1(SpecSsj ) =

n⋃
j=1

⋃
i∈I

SpecRi.

Because each Ri is finitely generated over Ssj and the sj ’s generate the unit ideal in
S, it follows by a standard argument (clearing denominators) that each Ri is finitely
generated over S.

Since both conditions hold, the Affine Communication Lemma (Proposition 20.2) implies
the desired result. □

We discuss some properties of (locally) finite type morphisms below.

Proposition 22.7. (Hartshorne II.3.3) The following is a is a list of properties of (locally)
finite type morphisms.
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(1) A morphism f : X → Y is of finite type if and only if it is locally of finite type and
quasi-compact.

(2) A composition of two morphisms (locally) of finite type is (locally) of finite type.
(3) An open immersion is locally of finite type.
(4) A quasicompact open immersion is of finite type.
(5) An open immersion into a locally Noetherian scheme is of finite type.
(6) If f : X → Y is (locally) of finite type, and Y is locally Noetherian, then X is

(locally) Noetherian.
(7) Let f : X → Y and g : Y → Z be morphisms of schemes. If g ◦ f is of finite type

and f is quasi-compact, then f is of finite type.
(8) If X is a scheme of finite type over K, then there is a finite covering of X consisting

of open affine subsets that are spectra of finitely generated K-algebras.
(9) Morphisms of finite type are stable under base extension.

(10) If X and Y are S-schemes of finite type, then X ×S Y is a S-scheme of finite type.

Proof. The proof is given below:

(1) The forward direction is clear. Conversely, if f is locally of finite type and quasi-
compact, then each f−1(Vi) is quasi-compact, so we may find a finite subcover,
making it of finite type.

(2) This essentially follows from the algebraic fact that a composition of finite ring maps
is finite.

(3) Let V = SpecS be such an affine open subset in Y . The map f−1(V ) → V is
an open immersion. Hence, f−1(V ) ∼= V = SpecS. Cover V by open subsets
{SpecSf | f ∈ S}, and note that each

Sf = S[x]/(xf − 1)

is a finitely generated S-algebra.
(4) This follows from (3).
(5) This follows from the algebraic fact that a ring of finite type over a Noetherian ring

is a Noetherian ring.
(6) This follows from the algebraic fact that that a ring of finite type over a Noetherian

ring is Noetherian.
(7) The affine case essentially follows from the fact that if

A
ϕ−→ B

ψ−→ C

is a composition of morphisms of rings such that C is a finitely generated A-algebra,
then C is a finitely generated B-algebra. The general case reduces to the affine case19

(8) This is clear.

19If the composition X
f−→ Y

g−→ Z is of finite type, we need to find a covering of Y consisting of open
affine sets with the desired property. This is the case if we can find such a covering for g−1(U) for any open
affine subset U ⊆ Z. Hence, we have reduced the problem to proving the statement assuming Z = Spec C
is affine. Since f is quasi-compact, for any open affine subset V = Spec B of Y , we can cover f−1(V ) with
a finite number of open affine subsets Spec Ai of X. Since the composition g ◦ f is of finite type, each ring
Ai is a finitely generated C-algebra, and we are again in the affine case.
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(9) This Let f : X → S be any morphism of finite type, and let g : S′ → S be any base
extension. Then, construct the pull-back of f along g:

X ×S S′ X

S′ S

p1

p2 f

g

Let U ⊆ S be an open affine set, say U = SpecR. Then the diagram restricts to
the following:

f−1(U)×U g−1(U) f−1(U)

g−1(U) U

p1

p2 f

g

For each V ⊆ g−1(U) open affine set, say V = SpecS, we can shrink more and get
the following:

f−1(U)×U V f−1(U)

V U

p1

p2 f

g

There is a finite covering of f−1(U) by affine open subsets of the form SpecTi with
Ti a finitely generated R-algebra. Hence f−1(U)×U V can be covered by open affine
sets of the form Spec(Ti ⊗R S), and each one of these rings is a finitely generated
S-algebra.

(10) This follows from by reducing to the affine case and using the algebraic fact that a
tensor product of two rings of finite type is a ring of finite type.

This completes the proof. □

23. Seperated Morphisms

Separatedness is a fundamental property of morphisms of schemes. It serves as the analog
of the Hausdorff condition in the context of manifolds. However, the standard topological
definition of the Hausdorff condition is not directly applicable in abstract algebraic geom-
etry, since the Zariski topology is never Hausdorff, and the underlying topological space of
a scheme does not fully capture its geometric and algebraic structure. Grothendieck em-
phasized that one should define properties in terms of morphisms rather than objects. In
this spirit, separatedness is defined as a property of morphisms of schemes, not of schemes
themselves. liminary observations about diagonal morphisms.

Definition 23.1. Let X,Y be schemes and f : X 7→ Y be a morphism of schemes.

(1) The diagonal morphism associated to a morphism f : X → Y is the unique
morphism

∆ : X → X ×Y X
whose composition with each of the projection morphisms p1, p2 : X ×Y X → X is
the identity morphism on X, i.e., p1 ◦∆ = idX = p2 ◦∆.

(2) The morphism f : X → Y is said to be separated if the diagonal morphism ∆ is
a closed immersion.
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X

X ×Y X X

X Y

∆

Id

Id

p1

p2 f

f

Lemma 23.2. Let X,Y be affine schemes. Then a morphism f : X → Y is separated.

Proof. Let X = SpecR and Y = SpecS. Then R is naturally an S-algebra, and the fiber
product X ×Y X is also affine, given by

X ×Y X = Spec(R⊗S R).

The diagonal morphism ∆ : X → X ×Y X is induced by the multiplication map

R⊗S R −→ R,

r ⊗ r′ 7→ rr′.

which is a surjective ring homomorphism. By Lemma 17.10, the diagonal morphism ∆ is a
closed immersion. □

Proposition 23.3. Let X,Y affine schemes. A morphism f : X → Y is separated if and
only if the image of the diagonal morphism is a closed subset of X ×Y X.

Proof. The forward direction is clear. Now assume that ∆(X) ⊆ X ×Y X is a closed
subset. Let p1 : X ×Y X → X denote the first projection. Since p1 ◦∆ = IdX , it follows
that ∆ is a homeomorphism onto its image ∆(X). Consider the induced morphism of
sheaves:

OX×YX −→ ∆∗OX .

Let x ∈ X and choose an open affine neighborhood x ∈ U ⊆ X such that f(U) ⊂ V , where
V ⊂ Y is affine open. Then the fiber product U ×V U is an affine open neighborhood of
∆(x) ⊆ X ×Y X, and the restricted diagonal morphism

∆|U : U → U ×V U

is a closed immersion. By Remark 17.11, the associated morphism of structure sheaves

OU×V U → (∆|U )∗OU

is surjective. Since this holds in a neighborhood of every point x ∈ X, it follows that the
global morphism of sheaves

OX×YX → ∆∗OX

is surjective. Hence, ∆ is a closed immersion. □

Thanks Proposition 23.3 a morphism is separated if and only if the diagonal ∆ is a closed
subset of X ×Y X—a purely topological condition on the diagonal. This is reminiscent of
the definition of the Hausdorff condition in general topology. We now establish some basic
properties of separated morphisms. Before doing so, we state a useful lemma that will be
helpful in proving several of these properties.
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Lemma 23.4. (Pullback/Fiber-Product Lemma) Let C be a category admitting the fol-
lowing commutative diagram:

F E D

A B C

f ′

h′′

g′

h′ h

f g

Suppose furthermore that the right square defines a fiber product in C . Then the left square
defines a fiber product in C if and only if the outer rectangle defines a fiber product in C .

Proof. See [Awo10, Lemma 5.8]. □

Proposition 23.5. The following is a is a list of properties of seperated morphisms.

(1) Separated morphisms are stable under base extension.
(2) A composition of two separated morphisms is separated.
(3) A morphism f : X → Y is separated if and only if Y can be covered by open subsets

Vi such that the restriction f−1(Vi)→ Vi is separated for all i.
(4) Open and closed immersions are separated.

