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Preface

These are notes on algebraic topology compiled in book form. I took these notes during my time
in graduate school while attending a year-long course on the subject. They reflect my ever-growing
bias that the language of categories should be introduced at the start, and spectral sequences should
be introduced early on, as they allow for the deduction of many major ‘homological’ theorems in
algebraic topology through a unified machinery. The notes proceed in order through the fundamental
topics: fundamental groups, homological algebra, homology, cohomology, higher homotopy groups,
and the Serre spectral sequence. Some sections are incomplete, and typographical errors may be
present. Corrections and suggestions are welcome and can be sent to junaid.aftab1994@gmail.
com.
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CHAPTER 1

Introduction

1.1. What is Algebraic Topology?
Topology is best understood as a flexible or ‘deformable’ form of geometry—often informally

described as the study of ‘squishy’ shapes. Unlike classical geometry, which is concerned with rigid
structures defined by distances and angles, topology focuses on the properties of spaces that are pre-
served under continuous deformations such as stretching, bending, or compressing, but not tearing
or gluing. This perspective gives rise to a mathematical theory of shape that abstracts away metric
notions. The foundational ideas were introduced in Poincaré’s seminal work Analysis Situs [Poi10],
which laid the groundwork for the modern field of algebraic topology. At its core, algebraic topol-
ogy utilizes tools from abstract algebra to investigate topological spaces, primarily by associating
algebraic objects that encapsulate essential topological features. In modern terms, the conceptual
foundations of the subject are elegantly expressed through the framework of category theory. In
this framework, one seeks to construct functors from a “topological category” (such as the category
of topological spaces, Top; the homotopy category of topological spaces hTop ) to an “algebraic
category” (such as the category of abelian groups, Ab; the category of commutative rings, , CRing
). This allows the assignment of topological invariants to topological spaces—quantities that re-
main unchanged under homeomorphisms and homotopy—thereby enabling their study via algebraic
methods. Among the most fundamental tools in this paradigm are the constructions of fundamental
group, homology, cohomology, and higher homotopy groups.

1.1.1. Fundamental Group. The most basic topological invariant of a topological space is the
fundamental group (the first homotopy group). The fundamental group of 𝑋 is denoted as 𝜋1(𝑋, 𝑥0),
and it encodes information about continuous functions in a topological space that start and end at 𝑥0
(loops). Intuitively, the fundamental group measures the ‘1-dimensional loop structure’ of a topo-
logical space. For example, we shall see that a circle has a loop, but a sphere does not. By assigning
a group to each topological space, the fundamental group construction defines a covariant functor:

𝜋1 : Top→ Grp

The study of the fundamental group is the first instance of the general principle in algebraic topol-
ogy: replacing continuous geometric data with discrete algebraic structures in order to facilitate
computation and classification.

1.1.2. Homology. For each 𝑛 ≥ 0, the homology covariant functors

𝐻𝑛 : Top→ Ab

assign to each topological space 𝑋 an abelian group 𝐻𝑛 (𝑋) that, heuristically, encodes the structure
of ‘𝑛-dimensional holes’ in 𝑋 . For instance, consider the topological space, 𝑋 , shown in Figure 1.
The ‘1-dimensional hold structure’ of 𝑋 can be computed using a combinatorial homology theory
called simplicial homology. Let’s see how the argument goes. Intuitively, the boundary of an edge
in the diagram can be thought of as a formal difference between the ‘target’ and the ‘source’. So, the
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𝑣1

𝑣2

𝑣3

𝑣4

𝑒1 𝑒2

𝑒3𝑒4

𝑒5

A simplicial complex illustrating edges and a 2-simplex

boundary of 𝑒1 is given by 𝑣2 − 𝑣1. Moreover, let us define a chain of paths to be a formal sum of
edges. For instance, we have the chains

𝑐1 = 𝑒1 + 𝑒5 + 𝑒4

𝑐2 = 𝑒2 + 𝑒3 + 𝑒−1
5

𝑐3 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4

Here 𝑒−1
5 denotes the that edge 𝑒5 is traversed in the opposite direction. In this terminology, we say

there is a cycle in 𝑋 if the boundary of a formal sum of edges vanish. For instance, the boundary
of 𝑐1, 𝑐2, 𝑐3 vanishes. However, the loop 𝑐1 can be shrunk to a point by deforming the path 𝑒4 + 𝑒1
to 𝑒5 by continuously moving it within the interior of 𝑐1. In our terminology, this can be detected
by the fact that 𝑐1 is the boundary of the solid triangle 𝑣1, 𝑣2, 𝑣4. On the other hand, 𝑐2 cannot be
shrunk to a point since the triangle 𝑣2, 𝑣3, 𝑣4 is hollow. Hence, we expect that there is one hole in 𝑋 .
The first simplicial homology group shall detect the presence of such a hole.