Proof. The proof is given below:

(1) Assume f : X → Y is separated. That is ∆ : X → X ×Y X is a closed immersion.
Let g : X ′ → Y ′ be obtained by a base change along Y ′ → Y . Consider the diagram:

X X ′

X ×Y X X X ′ X ′ ×Y ′ X ′

X Y Y ′ X ′

∆

Id

Id

Id

Id

∆′

f g

f g

The middle and left squares define fiber products. By Lemma 23.4, the outer square
determined by the middle and left squares defines a fiber product. Moreover, the
map from X ′×Y ′X ′ to X×Y ′X since the following square is trivially commutative:

X X ′ ×′
Y X

′

Y X

Therefore, the map fromX ′×Y ′X ′ toX×Y ′X is well-defined because of the universal
property of fiber products. Therefore, we hone in one the following subdiagram:

X ×Y X X X ′ X ′ ×Y ′ X ′

X Y

f

f
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That is, we have the following equivalent diagram:

X ′ ×Y ′ X ′ X ×Y X X

X ′ X Y

f

f

We’ve already identified that the outer rectangle in the diagram above defines a fiber-
product. But the right square in the diagram above also defines a fiber product.
Therefore, Lemma 23.4 implies the left square in the diagram above also defines a
fiber product. Thus, in the following diagram,

X ′ X

X ′ ×Y ′ X ′ X ×Y X

X ′ X

∆′ ∆

the outer rectangle and the bottom half are pullback diagrams, so the top half is a
pullback square. Hence, ∆′ : X ′ → X ′ ×Y ′ X ′ is indeed a closed immersion since
closed immersions are stable under base extensions.

(2) This follows from a similar diagram chasing argument as in (1).
(3) Suppose Vi is an open cover of Y , and suppose f−1(Vi) → Vi is separated for each

i. We show that the image of the diagonal map

∆ : X → X ×Y X

is closed. It suffices to show locally for some open cover U of X ×Y X. If we let
π : X ×Y X → Y be the natural map, then π−1(Vi) gives an open cover of X ×Y X.
This implies that ∆−1(π−1(Vi))→ π−1(Vi) is closed for each i.

X

X ×Y X X

X Y

∆

Id

Id

π

p1

p2 f

f

Conversely, (1) implies that separatedness is preserved by base change. Since the
base change of f : X → Y by Vi ↪→ Y is just f−1(Vi)→ Vi, the result immediately
follows.

(4) The property of being an open/closed immersion is local on the target, and locally
an open/closed immersion is a morphism of affine schemes. Since a morphism of
affine schemes is seperated and the property of being seperated is local on the target,
the claim follows.

This completes the proof. □
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We conclude this section with an application of the diagonal morphism by introducing
the notion of the graph of a morphism.

Definition 23.6. Let X,Y be schemes over S. If f : X → Y is a morphism, then graph
of f , denoted by Γ, is a morphism

Γ : X → X ×S Y

defined such that the following diagram commutes:

X

X ×S Y X

Y S

Γ

f

Id

p1

p2

Proposition 23.7. (Hartshorne II.4.8) Let X,Y be schemes over S and let Let f : X → Y
be a morphism of schemes. If Y is separated, then the graph morphism, Γ, is a closed
immersion. More precisely, it is obtained by the diagonal morphism over Y , ∆ : Y →
Y ×S Y , by base extension.

Proof. We first show that the graph of a morphism is obtained by a base change of the
diagonal morphism ∆ : Y → Y ×S Y . That is, we show that the following diagram

X X ×S Y

Y Y ×S Y

Γ

f f×1

∆

is a fiber product diagram. In other words, we must verify that

X ∼= Y ×Y×SY (X ×S Y ).

Given that X×S Y is defined as a fiber product of schemes, the commutative diagram above
yields a natural morphism

X −→ Y ×Y×SY (X ×S Y ).

It suffices to check that this morphism is an isomorphism locally on affine open subsets. Let
u : X → S and v : Y → S be the structure morphisms, so that u = v◦f . Choose affine open
subsets U = SpecR ⊂ S, W = SpecS ⊂ v−1(U) ⊂ Y , and V = SpecT ⊂ f−1(W ) ⊂ X.
The diagram then restricts to:

V V ×U W

W W ×U W

Γ|V

f |V f×1

∆|W
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Suppose the ring homomorphism φ : S → T is induced by f . Then, in the opposite category
of rings (i.e., commutative rings), we obtain the following diagram:

T T ⊗R S

S S ⊗R S

γ

φ

δ

φ⊗1

Here,
γ(r ⊗ s) := r · φ(s), δ(s1 ⊗ s2) := s1s2.

It is straightforward to verify that this diagram commutes. To prove that the diagram is a
pushout, we show that

T ∼= S ⊗S⊗RS (T ⊗R S).
We define mutually inverse maps:

ϕ : T → S ⊗S⊗RS (T ⊗R S), t 7→ 1⊗ (t⊗ 1),

ψ : S ⊗S⊗RS (T ⊗R S)→ T, s1 ⊗ (t⊗ s2) 7→ φ(s1s2) · t.
One can check that both ϕ and ψ are well-defined and inverses of each other. Therefore,
the diagram is indeed a pushout in the category of commutative rings, and hence a fiber
product in the category of schemes. Since ∆ is a closed immersion, it follows by base change
that Γ is also a closed immersion. □

24. Proper Morphisms
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Part 5. Appendix: Commutative Algebra

The purpose of this section is to review the definitions and results from commutative
algebra. The algebra-geometry correspondence discussed in Section 2 is invoked from time
to time to provide motivation for some concepts.

25. Prime and Maximal Ideals

Prime ideals and maximal ideals are the building blocks of algebraic geometry.

Definition 25.1. Let R be a ring.

(1) An ideal p in R is prime if p ̸= R and for every a, b ∈ R, if ab ∈ p, then a ∈ p or
b ∈ p.

(2) An ideal m in R is maximal if m ̸= R and there is no ideal I such that m ⊊ I ⊆ R.

Remark 25.2. Let R be an integral domain, and let p ∈ R\{0} not be a unit. By definition,
the ideal (p) is prime if and only if for all a, b ∈ R with p | ab, we have p | a or p | b. That
is, p is a prime element of R This is the origin of the name ‘prime ideal.’

Remark 25.3. Let R be a ring. Every prime ideal of R in a ring a is a radical ideal. This
is a straighforward consequence of the definition.

Proposition 25.4. Let I be an ideal in a ring R with I ̸= R.

(1) I is a prime ideal if and only if R/I is an integral domain.
(2) I is a maximal ideal if and only if R/I is a field.

Proof. The proof is given below:

(1) Passing to the quotient ring R/I, the definition of a prime ideal that I is prime if
and only if for all a, b ∈ R/I with ab = 0 we have a = 0 or b = 0 if and only if R/I
is an integral domain.

(2) The definition of a maximal ideal (b) means exactly that the ring R/I has only the
trivial ideals I/I and R/I which is equivalent to R/I being a field.

This completes the proof. □

Corollary 25.5. Let R be a ring. Every maximal ideal of R in a ring a is prime ideal.

Proof. This is because every field is an integral domain. □

A prime ideal is not necessarily a maximal ideal. However, this is the case in some
situations.

Proposition 25.6. Let R be a principal ideal domain (PID). Then every non-zero prime
ideal is a maximal ideal.

Proof. Let p be a prime ideal. Since R is PID, we have p = (p). If q = (q) is such that
p ⊆ q, then p = qr for some r ∈ R. Hence, either q ∈ p or r ∈ p. If q ∈ p, then q ⊆ p. If
r ∈ p, then r = pp′ for some p′ ∈ R implies that

p = qr = qpp′ ⇒ p(1− qp′) = 0

Since p ̸= 0 and R is an integral domain, we have that 1 = qp′. Hence, q = R. In any case,
p is a maximal ideal. □

Proposition 25.7. (Atiyah-Macdonald 1.7) Let R be a ring in which every element x
satisfies xn = x for some n > 1. Every prime ideal in R is a maximal ideal.
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Proof. Let p be a prime ideal in A. Then A/p is an integral domain. Let x ∈ A \ p. By
assumption, there is a n > 1 such that xn = x. Passing to the quotient ring, we then have
x̄n = x̄. This is equivalent to x̄(x̄n−1 − 1̄) = 0. Since A/p is an integral domain and x /∈ p,
we have x̄n−1 = 1̄. If n = 2, then x̄ = 1̄ which is already a unit in A \ p. If n > 2, then
x̄ is a unit in A \ p with inverse x̄n−2. Hence A/p is a field, which implies p is a maximal
ideal. □

Proposition 25.8. (Atiyah-Macdonald 1.11) A ring R is Boolean if x2 = x for all x ∈ R.
In a Boolean ring R, we have:

(1) 2x = 0 for all x ∈ R;
(2) Rvery prime ideal p is maximal, and A/p is a field with two elements;
(3) Every finitely generated ideal in I is a principal ideal.

Proof. The proof is given below:

(1) In every Boolean ring, we have

2x = x+ x = (x+ x)2 = 4x

Therefore, 2x = 0.
(2) The argument in Proposition 25.7 shows that every prime ideal, p, is maximal. Then

A/p is a field. Since A/p is an integral domain and x̄2 = x̄ for every x̄ in A/p, we
have that x̄ = 0̄, 1̄. Therefore, A/p ∼= Z2.

(3) Let I = (a, b) and J = (a+ b+ ab). Clearly, J ⊆ I. Note that

a(a+ b+ ab) = a2 + ab+ a2b = a2 + 2ab = a2 = a

Hence a ∈ J . Similarly, b ∈ J . Therefore, J ⊆ I. The general claim follows by
induction.

This completes the proof. □

Example 25.9. The following is a list of basic examples of prime ideals and maximal ideals.

(1) If p is a prime number, then pZ ⊆ Z is a prime ideal. This can be checked by
definition. In fact, pZ is a maximal ideal.

(2) If p is a prime number, pZ[x] ⊆ Z[x] is a prime ideal. Indeed, pZ[x] = kerπ, where

π : Z[x]→ (Z/pZ)[x], π
(∑

aix
i
)
=
∑

aix
i

Hence, Z[x]/pZ[x] ∼= (Z/pZ)[x]. The latter is an integral domain since Z/pZ is a
field.

(3) Let R be an integral domain. The ideal (x) ⊆ R[x] is a prime ideal, since R[x]/(x) ∼=
R.

(4) Let K be a field. The ideal (x) ⊆ K[x] is a maximal ideal, since K[x]/(x) ∼= K.

The following basic observation is quite important.

Proposition 25.10. Let R,S be rings and let φ : R→ S be a ring homomorphism.

(1) If q ⊆ S is a prime ideal, then φ−1(q) ⊆ R is a prime ideal.
(2) If q ⊆ S is a maximal ideal, then φ−1(q) ⊆ R is not necessarily a maximal ideal.
(3) If φ is surjective and q ⊆ S is a maximal ideal, then φ−1(q) ⊆ R is a maximal ideal.

Proof. The proof is given below:
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(1) Note that R/φ−1(q) is contained in the kernel of the map R→ S/q. Hence, have a
map R/φ−1(q) ↪→ S/q. Since the latter is an integral domain, R/φ−1(q) is also an
integral domain. Hence, φ−1(q) is a prime ideal.

(2) Let ι : Z ↪→ Q. {0} is a maximal ideal in Q but not in Z since Z is not a field.
(3) Consider the diagram:

R S S/m

R/φ−1(m)

φ

π

ψ

ψ◦φ

Since ψ ◦ φ is surjective, π ◦ ψ ◦ φ is surjective. Thus ψ ◦ φ is surjective. But
kerψ ◦ φ = R/φ−1(m). Hence, ψ ◦ φ is injective. Hence.

R/φ−1(m) ∼= S/m

Since the latter is a field, R/φ−1(m) is also a field. Hence, φ−1(m) is a maximal
ideal.

This completes the proof. □

A useful fact is that if I ⊆ R is a proper ideal, then there is a maximal ideal m in R with
I ⊆ m. The proof uses Zorn’s lemma.

Proposition 25.11. Let R be a ring. Let I be an ideal in a ring R with I ̸= R. Then I is
contained in a maximal ideal, of R. In particular, every ring R ̸= 0 has a maximal ideal.

Proof. Let M be the set of all ideals J in R with J ⊇ I and J ̸= R. Let A ⊂ M be
a totally ordered subset, i.e., a family of proper ideals of R containing I such that for any
two of these ideals, one is contained in the other. If A = ∅, then we can just take I ∈M as
an upper bound for A. Otherwise, let

J ′ :=
⋃
J∈A

J

be the union of all ideals in A. We claim that this is an ideal:

(1) 0 ∈ J ′, since 0 is contained in each J ∈ A, and A is non-empty.
(2) If a1, a2 ∈ J ′, then a1 ∈ J1 and a2 ∈ J2 for some J1, J2 ∈ A. But A is totally

ordered, so without loss of generality, we can assume that J1 ⊆ J2. It follows that
a1 + a2 ∈ J2 ⊆ J ′.

(3) If a ∈ J ′, i.e., a ∈ J for some J ∈ A, then ra ∈ J ⊆ J ′ for any r ∈ R.
Moreover, J ′ certainly contains I, and we must have J ′ ̸= R since 1 /∈ J for all J ∈ A, so
that 1R /∈ J ′. Hence, J ′ ∈M , and it is certainly an upper bound for A . By Zorn’s Lemma,
M has a maximal element, m, containing I. It can be easily checked that m is a maximal
ideal. If I is a proper ideal of R, then R/I contains a maximal ideal, m′. Then m = π−1(m)
is a maximal ideal of R20 containing I. □

We end this section with some other applications of Zorn’s lemma.

Proposition 25.12. Let R be a ring.

20π is surjective.
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(1) The nilradical of R, N(R), is the intersection of all the prime ideals of R. That is,

N(R) =
⋂
p

p is prime

p

(2) Let I be an ideal of R. Then
√
I =

⋂
I⊆p

p is prime

p

(3) The set of prime ideals of R has minimal elements with respect to inclusion.

Proof. The proof is given below:

(1) Clearly, a nilpotent element belongs to every prime ideal. Hence the ⊆ inclusion
is true. Conversely, let x ∈ R be a non-nilpotent element. In order to ptove the
⊇ inclusion, it suffice to find a a prime ideal, q, not containing x. Let Σ be the
set of all ideals I ⊆ R such that xn /∈ I for all n ∈ N. Since x is not nilpotent,
{0} ∈ Σ ̸= ∅. If C = {In}n∈N is a chain in Σ, then I =

⋃
n∈N In ∈ Σ. Hence, Σ

satisfies the assumption of Zorn’s lemma. Let q ∈ Σ be a maximal element. We
show that q is a prime ideal.

If y, z /∈ q, then q is properly contained in (y, q) and (z, q), so these ideals are not
in Σ. Hence, there exist integers n,m ∈ N and elements a, c ∈ R and b, d ∈ q such
that xn = ay + b and xm = cz + d. If yz ∈ q, we would get

xn+m = acyz + (ayd+ czb+ bd) ∈ (yz, q)

which is a contradiction. Hence, yz /∈ q. Hence, q is a prime ideal.
(2) The proof is similar to (2).
(3) Let Σ be the set of all prime ideals with partial order Σ is given by reverse inclusion.

Σ ̸= ∅ since {0} ∈ Σ. Consider a chain of prime ideals in Σ:

p1 ⊇ p2 ⊇ · · · pn ⊇ · · ·
Let p =

⋂
i∈N pi. Clearly, p is an upper bound for the chain (under reverse

inclusion). We show that p is a prime ideal.
Let x, y /∈ p. Then x /∈ pi and y /∈ pj for some i, j ≥ 0. WLOG, let i < j. We

then have that both x, y /∈ pj . Since pj is prime, we must have xy /∈ pj . This in turn
implies xy /∈ p. Hence p is a prime ideal. By Zorn’s lemma, Σ has a has a maximal
element, which is a minimal element in the set of all prime ideals given the reverse
inclusion order.

This completes the proof. □

Proposition 25.13. (Atiyah-Macdonald 1.9) Let R be a ring and let I ⊊ R be an ideal of

R. Then I =
√
I if and only if I is an intersection of prime ideals.

Proof. The forward implication is clear since
√
I is an intersection of prime ideals by

Proposition 25.12(2). Conversely, let I be an intersection of prime ideals. Let x ∈
√
I.

Then there is a n > 0 such that xn ∈ I. Therefore, xn is contained in all prime ideals that
define I. Hence, implies x is is contained in all prime ideals that define I. Hence, x ∈ I. □

Proposition 25.14. (Atiyah-Macdonald 1.10) Let R be a ring, The following are equiva-
lent:
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(1) R has exactly one prime ideal.
(2) Every element of R is either a unit or nilpotent.
(3) R/N(R) is a field.

Proof. The proof is given below:

• (i) ⇐⇒ (ii): Assume R has exactly one prime ideal. Since every maximal ideal
is a prime ideal, R has a unique maximal ideal. By Proposition 25.12(1) N(R) is
the intersection of all prime ideals of R. Hence, we must have that the nilradical is
the unique prime ideal. If an element x is not nilpotent, it is not contained in the
unique prime/maximal ideal. Therefore, x must be a unit; otherwise, x would be
contained in the unique maximal ideal of R.
• (ii) ⇐⇒ (iii): Assume every element of R is either a unit or nilpotent. This clearly
implies that R/N(R) is a field.
• (iii) ⇐⇒ (i): Assume R/N(R) is a field. Then N(R) is a maximal ideal. Thus if p
is prime ideal in R, then p should be the nilradical since the nilradical is a maximal
ideal. Thus there is only one prime ideal.