Remark 1.1.1. The above intuition can be made precise by the Hurewicz theorem which states that

𝐻Simp
1 (𝑋) � 𝜋1(𝑋)

[𝜋1(𝑋), 𝜋1(𝑋)]

That is 𝐻1(𝑋) is isomorphic to the abelianization of 𝜋1(𝑋), the fundamental group of 𝑋 which quite
literally is a measure of holes in a topological space.

More generally, we shall see that the 𝑛-th simplicial homology group measures the existence of
‘𝑛-dimensional holes’ in a topological space, 𝑋 .

Remark 1.1.2. Moreover, the statement above is only meant for intuition and should be taken with
a grain of salt. In general, there is only a group homomorphism

𝜋𝑛 (𝑋) → 𝐻Simp
𝑛 (𝑋),

for 𝑛 ≥ 2 if 𝑋 is path-connected.

We will encounter several homology theories, including simplicial homology, singular homol-
ogy, and cellular homology. Remarkably, although these theories arise from different constructions,
they are all naturally isomorphic under appropriate conditions and thus yield the same topological
invariants. Each has its own computational and conceptual advantages.
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1.1.3. Cohomology. For each 𝑛 ≥ 0, the cohomology contravariant functors
𝐻𝑛 : Top→ Ab

As we shall see, cohomology offers a dual perspective to homology. While both theories assign
graded abelian groups to topological spaces, cohomology often captures more refined invariants and
exhibits a richer algebraic structure. Notably, cohomology groups can be endowedwith a natural ring
structure via the cup product, making cohomology a contravariant functor from topological spaces
to graded commutative rings.

𝐻𝑛 : Top→ CRing,
This additional structure enables deeper connections to other areas such as geometry, bundle theory,
and differential topology. The following is a list of some reasons to study cohomology:

1.1.4. Homotopy. Homotopy groups constitute a class of fundamental invariants in algebraic
topology that classify continuous maps up to homotopy, thereby capturing the intrinsic shape and
deformation properties of topological spaces. The first homotopy group is just the fundamental
group. The higher homotopy groups, 𝜋𝑛 (𝑋, 𝑥0) for 𝑛 ≥ 2, generalize this notion to homotopy classes
of based maps from the 𝑛-sphere S𝑛 into 𝑋 , thereby detecting higher-dimensional analogues of holes
and obstructions to contractibility. While these groups contain richer and more nuanced topological
information than homology or cohomology, they are generally more challenging to compute.

1.2. Preliminaries
1.2.1. Notation. Here is a list of some standard notation used throughout the notes:

R𝑛 Euclidean space
D𝑛 = {𝑥 ∈ R𝑛 | ∥𝑥∥ ≤ 1} 𝑛-dimensional disk

S𝑛−1 = {𝑥 ∈ D𝑛 | ∥𝑥∥ = 1} (𝑛 − 1)-dimensional sphere

B𝑛 = D𝑛 \ S𝑛−1 𝑛-dimensional unit open ball
𝐼𝑛 = {𝑥 ∈ R𝑛 | 0 ≤ 𝑥𝑖 ≤ 1} 𝑛-dimensional unit cube
𝜕𝐼𝑛 = {𝑥 ∈ 𝐼𝑛 | 𝑥𝑖 = 0 or 1 for some 𝑖} boundary of 𝐼𝑛

1.2.2. Category Theory. Throughout these notes, we assume familiarity with the language of
category theory¹, and it is freely used throughout the notes. References include [Rie17; Lei14;
Mac13]. Here is a review of basic notions in category theory:

• A category 𝒞 consists of
– a collection of objects Ob(𝒞),
– for each pair of objects 𝑋,𝑌 ∈ 𝒞, a set of morphisms Hom𝒞 (𝑋,𝑌 ),
– identity morphisms Id𝑋 for each 𝑋 ,
– a composition law ◦ satisfying associativity and unitality.