This completes the proof. □

Proposition 25.15. (Atiyah-Macdonald 1.14) Let R be a ring. Let Σ be the set of all
ideals in which every element is a zero-divisor. Σ has maximal elements and every maximal
element of E is a prime ideal. Hence, the set of zero-divisors in A is a union of prime
ideals.

Proof. A standard Zorn’s Lemma type once again provides the correct argument. We
omit the details. □

26. Localization

The purpose of this short section is to briefly review the details behind localization and
to provide motivation for its use. We first appeal to Conjecture 2.8 to give a geometric
motivation of the localization construction.

Remark 26.1. (Geometric Motivation) Let X ⊆ An be an affine algebraic set and let R =
A(X). Elements of A(X) are equivalence classes of polynomial functions in K[x1, · · · , xn].
We continue the equivalence class of f ∈ K[x1, · · · , xn] as f . Does it makes sense to consider
fractions of such polynomial functions, i.e., rational functions

X → K

x 7→ f(x)

g(x)

for f, g ∈ A(X). Of course, this does not work for global functions on all of X since g will
in general have zeroes in X. But if we consider functions on “small enough” subsets of X,
we can allow such fractions. This intuition is captured by the procedure of localization of
rings. For example, let fixed point a ∈ X, and consider the set

S = {f ∈ A(X) : f(a) ̸= 0}
be the set of all polynomial functions that do not vanish at a. It is easy to check that S is
a multiplictaively closed set that does not contain 0. Hence p = A(X) \ S is a prime ideal.

Then the fractions f
g for f ∈ R and g ∈ S can be thought of as rational functions that are

well-defined “near” a. This construction amounts to analyzing the affine algebraic set, X,
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locally around the point, a. by studying the corresponding ring of rational functions. We
will see that localization of A(X) at p will make this intuition precise.

Let us now introduce such “fractions” in a rigorous way. Let R be a ring, and S ⊆ R
the set of elements that we would like to become invertible. Note that this subset S of
denominators for our fractions has to be closed under multiplication, for otherwise the
formulas

a

s
+
a′

s′
:=

as′ + a′s

ss′

and
a

s
· a

′

s′
:=

aa′

ss′

for addition and multiplication of fractions would not make sense. Moreover, we should
have 1 ∈ S in order to make sure that fractions of the form a

1 for a ∈ R make sense. Such
sets are called multiplicatively closed subsets of R.

Proposition 26.2. Let R be a ring and S ⊆ R be a multiplicatively closed set. The relation

(a, s) ∼ (a′, s′) ⇐⇒ there is an element u ∈ S such that u(as′ − a′s) = 0

is an equivalence relation on R×S. We denote the equivalence class of a pair (a, s) ∈ R×S
by a

s . The set of all equivalence classes

S−1R :=
{a
s
: a ∈ R, s ∈ S

}
is called the localization of R at the multiplicatively closed set S. It is a ring together with
the addition and multiplication

a

s
+
a′

s′
:=

as′ + a′s

ss′
,

a

s
· a

′

s′
:=

aa′

ss′
.

Proof. (Sketch) The proof is similar to the proof constructing Q from Z. The only caveat
is that we must account for the element u ∈ S in the definition of the equivalence relation.
Without the additional element u ∈ S, the relation ∼ would not be transitive. Therefore,
we confirm transitivity. Assume (a, s) ∼ (a′, s′), (a′, s′) ∼ (a′′, s′′). Then there are u, u′ ∈ S
such that

u(as′ − a′s) = 0, u′(a′s′′ − a′′s′) = 0,

and it follows that

uu′s′s′′(as′′ − a′′s) = uu′(as′ − a′s)s′′2 + uu′(a′s′′ − a′′s′)ss′′ = 0.

Since S is multiplicatively closed, uu′s′s′′ ∈ S. Hence, (a, s) ∼ (a′′, s′′), as required. The
rest of proof is standard aripropetic.21. □

Example 26.3. The following is a list of some examples of the localization procedure:

(1) If S = {1}, then S−1R ∼= R.
(2) Let R be an integral domain and let S be the set of non-zero-divisors in R. Then S

is multiplicatively closed and S−1R is the quotient field of R.

21If fact, if we set u = u′ = 1 in the proof of transitivity, we could only show that s′s′′(as′′ − a′′s) = 0.
Of course, this does not imply as′′ − a′′s = 0 if S contains zero-divisors. On the other hand, if S does
not contain any zero-divisors, the condition u(as′ − a′s) = 0 for some u ∈ S can obviously be simplified to
as′ − a′s = 0.
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(3) For a fixed element a ∈ R, let S = {an : n ∈ N}. Then S is obviously multiplicatively
closed. The corresponding localization S−1R, often written as Ra, is called the
localization of R at the element a.

(4) Let p be a prime ideal of a ring R. Then S = R \ p is multiplicatively closed.
The resulting localization S−1R is usually denoted by Rp and called the localization
of R at the prime ideal p. In fact, this construction formalizes the intuition in
Remark 26.1. Indeed, if R = A(X) is the ring of functions on an affine algebraic set
variety X ⊆ An and

p = I(a) = {f ∈ A(X) : f(a) = 0},
the localization A(X)p is exactly the ring of “fractions near a” as in Remark 26.1.

We end this short section by mentioning some properties of localization.

Proposition 26.4. Let R be a ring and let S ⊆ R be a multiplicatively closed subset. Let
φ : R→ S−1R be the ring morphism a 7→ a/1.

(1) There is a one-to-one correspondence:

{prime ideals in S−1R} ←→ {prime ideals q in R with q ∩ S = ∅}
I 7→ ⟨φ(I)⟩

φ−1(I)←[ I

(2) If S = R \ p for a prime ideal p, then there is a one-to-one correspondence:

{prime ideals in Rp} ←→ {prime ideals q in R with q ⊆ p}
I 7→ ⟨φ(I)⟩

φ−1(I)←[ I

(3) If S = R \ p for a prime ideal p, then Rp is a local ring. That is, Rp has a unique
maximal ideal given by

⟨φ(p)⟩ =
{a
s
: a ∈ p, s /∈ p

}
Proof. The proof is given below:

(1) The proof is skipped.
(2) This follows from (1).
(3) The formula for ⟨φ(p)⟩ is clearly justified. Every prime ideal in Rp is contained in
⟨φ(p). In particular, every maximal ideal in Rp must be contained in ⟨φ(p)⟩. But
this means that ⟨φ(p)⟩ is the only maximal ideal.

This completes the proof. □

27. Chain Conditions

We have worked with an arbitrary commutative rings with identity thus far. However, to
derive more significant theorems, we must impose certain finiteness conditions. The most
practical approach is through “chain conditions,” which apply to both rings and modules.
In what follows, let Σ be a set partially ordered by a relation ∼ (i.e., ∼ is reflexive and
transitive, and is such that x ∼ y and y ∼ x together imply x = y).

Lemma 27.1. Let (Σ,≤) be a partially ordered set. The following conditions are equivalent:

(1) Every non-empty subset S ⊆ Σ contains a maximal element;
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(2) Every sequence x1 ≤ x2 ≤ · · · in Σ is stationary. That is, there exists a n0 ∈ N
such that xn = xn+1 for all n ≥ n0.

Similarly, the following conditions are equivalent:

3 Every non-empty subset S ⊆ Σ contains a minimal element;
4 Every sequence x1 ≥ x2 ≥ · · · in Σ is stationary. That is, there exists a n0 ∈ N
such that xn = xn+1 for all n ≥ n0.

Proof. Suppose that every ∅ ≠ S ⊆ Σ contains a maximal element, and let x1 ≤ x2 ≤ · · ·
be a sequence in Σ. If S = {xn | ∀n ∈ N}, we can find n0 ∈ N such that xn0 is a
maximal element in S. Conversely, assume every sequence in Σ is stationary and suppose
∅ ̸= S ⊆ Σ has no maximal element. Let x1 ∈ S and construct a sequence inductively:
given x1 ≤ · · · ≤ xn, let Sn = {x ∈ S | x > xn}. This set is non-empty (otherwise xn ∈ S
is maximal), so pick xn+1 ∈ Sn. This yields a non-stationary sequence. The equivalence of
(3) and (4) is proved similarly. □

Definition 27.2. Let R be a ring and M an R-module. Let Σ be the set of all submodules
of M .

(1) M is Noetherian if (Σ,⊆) satisfies the equivalent conditions of Lemma 27.1. In
other words, if every ascending chain

M1 ⊆M2 ⊆M3 ⊆ · · ·
of submodules of M becomes stationary.

(2) M is Artinian if (Σ,⊇) satisfies the equivalent conditions of Lemma 27.1. In other
words, if every descending chain

M1 ⊇M2 ⊇M3 ⊃ · · ·
of submodules of M becomes stationary

Remark 27.3. The conditions of (1) and (2) in Lemma 27.1 are often referred to as the
ascending and descending chain conditions, respectively.

Remark 27.4. We say that R is Noetherian/Artinian if R is a Noetherian/Artinian R-
module. In other words, R is Noetherian/Artinian if and only if any ascending/descending
chain of ideals becomes stationary.

(1) Any field K is trivially Noetherian and Artinian as it has only the trivial ideals (0)
and K.

(2) A K-vector space V is Noetherian and Artinian if and only if it is finite-dimensional.
• If V is finite-dimensional, there can only be finite strictly ascending or descend-
ing chains of vector subspaces of V since the dimension has to be strictly in-
creasing or decreasing in such a chain, respectively. Hence, a finite-dimensional
K-vector space V is both Noetherian and Artinian.
• If V is infinite-dimensional, we can form a chain

V0 ⊊ V1 ⊊ V2 ⊊ · · ·
with dimVn = n for all n ∈ N. Indeed, simply set V0 = 0, and Vn+1 =
Vn + ⟨vn+1⟩ with vn+1 /∈ Vn for all n ∈ N. Clearly, this chain is not stationary.
Hence, an infinite-dimensional K-vector space V is not Noetherian.
Similarly, we can also find an infinite descending chain

V0 ⊋ V1 ⊋ V2 ⊋ · · ·
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of infinite-dimensional subspaces of V with dim(V/Vn) = n for all n. Indeed,
let V0 = V , and Vn+1 = Vn ∩ kerφn+1 for some linear map φn+1 : V → k that
is not identically zero on Vn. Then

V/Vn ∼= (V/Vn+1)/(Vn/Vn+1)

and so dim(Vn/Vn+1) = 1 implies dim(V/Vn) = n for all n by induction. Hence,
an infinite-dimensional K-vector space V is not Artinian.

(3) Z is Noetherian. Indeed, if we had a strictly increasing chain of ideals

I1 ⊊ I2 ⊊ I3 ⊊ · · ·

in Z, then certainly I2 ̸= 0, and thus I2 = nZ for some non-zero n ∈ Z. But there
are only finitely many ideals in Z that contain I2 since they correspond to ideals of
the finite ring Z/nZ. Hence, the chain must be stationary.

On the other hand, Z is not Artinian, since there is an infinite decreasing chain
of ideals

Z ⊋ 2Z ⊋ 4Z ⊃ 8Z ⊋ · · · .
(4) Let R = R[x1, x2, · · · , xn, · · · , ] be the polynomial ring over R in infinitely many

variables. Then R is neither Noetherian nor Artinian, since there are infinite chains
of ideals

(x1) ⊊ (x1, x2) ⊊ (x1, x2, x3) ⊂ · · ·
and

(x1) ⊋ (x21) ⊋ (x31) ⊋ · · · .
We have another equivlanet characterization of Noetherian modules.

Proposition 27.5. Let M be a R-module. M is Noetherian if and only if every submodule
of M is finitely generated.

Proof. Assume that we have a submodule N ⊆M that is not finitely generated. Then we
can recursively pick m1 ∈ N and mn+1 ∈ N \ ⟨m1, . . . ,mn⟩ for n ∈ N, and obtain a chain

M1 ⊊M2 ⊊M3 ⊊ · · ·

in M . This is a contradiction since M is Noetherian.
Let

M1 ⊆M2 ⊆M3 ⊆ · · ·
be a chain of submodules of M . Then N =

⋃
n∈NMn is also a submodule of M . By

assumption, N can be generated by finitely many elements m1, . . . ,mr ∈ N . We must have
mi ∈Mni for all i = 1, . . . , r and some n1, . . . , nr ∈ N. With n = max{n1, . . . , nr}, we then
have m1, . . . ,mr ∈Mn. Hence,

N = ⟨m1, . . . ,mr⟩ ⊆Mn ⊆ N,

which implies Mk =Mn = N for all k ≥ n. □

The one central result on Noetherian rings is Hilbert’s Basis Theorem.

Proposition 27.6. (Hilbert’s Basis Theorem) If R is a Noetherian ring, R[x] is also
a Noetherian ring.



SCHEME THEORY 103

Proof. Assume that R[x] is not Noetherian. Then there is an ideal I ⊆ R[x] that is not
finitely generated. We can therefore pick elements f0, f1, f2, . . . ∈ I as follows: let f0 ∈ I
be a non-zero polynomial of minimal degree, and for k ∈ N, let fk+1 be a polynomial of
minimal degree in I \ ⟨f0, . . . , fk⟩. For all k ∈ N, let dk ∈ N be the degree and ak ∈ R the
leading coefficient of fk, so that we can write

fk = akx
dk + (lower order terms).

Note that dk ≤ dk+1 for all k by construction of the polynomials. Since R is Noetherian,
the chain of ideals

(a0) ⊆ (a0, a1) ⊆ (a0, a1, a2) ⊆ · · ·
becomes stationary. Hence, we we must have

an+1 = c0a0 + · · ·+ cnan

for some n ∈ N and c0, . . . , cn ∈ R. We can therefore cancel the leading term in fn+1 by
subtracting a suitable linear combination of f0, . . . , fn:

f ′n+1 := fn+1 −
n∑
k=0

ckx
dn+1−dkfk.

In this polynomial f ′n+1, the x
dn+1-coefficient is an+1−c0a0−· · ·−cnan = 0. But this means

that deg f ′n+1 < deg fn+1. Hence, f
′
n+1 ∈ ⟨f0, . . . , fn⟩. As fn+1 /∈ ⟨f0, . . . , fn⟩, we must have

f ′n+1 /∈ ⟨f0, . . . , fn⟩ as well. This is a contradiction. Hence, R[x] is Noetherian. □

Remark 27.7. An inductive argument implies that if R is a Noetherian ring, R[x1, · · · , xn]
is a Noetherian ring for any n ≥ 1.

28. Nakayama’s Lemma

The technique used in proving Lemma 29.4 can be used to prove result that is quite
important in algebraic geometry, Nakayama’s lemma. Nakayama’s lemma is the following
statement:

Proposition 28.1. Suppose R is a ring, I is an ideal of R, and M is a finitely generated
R-module, such that M = IM . Then there exists an a ∈ R with a−1 ∈ I such that aM = 0.

Here is the argument that proves Nakayama’s lemma.

Proof. Let M is generated by m1, . . . ,mn. Since M = IM , we have mi =
∑

j aijmj for
some aij ∈ I. Thus,

(Idn×n −A)m⃗ = 0

where A = (aij). Multiplying both sides of the equation on the left by adj(aIdn×n−A), we
obtain

det(Idn×n −A)mi = 0

for each 1 ≤ i ≤ n. Hence, det(Idn×n −A) = 0. When we expand det(Idn×n −A), as A has
entries in I, we get an expression of the form 1 + b for some b ∈ I. Let a = 1+ b. Hence, a
annihilates M and we have a− 1 ∈ I. □

Corollary 28.2. The following statements are true:

(1) Let M be a finitely generated R-module and let I be an ideal such that I is contained
in every maximal ideal of R. If IM =M , then M = 0.
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(2) Let M be a finitely generated R-module and let I be an ideal such that I is contained
in every maximal ideal of R. If N ⊆M is a submodule satisfying M = N + IM (or
N/IN →M/IM is surjective), we must have M = N .

(3) Let R be a local ring with unique maximal ideal m ⊆ R. Then, for any finitely
generated R-module M , the quotient M/mM is canonically a vector space over the
field R/m. Furthermore, if x1, . . . , xn ∈ M are elements whose residue classes
x1, . . . , xn ∈M/mM generate this vector space, then M =

∑n
i=1Rxi.

Proof. The proof is given below:

(1) By Nakayama’s lemma, there exists some a ∈ R such that a − 1 ∈ I and aM = 0.
a ∈ R is invertible. Indeed, if this is not the case, then (a) ⊊ R and a is contained
in some maximal, m, ideal of R. Since a− 1 ∈ m, we have, 1 ∈ m, a contradiction.
Since a is invertible, we must have that M = 0.

(2) Note that M = N + IM implies M/N = I(M/N). Since M is finitely generated,
M/N , ‘is finitely generated, (1) implies M/N = 0. Hence, M = N .

(3) Clearly, M/mM is a vector space over R/m. From M/mM =
∑n

i=1(R/m)xi we
conclude

M =
n∑
i=1

Rxi +mM

(2) implies M =
∑n

i=1Rxi.