• A functor ℱ : 𝒞 → 𝒟 assigns to each object 𝑋 ∈ 𝒞 an object ℱ(𝑋) ∈ 𝒟, and to each
morphism 𝑓 : 𝑋 → 𝑌 a morphism ℱ( 𝑓 ) : ℱ(𝑋) → ℱ(𝑌 ), such that:

ℱ(Id𝑋) = Idℱ (𝑋)

ℱ(𝑔 ◦ 𝑓 ) = ℱ(𝑔) ◦ℱ( 𝑓 )
The class of morphisms between 𝑋,𝑌 ∈ 𝒞 is denoted by Hom𝒞 (·, ·). We usually wite
Hom𝒞 (·, ·) as simply Hom(·, ·).

¹This is covered in detail in my other notes.
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• A natural transformation 𝜂 : ℱ ⇒ 𝒢 between functors ℱ,𝒢 : 𝒞 → 𝒟 assigns to each
object 𝑋 in 𝒞 a morphism 𝜂𝑋 : ℱ(𝑋) → 𝒢(𝑋) in 𝒟 such that for every morphism
𝑓 : 𝑋 → 𝑌 in 𝒞, the following square commutes:

ℱ(𝑋) ℱ(𝑌 )

𝒢(𝑋) 𝒢(𝑌 )

𝐹 ( 𝑓 )

𝜂𝑋 𝜂𝑌

𝐺 ( 𝑓 )

• A functorℱ : 𝒞 → 𝒟 is an equivalence of categories if there exists a functor𝐺 : 𝒟→ 𝒞

ℱ ◦𝒢 � Id𝒟

𝒢 ◦ℱ � Id𝒞

Equivalently, ℱ : 𝒞 → 𝒟 is an equivalence of categories if and only if:
– ℱ is fully faithful, i.e., for all objects 𝑋,𝑌 ∈ 𝒞, the map

Hom𝒞 (𝑋,𝑌 )
∼−→ Hom𝒟(𝐹 (𝑋), 𝐹 (𝑌 ))

is a bijection; and
– ℱ is essentially surjective, i.e., for every object 𝐷 ∈ 𝒟, there exists an object 𝐶 ∈ 𝒞

such that ℱ(𝐶) � 𝐷 in 𝒟.
• A diagram in a category 𝒞 is a functor

𝐷 : 𝒥 → 𝒞

from an index category 𝒥. The limit (resp. colimit) of such a diagram is a universal cone
(resp. cocone) over 𝐷. Examples of limits include products and pullbacks; examples of
colimits include coproducts and pushouts.
• A functor ℱ : 𝒞 → 𝒟 is said to be: left adjoint to 𝒢 : 𝒟 → 𝒞 if there is a natural

isomorphism:

Hom𝒟(ℱ(𝑋), 𝑌 ) � Hom𝒞 (𝑋,𝒢(𝑌 ))

for all 𝑋 ∈ 𝒞, 𝑌 ∈ 𝒟. In this case, 𝐹 ⊣ 𝐺 and 𝐺 is called a right adjoint.

Remark 1.2.1. The language of derived functors and resolutions is reviewed in the appendix (Chap-
ter 15).

Wewill frequently make use of various algebraic categories. A few standard examples are listed
below:

• Grp : The objects of Grp are groups and Hom(𝐺, 𝐻) consists of group homomorphisms
from 𝐺 to 𝐻.
• Ab : The objects of Ab are abelian groups and Hom(𝐺, 𝐻) consists of group homomor-

phisms from 𝐺 to 𝐻.
• CRing: The objects of CRing are commutative rings, and Hom(𝑅, 𝑆) consists of ring

homomorphisms from 𝑅 to 𝑆.
• Grpd : The objects of Grpd are groupoids, which are categories in which each morphism

is an isomorphism, and Hom(𝑋,𝑌 ) consists of functors between groupoids from 𝑋 to 𝑌 .
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1.2.3. Topology. Basic notions in topology will be assumed throughout. We usually assume
that a fixed base point 𝑥0 ∈ 𝑋 has been chosen, in which case 𝑋 is called a pointed topological
space. A continuous function 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) between pointed topological spaces is assumed
to satisfy 𝑓 (𝑥0) = 𝑦0. Such functions are called pointed continuous maps. The following categories
naturally arise in algebraic topology:

• Top: The objects are topological spaces and Hom(𝑋,𝑌 ) is the set of continuous functions
from 𝑋 to 𝑌 .
• Top∗: The objects are pointed topological spaces, (𝑋, 𝑥0) and Hom((𝑋, 𝑥0), (𝑌, 𝑦0)) con-

sists of continuous maps 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) such that 𝑓 (𝑥0) = 𝑦0. Such maps are called
pointed continuous maps.
• Top2: The objects are all pairs (𝑋, 𝐴) where 𝑋 is a topological space and 𝐴 ⊆ 𝑋 is a

subspace and Hom((𝑋, 𝐴), (𝑌, 𝐵)) is simply the set of continuous map 𝑓 : 𝑋 → 𝑌 such
that 𝑓 (𝐴) ⊆ 𝐵.
• Top3: The objects are all triples (𝑋, 𝐴, 𝐵) where 𝑋 is a topological space and 𝐵 ⊆ 𝐴 ⊆ 𝑋

is a subspace. Then Hom((𝑋, 𝐴, 𝐶), (𝑌, 𝐵, 𝐷)) is simply the set of continuous maps 𝑓 :
𝑋 → 𝑌 such that 𝑓 (𝐴) ⊆ 𝐵 and 𝑓 (𝐶) ⊆ 𝐷.

Additional categories arising in algebraic topology will be introduced as needed later in the
notes. Below, we recall some basic universal properties that will be invoked frequently throughout.

• Top has products and co-products. The product of 𝑋,𝑌 is given by the Cartesian product
𝑋 × 𝑌 of topological spaces with the product topology. The product is an example of a
categorical pullback:

𝐴

𝑋 × 𝑌 𝑋

𝑌

𝑔

𝑓

𝜋𝑌

𝜋𝑋

The co-product of 𝑋,𝑌 is given by the disjoint union 𝑋⊔𝑌 with the disjoint union topology.
The disjoint union is an an example of a categorical pushout:

𝑋

𝑌 𝑋
∐
𝑌

𝐴

𝜄𝑋
𝑔

𝜄𝑌

𝑓

• The category Top∗ has products and co-products. The product of (𝑋, 𝑥0), (𝑌, 𝑦0) is given
by the pointed Cartesian product (𝑋 × 𝑌, (𝑥0, 𝑦0)). The pointed Cartesian product is an
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example of a categorical pullback:

𝐴

𝑋 × 𝑌 𝑋

𝑌 {∗}

𝑔

𝑓

𝜋𝑌

𝜋𝑋

The coproduct of (𝑋, 𝑥0), (𝑌, 𝑦0) is given by the wedg sum

𝑋 ∨ 𝑌 := (𝑋 × 𝑌 )/∼
where the quotient identifies the basepoints 𝑥0 and 𝑦0 to a single point. The wedge sum is
an instance of a categorical pushout:

{∗} 𝑋

𝑌 𝑋 ∨ 𝑌

𝐴

𝜄𝑋 𝑔

𝜄𝑌

𝑓

1.3. Topological Manifolds
One of the principal classes of spaces studied in algebraic topology through topological in-

variants is that of topological manifolds. These are spaces that, in a local sense, resemble Eu-
clidean space. Familiar examples include plane curves such as circles and parabolas, as well as
two-dimensional surfaces like spheres and tori. A comprehensive treatment of topological mani-
folds can be found in [Lee10].

Definition 1.3.1. A topological space, 𝑋 , is a topological 𝑛-manifold if 𝑋 is a second-countable,
Hausdorff space that is locally homemorphic to R𝑛. That is, each point of 𝑋 is contained in a coor-
dinate chart, which is a pair (𝑈, 𝜙), where 𝑈 is an open subset of 𝑋 and 𝜙 : 𝑈 → 𝜙(𝑈) ⊆ R𝑛 is a
homeomorphism from𝑈 to an open subset 𝜙(𝑈) of R𝑛.

𝑈

R𝑛𝜙(𝑈)
𝜙

Remark 1.3.2. The number 𝑛 is attached to a single chart and might apriori depend on the chart
itself. This turns out to be not the case. This result is called the invariance of dimension and will be
proved later.



1.3. TOPOLOGICAL MANIFOLDS 13

Remark 1.3.3. A collection of charts (𝑈𝛼, 𝜙𝛼) such that
⋃
𝛼𝑈𝛼 = 𝑀 is an atlas for 𝑋 .