□

Remark 28.3. Nakayama’s lemma is not necessarily true if M is not a finitely generated
R-module. Indeed, let M = Q thought of as a Z-module (abelian group). Let I = (2). If
Nakayama’s lemma were true, we would have an m ∈ Z such that mQ = 0 and m − 1 ∈
I. The latter condition implies that m is an odd number. Clearly, Then mQ ̸= 0, a
contradiction.

29. Integral Extensions

Recall that if K ⊆ K′ is an algebraic extension of fields, then for any α ∈ K′, there is
a monic polynomial, f , with coefficients in K such that f(α) = 0. This implies K(α) is a
finite algebraic extension. This means that the field extension K ⊆ K(α) is quite easy to
deal with, since we can use the whole machinery of finite-dimensional linear algebra.

What happens now if instead of an extension K ⊆ K′ of fields we consider an extension
R ⊆ R′ of rings? We can certainly still have a look at elements a ∈ R′ satisfying a
polynomial relation

cna
n + cn−1a

n−1 + . . .+ c0 = 0

with c0, . . . , cn ∈ R (and not all of them being 0). But now it will in general not be possible
to divide this equation by its leading coefficient cn to obtain a monic relation. Consequently,
we can in general not use this relation to express higher powers of a in terms of lower ones,
and hence the R-algebra R[a] generated by a over R need not be a finite R-module. A
simple example for this can already be found in the ring extension Z ⊆ Q: for example,
the rational number a = 1

2 satisfies a (non-monic) polynomial relation 2a − 1 = 0 with
coefficients in Z, but certainly Z[a], which is the ring of all rational numbers with a finite
binary expansion, is not a finitely generated Z-module. This motivates the definition:
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Definition 29.1. Let R ⊆ R′ be rings. An element a of R′ of R is integral over R if there
is a monic polynomial f ∈ R[x] with f(a) = 0, i.e., if there are n ∈ N>0 and c0, . . . , cn−1 ∈ R
with an + cn−1a

n−1 + . . .+ c0 = 0. We say that R ⊆ R′ is an integral extension if every
element of R′ is integral over R.

Remark 29.2. More generally, suppose φ : R → R′ is a ring morphism. We say a ∈ R′

is integral over R if a satisfies some monic polynomial where the coefficients lie in φ(R).
A ring morphism φ : R → R′ is an integral morphism if every element of R′ is integral
over φ(R).

Example 29.3. Let R be a unique factorization domain, and let R′ be its quotient field.
Then a ∈ R′ is integral over R if and only if a ∈ R22.

The following lemma provides a useful trick to check for integrality.

Lemma 29.4. Let R ⊆ R′ be a ring extension. Then a ∈ R′ is integral over R if and only
if it is contained in a subalgebra of R′ that is a finitely generated R-module.

Proof. If a satisfies a monic polynomial equation of degree n, then the R-submodule of
R′ generated by 1, a, . . . , an−1 is closed under multiplication, and hence a subalgebra of
R′. Conversely, assume that a is contained in a subalgebra R′′ of R′ that is a finitely
generated R-module. Choose a finite generating set m1, . . . ,mn of R′′ (as an R-module).
Then ami =

∑
j bijmj , for some bij ∈ R. That is,

(aIdn×n −B)m⃗ = 0⃗.

Here B is the coefficient matrix of the coefficients bij ’s and m⃗ is a column vector for
the variables mi’s. Recall that a matrix M has an adjugate matrix adj(M) such that
adj(M)M = det(M)Idn. Multiplying by adj(aIdn×n −B), we get:

det(aIdn×n −B)mi = 0 1 ≤ i ≤ n

Since det(aIdn×n −B) annihilates the generating elements mi, and hence every element of
R′′, including 1. Hence, det(aIdn×n −B) = 0. But expanding the determinant yields an
integral equation for a with coefficients in R. □

The above result has some easy corollaries:

Corollary 29.5. Let R ⊆ R′ be a ring extension. The elements of R′ integral over R form
a subring of R′. If R′ is a finite ring extension in the sense that R′ is a finitely generated
R-module, then R ⊆ R′ is an integral extension.

Proof. If a, b ∈ R′ are integral over R, then a ∈ R[x1, · · · , xn] and b ∈ R[y1, · · · , ym] for
x1, · · · , xn in R′ and y1, · · · , ym in R′ . Then

a± b, ab ∈ R[x1, · · · , xn, y1, · · · , ym]

Hence, integral elements form a subring. The other statement is clear since if R′ is a finite
R-algebra, then R′ = R[x1, · · · , xn] as a finitely generating R-module. □

Corollary 29.6. (Transitivity) Suppose R ⊆ R′ and R′ ⊆ R′′′ are integral ring exten-
sions. Then R ⊆ R′′ is an integral extension.

22The proof is similar to the argument of the rational roots theorem, so we omit details.
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Proof. Let a ∈ R′′. As a is integral over R′, there are n ∈ N>0 and elements c0, . . . , cn−1

of R′ such that

an + cn−1a
n−1 + · · ·+ c0 = 0

Then a is also integral over R[c0, . . . , cn−1]. In addition, we know that c0, . . . , cn−1 are
integral over R. Hence, R[c0, . . . , cn−1, a] is finite over R[c0, . . . , cn−1] and R[c0, . . . , cn−1]
is finite over R. Therefore R[c0, . . . , cn−1, a] is finite over R23, and thus a is integral over
R. □

Below we catalog various algebraic properties of integral extensions:

Proposition 29.7. Let R ⊆ R′ be an integral extension. The following are true:

(1) If I is an ideal of R′, then R′/I is an integral extension ring of R/(I ∩ R). More
generally,

(2) If S is a multiplicative, closed subset of R, then S−1R′ is an integral extension ring
of S−1R24.

(3) R′[x] is an integral extension ring of R[x].

Proof. The proof proceeds as follows:

(1) Note that the natural map

R/(I ∩R)→ R′/I a 7→ a

is well-defined and injective. Hence, we can regard R′/I as an extension ring of
R/(I ∩ R). Moreover, for all a ∈ R′, there is a monic relation an + cn−1a

n−1 +
· · · + c0 = 0 with c0, . . . , cn−1 ∈ R, and hence by passing to the quotient also
an + cn−1a

n−1 + · · ·+ c0 = 0. So a is integral over R/(I ∩R).
(2) The ring morphism S−1R→ S−1R′, a/s 7→ a/s is obviously well-defined and injec-

tive. Moreover, for a/s ∈ S−1R′, we have a monic relation an+cn−1a
n−1+· · ·+c0 = 0

with c0, . . . , cn−1 ∈ R, and thus also(a
s

)n
+
cn−1

s

(a
s

)n−1
+ · · ·+ c0

sn
= 0.

Hence a/s is integral over S−1R.
(3) Let f = anx

n + · · · + a0 ∈ R′[x], i.e., a0, . . . , an ∈ R′. Then a0, . . . , an are integral
over R, so also over R[x], and thus R[x][a0, . . . , an] = R[a0, . . . , an][x] is integral
over R[x] by Lemma 29.4. In particular, this means that f is integral over R[x].

This completes the proof. □

Corollary 29.8. Let φ : R→ R′ be an integral morphism.

(1) If I ⊆ R and I ⊆ R′ are ideals satisfying φ(I) ⊆ I ′, then the homomorphism
R/I → R′/I ′ induced by φ is an integral morphism.

(2) For any multiplicative system S ⊆ R, the induced homomorphism RS → R′
φ(S) is

an integral morphism.

Ring extensions arise naturally in affine algebraic geometry:

23Here we use that if R ⊂ R′ and R′ ⊂ R′′ are finite, then so is R ⊂ R′′.
24Localization is not covered in these notes.
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Example 29.9. Let k = C. Consider X = V(f) ⊆ A2 and Y = A1 for some f ∈ C[x, y]. If
π : X → Y, (x, y) 7→ x is the cannonical projection morphism, then induced morphisms on
coordiante rings is a ring extension:

A(Y ) = C[x] ⊆ A(X) = C[x, y]/(f).
Some examples of such morphisms are sketched on the next page in Example 29.9. Note
that we only plot real points to keep the pictures R1 and R2. Which of these ring extensions
are integral extensions? If f(x, y) = y2 − x2. We then have a ring extension

C[x] ⊆ C[x, y]/(y2 − x2)
The ring extension is generated by x and y. Clearly, x is integral over C[x] since x is
integral over C[x]. Moreover, y is integral over C[x] since it satisfies the polynomial relation
y2 − x2 = 0.