We discuss the implications of the conditions imposed in Definition 1.3.1. Since a topological
manifold is locally Euclidean, it is easy to see that it inherits a number of properties of Euclidean
space locally. For instance, we have the following:

Proposition 1.3.4. Let 𝑋 be a topological 𝑛-manifold. Then 𝑋 is locally compact, locally path-
connected and locally contractible.
PROOF. Every point of 𝑋 has a neighborhood homeomorphic to the open unit ball in R𝑛. Each open
ball in R𝑛 is locally compact, locally compact and locally path-connected, locally contractible. The
claim follows. □

The locally Euclidean condition does not impose any topological properties at the global level.
The second-countablity and Hausdorff conditions account for this detail. Intuitively, Hausdorff
spaces have ‘enough open sets.’ This ensures that familiar properties hold: for example, in a Haus-
dorff space, finite subsets are closed, limits of convergent sequences are unique etc. Moreover, this
condition also excludes certain pathological examples like the line with two origins etc. On the other
hand, second-countable spaces ‘don’t have too many open sets that are required to cover the space.’
The following is a sample global topological property of a topological 𝑛-manifold.

Proposition 1.3.5. Let 𝑋 be a topological 𝑛-manifold. 𝑋 has a countable basis of precompact
coordinate balls.
PROOF. First consider the special case in which 𝑋 can be covered by a single chart. Suppose 𝜑 :
𝑀 → 𝑈 ⊆ R𝑛 is a global coordinate chart. Let

B = {𝐵𝑟 (𝑥) : 𝑥 ∈ Q, 𝑥 ∈ Q𝑛 𝐵𝑟 ′ (𝑥) ⊆ 𝑈 for some 𝑟 ′ < 𝑟}
Each 𝐵𝑟 (𝑥) ∈ B is pre-compact in 𝑈, and it is easy to check that B is a countable basis for the
topology of 𝑈. Because 𝜑 is a homeomorphism, it follows that 𝜑−1(B) is a countable basis for
𝑋 , consisting of pre-compact coordinate balls. More generally, each 𝑝 ∈ 𝑀 is in the domain of a
coordinate chart. Since 𝑋 is second-countable, 𝑋 is covered by countably many coordinate charts
{(𝑈𝑖 , 𝜑𝑖)}∞𝑖=1. By the argument in the preceding paragraph, each 𝑈𝑖 has a countable basis of coor-
dinate balls that are pre-compact in 𝑈𝑖 . If 𝑉 ⊆ 𝑈𝑖 is one of these balls, then the closure of 𝑉 in 𝑈𝑖
is compact, and because 𝑋 is Hausdorff, it is closed in 𝑋 . It follows that the closure of 𝑉 in 𝑋 is the
same as its closure in 𝑈𝑖 , so 𝑉 is precompact in 𝑋 as well. Clearly, the union of all these countable
bases is a countable basis for 𝑋 . □

Example 1.3.6. The following is a list of examples of topological manifolds.
(1) R𝑛 is a topological 𝑛-manifold. R𝑛 is covered by a single chart (R𝑛, IdR𝑛), where IdR𝑛 :
R𝑛 → R𝑛 is the identity map.

(2) (Spheres) The unit 𝑛-sphere, S𝑛, is Hausdorff and second-countable because it is a topo-
logical subspace of R𝑛+1. For each 1 ≤ 𝑖 ≤ 𝑛 + 1, consider the sets:

𝑈+𝑖 = {(𝑢1, · · · , 𝑢𝑛+1) ∈ R𝑛+1 | 𝑢𝑖 > 0}
𝑈−𝑖 = {(𝑢1, · · · , 𝑢𝑛+1) ∈ R𝑛+1 | 𝑢𝑖 < 0}

Let 𝑓 : B𝑛 → R be the continuous function defined by

𝑓 (𝑥) =
√

1 − ∥𝑢∥2

For each 1 ≤ 𝑖 ≤ 𝑛,𝑈±𝑖 ∩ S𝑛 is the graph of the function

𝑢𝑖 = ± 𝑓 (𝑢1, · · · , 𝑢𝑖 , · · · , 𝑢𝑛+1),
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where the hat indicates that 𝑢𝑖 is omitted. Thus, each subset 𝑈±𝑖 ∩ S𝑛 is locally Euclidean
of dimension 𝑛, and the maps 𝜙𝑖 : 𝑈±𝑖 ∩ S𝑛 → B𝑛 given by

𝜙𝑖 (𝑢1, · · · , 𝑢𝑛+1) = (𝑢1, · · · , 𝑢𝑖 , · · · , 𝑢𝑛+1)
defines the desired homemorphism.

(3) (Real Projective Space) The real projective space, RP𝑛, is defined as the quotient space,
RP𝑛 = (R𝑛+1 \ {0})/∼ with the equivalence relation

𝑥 ∼ 𝑦 in R𝑛+1 \ {0} ⇐⇒ 𝑥 = 𝜆𝑦 for some 𝜆 ∈ R×

It is made into a topological space by giving it the quotient topology via the map

𝜋 : R𝑛+1 \ {0} → RP𝑛,
where [𝑥] := 𝜋(𝑥) = span{𝑥}. It can be easily checked that

RP𝑛 � S𝑛/∼
where ∼ is the equivalence relation on S𝑛 such that 𝑥 ∼ −𝑥 (i.e., antipodal points are
identified). We check that RP𝑛 is both second-countable and Hausdorff:
(a) Consider the quotient map: 𝑞 : S𝑛 → S𝑛/∼ Note that 𝑞 is an open map. Indeed for

any open subset 𝑉 ⊆ S𝑛, we have:

𝑞−1(𝑞(𝑉)) = 𝑉 ∪ −𝑉,
Since S𝑛 is second-countable, RP𝑛 � S𝑛/∼ is also second-countable as 𝑞 is an open
map.

(b) If [𝑥], [𝑦] ∈ S𝑛/∼, then one can choose 𝜀 > 0 small enough that

𝑈 = B(𝑥, 𝜀) ∩ S𝑛

𝑉 = B(𝑦, 𝜀) ∩ S𝑛

are open sets in S𝑛 such that ±𝑈,±𝑉 are pairwise disjoint. Since,

𝑞−1(𝑞(𝑈)) = 𝑈 ∪ −𝑈
𝑞−1(𝑞(𝑉)) = 𝑉 ∪ −𝑉

𝑞−1(𝑞(𝑈)) and 𝑞−1(𝑞(𝑉)) are open disjoint subsets of S𝑛/∼ containing [𝑥] and [𝑦].
Hence, RP𝑛 � S𝑛/∼ is Hausdorff.

For each 1 ≤ 𝑖 ≤ 𝑛 + 1, consider the sets:

𝑈𝑖 = {(𝑢1, · · · , 𝑢𝑛+1) ∈ R𝑛+1 | 𝑢𝑖 ≠ 0}

Let 𝑈𝑖 = 𝜋(𝑈𝑖). By properties of the quotient topology, 𝑈𝑖 is an open subset of R𝑛. Con-
sider the map 𝜙𝑖 : 𝑈𝑖 → R𝑛 defined as:

𝜙𝑖 ( [𝑢]) =
(
𝑢1

𝑢𝑖
, · · · , 𝑢

𝑖−1

𝑢𝑖
, 1, 𝑢

𝑖+1

𝑢𝑖
, · · · , 𝑢

𝑛+1

𝑢𝑖

)
.

This map is well-defined because its value is unchanged by multiplying 𝑥 by a nonzero
constant. By properties of the quotient topology, 𝜙𝑖 is continuous. In fact, 𝜙𝑖 is a homeo-
morphism because it has a continuous inverse given by

𝜙−1
𝑖 (𝑢1, · · · , 𝑢𝑛) = [𝑢1, · · · , 𝑢𝑖−1, 1, 𝑢𝑖 , · · · , 𝑢𝑛];

This shows that RP𝑛 is locally Euclidean of dimension 𝑛.
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(4) (Tori) For a positive integer 𝑛 ≥ 2, the (𝑛 − 1)-torus is the product space

S1 × · · · × S1

It is clear that a product of topological manofolds is a topolopgical manifold. Hence, 𝑇 is
topological 𝑛-manifold since S1 is a 1-manifold.

Remark 1.3.7. For 𝑛 ≥ 2, we usually abbreviate the 𝑛-torus as T𝑛.

Sets such as closed intervals in R and closed balls in R𝑛 fail to be both topological manifolds
since they ‘have a boundary of sorts.’ We make precise the notion of a topological manifold with
boundary.

Definition 1.3.8. Let 𝑋 be a topological space. 𝑋 is a topological 𝑛-manifold with boundary if 𝑋 is
a second countable, Hausdorff space such that each point 𝑥 ∈ 𝑀 is contained in a coordinate chart,
(𝑈, 𝜙), such that:

(1) (Interior Chart) Either 𝜙 : 𝑈 → 𝜙(𝑈) ⊆ R𝑛 is a homeomorphism from 𝑈 to an open
subset 𝜙(𝑈) of R𝑛.