Remark 29.10. If f(x, y) = xy or f(x, y) = xy − 1, then it turns out that the ring
extensions C[x, y]/(f) are not integral ring extensions. How does one prove this claim? We
shall return to this question later in this section.

Corollary 29.5 implies that integral elements of a ring extension always form a ring
themselves. This leads to the notion of integral closure.

Definition 29.11. Let R ⊆ R′ be a ring extension.

(1) The set R of all integral elements in R′ over R is a ring with R ⊆ R ⊆ R′. It is
called the integral closure of R in R′. We say that R is integrally closed in R′

if R = R.
(2) An integral domain R is called integrally closed or normal if it is integrally closed

in its quotient field Quot(R).

Example 29.12. Every unique factorization domain R is normal, since by Example 29.3
the only elements of Quot(R) that are integral over R are the ones in R.

Example 29.13. Let R = A(X) be the coordinate ring of an affine algebraic set X.
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(1) Let R = C[x], corresponding to X = A1. Since R is a UFD, we know that R is
normal. In fact, this can also be understood geometrically: the only way a rational
function ϕ on A1 can be ill-defined at a point a ∈ A1 is that it has a pole, i.e., that
it is of the form x 7→ f

(x−a)k for some k ∈ N>0 and f ∈ QuotR that is well-defined

and non-zero at a. But then ϕ cannot satisfy a monic relation of the form

ϕn + cn−1ϕ
n−1 + · · ·+ c0 = 0

with c0, . . . , cn−1 ∈ C[x] since ϕn has a pole of order kn at a which cannot be canceled
by the lower order poles of the other terms cn−1ϕ

n−1 + · · · + c0 = 0. Hence any
rational function satisfying such a monic relation is already a polynomial function.

Consider the context of Example 29.9 above. Recalling that the inverse image of a prime
ideal under any ring morphism is a prime ideal, then the ring extension A(Y ) ⊆ A(X) is
such that for any prime ideal p in A(X), its inverse image under the ring extension, which
is just A(Y ) ∩ p, is a prime ideal. Invoking Remark 2.19, geometrically this means that
the image of an irreducible affine algebraic subset in X under the projection map, π, is
an irreducible affine algebraic subset of Y . When is the converse true? That is, when is
any prime ideal q of A(Y ) of the form q = p ∩ A(Y ), where p is a prime ideal of A(X)?
Geometrically, when is an irreducible algebraic subset of Y the image under the projection
map, π, of an irreducible algebraic subset of X? It turns out such a result holds when the
ring extension under investigation is an integral ring extension.

Lemma 29.14. (Lying Over Theorem) Let φ : R → R′ be an injective integral ring
extension and let p be a prime ideal in R. Then the following are true:

(1) Suppose R ⊆ R′. If R′ is a field, then R is a field.
(2) Suppose R ⊆ R′ such that R and R′ are integral domains. If R is a field, then R′ is

a field.
(3) Suppose R ⊆ R′. Let q′ be a prime ideal of R′ and let q = q ∩ R. Then q is a

maximal ideal if and only if q′ is a maximal ideal.
(4) There is a prime ideal p′ of R′ with φ−1(p′) = p

Remark 29.15. In the context of the study of affine schemes, we can interpret the lying over
theorem as follows: if φ : R→ R′ is an injective integral extension, then Spec R′ → Spec R
is surjective.

Proof. (Lemma 29.14) The proof proceeds as follows:

(1) Suppose R ⊆ R′ and that R′ is a field. Let a ∈ R \ {0}. Let b = 1/a ∈ R′. Since b
is integral over R, we can write

br + α1b
r−1 + . . .+ αr = 0

for some positive integer r and some α1, . . . , αr ∈ R. Hence,

1 + α1a+ . . .+ αra
r = 0

Therefore,
1

a
= −α1 − α2a− . . .− αrar−1 ∈ R

We conclude that a is invertible in R. Since this holds for every nonzero a ∈ R, it
follows that R is a field.
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(2) Suppose R and R′ are integral domains and R is a field. Let b ∈ R′, y ̸= 0. Let

br + α1b
r−1 + . . .+ αr = 0 (αi ∈ R)

such that r is the smallest possible positive integer for which the above equation is
true. Since R′ is an integral domain, αr ̸= 0. Hence

b−1 = − 1

αr
(br−1 + α1b

r−2 + . . .+ ar−1) ∈ R′.

Hence R′ is a field.
(3) By Proposition 29.7, R′/q′ is integral over R/q, and both these rings are integral

domains. The result follows by (2).
(4) Since φ is injective, R can be thought of as a subring of R′. WLOG, we make this

identification below. Let S = R \ p be a multiplicative closed subset of R. Clearly,
S is also a multiplicative closed subset of R′. Hence, we can localize both R and R′

at p. By Proposition 29.7, Rp ⊆ R′
p is an integral extension and the diagram

R R′

Rp R′
p

α β

commutes. Let n be the unique maximal ideal of R′
p. Then m = n ∩ Rp of Rp by

(3). Since Rp is a local ring, m is the unique maximal ideal of Rp. If p′ = β−1(n),
then p′ is a prime ideal of R′, and we have p′ ∩R = α−1(m) = p.

This completes the proof. □

Remark 29.16. Assume that an integral ring extension A(Y ) → A(X) corresponds to a
polynomial morphism X → Y . of affine algebraic sets. Lemma 29.14(c) is essentially a
statement of a statement about the property of fibers of the morphism X → Y : it says that
in integral ring extensions only maximal ideals can contract to maximal ideals, i.e., that
points in X are the only irreducible algebraic sets that can map to a single point in Y .

Example 29.17. Let’s go back to Example 29.9. Consider the extension R = C[x] ⊆ R′ =
C[x, y]/(f) where f(x, y) = xy− 1. The prime ideal (x) in C[x] does not lie over any prime
ideal of C[x, y]/(f). If not, then there is a prime ideal p of C[x, y] such that

(x) = C[x] ∩ p (xy − 1) ⊆ p

In particular, both xy − 1, xy ∈ p. Since −1 = xy − 1 − xy, −1 and hence +1 must be in
p, a contradiction. Hence, the extension R = C[x] ⊆ R′ = C[x, y]/(f) is not an integral
extension.

It is still not clear how to prove the extension C[x] ⊆ C[x, y]/(f) is not an integral
extension when f(x, y) = xy. We need another property of integral extensions to argue
that this is indeed the case.

Proposition 29.18. (Incomparability) Let R ⊆ R′ be an integral ring extension. If p′

and p′ are distinct prime ideals in R′ with p′ ∩R = p′ ∩R then p′ ̸⊆ q′ and q′ ̸⊆ p′.

Proof. Assume p′ ⊆ q′. We show that q′ ⊆ p, yielding a contradiction. Assume there is
an element a ∈ q′\p′. By Proposition 29.7, R′/p′ is integral over R/(p′ ∩ R), so there is a
monic relation

an + cn−1a
n−1 + · · ·+ c0 = 0
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in R′/p′ with c0, . . . , cn−1 ∈ R. Pick such a relation of minimal degree n. Since a ∈ q′, this
relation implies c0 ∈ q′/p′, but as c0 ∈ R too we conclude that

c0 ∈ (q′ ∩R)/(p′ ∩R) = (q′ ∩R)/(q′ ∩R) = 0.

Hence, the monic relation has no constant term. But since a ̸= 0 in the integral domain
R′/p′, we can then divide the relation by a to get a monic relation of smaller degree, a
contradiction. □

Example 29.19. Let’s go back to Example 29.9. Consider the extension R = C[x] ⊆ R′ =
C[x, y]/(f) where f(x, y) = xy − 1. Consider ideals (x) and (x, y) of C[x, y]. Since

C[x, y]
(x)

∼= C[y]
C[x, y]
(x, y)

∼= C

are integral domains, the ideals (x) and (x, y) are prime ideals. Moreover, since (xy) ⊆
(x) ⊂ (x, y), (x) ⊂ (x, y) are prime ideals of R′ = C[x, y]/(f). Moreover, note that:

(x) ∩ C[x] = (x) = (x, y) ∩ C[x]
Hence, the extension R = C[x] ⊆ R′ = C[x, y]/(f) is not an integral extension. Otherwise,
this will contradict Proposition 29.18.

Corollary 29.20. (Going Up Theorem) If φ : R → R′ is an integral homomorphism
and p1 ⊆ p2 are prime ideals in R, and q1 is a prime ideal in R′ such that φ−1(q1) = p1,
then there is a prime ideal q2 in R′ with q1 ⊆ q2 and φ−1(q2) = p2.

Proof. Consider the induced homomorphism g : R/p1 → R′/q1, which is injective and
integral. Applying Lemma 29.14 to the prime ideal p2/p1 in R/p1, we conclude that there is
a prime ideal q2/q1 in R′/q1 such that g−1(q2/q1) = p2/p1. It is then clear that q2 satisfies
the conclusion going up theorem. □

30. Noether’s Normalization & Hilbert’s Nullstellensatz

Let us start by giving the geometric idea behind this so-called Noether Normalization
theorem. Consider the coordinare ring

R = C[x1, x2]/(x1x2 − 1)

of the affine algebraic set X = V(x1x2− 1) ⊂ A2. By Example 29.17, we know already that
R is not integral (and hence not finite) over C[x1]. It is easy to change this, however, by a
linear coordinate transformation: if we set, for example,

x1 = y2 + y1, x2 = y2 − y1
then we can write R also as R = C[y1, y2]/(y22 − y21 − 1), and this is now finite over C[y1] by
Lemma 29.4 since the polynomial y22 − y21 − 1 is monic in y2. Geometrically, the coordinate
transformation has rotated A2 so that the Lying Over property now obviously holds. In
terms of geometry, we are therefore looking for a change of coordinates so that a suitable
coordinate projection to some affine space Ar corresponds to a finite ring extension of a
polynomial ring over k in r variables.

Proposition 30.1. (Noether’s Normalization Lemma) Let R be a finitely generated
as a K-algebra with generators x1, · · · , xn. For some positive integer 0 ≤ r ≤ n, we can find
z1, · · · , zr ∈ R such that there is an injective K-algebra morphism K[z1, · · · , zr] → R such
that R is a finite extension of K[z1, . . . , zr].
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x2

x1

y1

y2

x1

f = x1x2 − 1

y2

f = y22−x22−1

The strategy is to find a suitable change of coordinates so that the given relations among
the variables become monic. It turns out that a linear change of coordinates works in
general only for infinite fields, whereas for arbitrary fields one has to allow more general
coordinate transformations.

Lemma 30.2. Let f ∈ K[x1, . . . , xn] be a non-zero polynomial over an infinite field K.
Assume that f is homogeneous, i.e., every monomial of f has the same degree. Then there
are a1, . . . , an−1 ∈ k such that f(a1, . . . , an−1, 1) ̸= 0.

Proof. The case n = 1 is trivial, since a homogeneous polynomial in one variable is just a
constant multiple of a monomial. Assume n > 1. Write f as

f =

d∑
i=0

fix
i
1

where the fi ∈ K[x2, . . . , xn] are homogeneous of degree d − i. As f is non-zero, at least
one fi has to be non-zero. By induction, we can therefore choose a2, . . . , an−1 such that
fi(a2, . . . , an−1, 1) ̸= 0 for this i. But then f(·, a2, . . . , an−1, 1) ∈ K[x1] is a non-zero poly-
nomial, so it has only finitely many zeroes. As K is infinite, we can therefore find a1 ∈ K
such that f(a1, . . . , an−1, 1) ̸= 0. □

Lemma 30.3. Let f ∈ K[x1, . . . , xn] be a non-zero polynomial over an infinite field K.
Then there exist λ ∈ K and a1, . . . , an−1 ∈ k such that

λf(y1 + a1yn, y2 + a2yn, . . . , yn−1 + an−1yn, yn) ∈ K[y1, . . . , yn]

is monic in yn.

Proof. Let d be the degree of f , and write

f =
∑

k1,...,kn

ck1,...,knx
k1
1 · · ·x

kn
n ck1,...,kn ∈ k

Then the leading term of

λf(y1 + a1yn, y2 + a2yn, . . . , yn−1 + an−1yn, yn)
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= λ
∑

k1,...,kn

ck1,...,kn(y1 + a1yn)
k1 · · · (yn−1 + an−1yn)

kn−1yknn

in yn is obtained by always taking the second summand in the brackets and only keeping
the degree-d terms, i.e., it is equal to

λ
∑

k1+...+kn=d

ck1,...,kna
k1
1 · · · a

kn−1

n−1 y
k1+...+kn
n = λfd(a1, . . . , an−1, 1)y

d
n,

where fd is the (homogeneous) degree-d part of f . Now pick a1, . . . , an−1 by Lemma 30.2
such that fd(a1, . . . , an−1, 1) ̸= 0, and set λ = [fd(a1, . . . , an−1, 1)]

−1.
□

Lemma 30.4. Let f ∈ K[x1, . . . , xn] be a non-zero polynomial over an arbitrary field K.
Then there exists λ ∈ k and a1, . . . , an−1 ∈ N such that

λf(y1 + ya1n , y2 + ya2n , . . . , yn−1 + yan−1
n , yn) ∈ k[y1, . . . , yn]

is monic in yn.

Proof. (Proposition 30.1) We will prove the statement by induction on the number n of
generators of R. The case n = 0 is trivial, as we can then choose r = 0 as well. Moreover,
if there is no algebraic relation among the x1, . . . , xn ∈ R, then

K[x1, · · · , xn] ∼= R,

and the claim is clear in this case. Assume there is a non-zero polynomial f over k such
that f(x1, . . . , xn) = 0 in R. Choose λ and a1, . . . , an−1 as in Lemma 30.3 (if k is infinite)
or Lemma 30.4 (for any k) and set

y1 := x1 − a1xn, · · · , yn−1 := xn−1 − an−1xn, yn := xn or

y1 := x1 − xa1n , . . . , yn−1 := xn−1 − xan−1
n , yn := xn

respectively, In both cases, these relations show that the K-subalgebra K[y1, . . . , yn] of R
generated by y1, . . . , yn ∈ R is the same as that generated by x1, . . . , xn, i.e., all of R.
Moreover, yn is integral over the K-subalgebra k[y1, . . . , yn−1] of R, since

λf(y1 + a1yn, . . . , yn−1 + an−1yn, yn) or

λf(y1 + ya1n , . . . , yn−1 + yan−1
n , yn)

respectively, is monic in yn and equal to λf(x1, . . . , xn) = 0. Hence R = k[y1, . . . , yn] is
finite over K[y1, . . . , yn−1] by Lemma 29.4. In addition, the subalgebra k[y1, . . . , yn−1] of
R is finite over a polynomial ring K[z1, . . . , zr] by the induction hypothesis, and thus R is
finite over K[z1, . . . , zr] by transitivity. □

Example 30.5. Let R = C[x1, x2]/(x1x2 − 1). Consider f(x1, x2) = x1x2 − 1 = 0. Then:

f(x1, x2) = x1x2 − 1 = 0

The homogeneous degree 2 term is g(x1, x2) = x1x2. Then for any a1 ∈ C∗, we have that
g(a1, 1) = a1 ̸= 0. Set λ = [g(a1, 1)]

−1 = 1/a1. Consider

y1 = x1 − a1x2 y2 = x2

Then:

0 = f(x1, x2) = λf(y1 + a1y1, y2) =
1

a1

(
y2(y1 + a1y2)− 1

)
= y2

2 +
1

a1
y1y2 −

1

a1
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Therefore y1 is a monic polynomial in C[y1]. Choosing a1 = 1, we have that R =
C[x1, x2]/(x1x2 − 1) is finite over C[x1 − x2]

Using these results, we would like to state and prove Hilbert’s Nullstellensatz. First, we
prove Zariski’s lemma.

Lemma 30.6. (Zariski’s Lemma) Let K be a field, and let R be a finitely generated
K-algebra which is also a field. Then K ⊆ R is a finite field extension. In particular, if in
addition K is algebraically closed, then R = K.

Proof. By Proposition 30.1, we know that R is finite extension over a polynomial ring
K[z1, . . . , zr], and thus also integral over K[z1, . . . , zr] since finite ring extensions are integral.
But R is a field, hence K[z1, . . . , zr] must be a field as well by Lemma 29.14(1). This is only
the case for r = 0, and so R is finite over k. □

Proposition 30.7. (Hilbert’s Nullstellansatz) Let K be an algebraically closed field.
The maximal ideals of K[x1, · · · , xn] are of the form (x1 − a1, · · · , xn − an).

Proof. Clearly, ideals of the form (x1 − a1, · · · , xn − an) are maximal. This is because:

K[x1, · · · , xn]
(x1 − a1, · · · , xn − an)

∼= K.

Conversely, let m be any maximal ideal in K[x1, · · · , xn]. Then the quotient ring,

R =
K[x1, · · · , xn]

m
,

is a field, which is also a finitely generated K-algebra. By Lemma 30.6, R is a field, and
K ⊆ R is a finite field extension. Since K is algebraically closed, R = K. □
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