(2) (Boundary Chart) Or 𝜙 : 𝑈 → 𝜙(𝑈) ⊆ H𝑛 is a homeomorphism from 𝑈 to an open
subset 𝜙(𝑈) of H𝑛, the upper-half plane, such that 𝜙(𝑥) ∩ 𝜕H𝑛 ≠ ∅.

A point 𝑝 ∈ 𝑀 is called an interior point of 𝑋 if it is in the domain of some interior chart or a
boundary chart (𝑈, 𝜙) such that 𝜙(𝑈) ∩ 𝜕H𝑛 = ∅. It is a boundary point of 𝑋 if it is in the domain
of a boundary chart that sends 𝑝 to 𝜕H𝑛. The boundary of 𝑋 (the set of all its boundary points) is
denoted by 𝜕𝑀; similarly, its interior, the set of all its interior points, is denoted by Int(𝑀).

Remark 1.3.9. A point 𝑝 ∈ 𝑀 might apriori simultaneously be a boundary point and an interior
point, meaning that there is one interior chart whose domain contains 𝑝, and another boundary
chart that sends 𝑝 to 𝜕H𝑛. This turns out not to be the case. This result is called the invariance of
boundary and will be proved later.

Example 1.3.10. (Sketch) The following is a list of basic examples of a topological manifold with
boundary.

(1) B𝑛 is smooth 𝑛-manifold with boundary. One can prove this by definition. We skip details.
(2) If 𝑋 is a 𝑛-dimesnional manifold with boundary, then 𝜕𝑀 is a (𝑛−1)-dimensional manifold

without boundary. We skip details.

1.4. CW Complexes
Another important class of spaces studied via topological invariants in algebraic topology is that

of CW complexes. These spaces can be constructed combinatorially by successively attaching basic
building blocks—namely, disks of various dimensions. For further details, see [Hat02; Lee10].

1.4.1. Definitions. An arbitrary topological space, 𝑋 , can be difficult to visualize and analyze.
We shall focus mostly focus on the subcategory of topological spaces that can be constructed in-
ductively using open cells. This will be category of CW-complexes. This approach will allow us to
meaningfully study a lot of topological spaces.

Definition 1.4.1. An open 𝑛-cell is a topological space that is homeomorphic to the open unit ball
B𝑛. A closed 𝑛-cell is a topological space homeomorphic to D𝑛.

Remark 1.4.2. We will only use the phrase 𝑛-cell when the context is clear.
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New topological spaces can be constructed from old topological spaces by attaching an 𝑛-cell.
Let 𝑋 be a topological space. Suppose there is a map 𝜙 : S𝑛−1 → 𝑋 a map. One can form a new
topological space, 𝑋

∐
𝜙 D

𝑛, from the disjoint union 𝑋
∐
D𝑛 by identifying each 𝜙(𝑥) ∈ S𝑛−1 with

𝜙(𝑥) ∈ 𝑋 for all 𝑥 ∈ S𝑛−1, and equipping the resulting set with the quotient topology. The map
𝜙 is called the characteristic map. We refer to the space 𝑋

∐
𝜙 D

𝑛 as being obtained from 𝑋 by
‘attaching an 𝑛-cell’, and call 𝜙 : S𝑛−1 → 𝑋 the attaching map. Using the the universal properties
of the disjoint union and quotient topology, we have the following commutative diagram.

S𝑛−1 𝑋

D𝑛 𝑋
∐
𝜙 D

𝑛

𝑌

𝜙

𝜄 𝑓1

𝑓2

𝑓

Remark 1.4.3. In fact, this shows that 𝑋∐
𝜙 D

𝑛 is a pushout in Top.

One can also attach more than one 𝑛-cell. Let {D𝑛𝛼}𝛼∈𝐴𝑛 be a collection of 𝑛-cells and let 𝜙𝑛𝛼 :
S𝑛−1
𝛼 → 𝑋 be a collection of continuous maps. One can form a new topological space, 𝑋

∐
𝜙𝑛𝛼
D𝑛𝛼,

by attaching the aforementioned collection of 𝑛-cells using the rule prescribed above. Once again,
we have a commutative diagram:

∐
𝜙𝑛𝛼
S𝑛−1
𝛼 𝑋

∐
𝜙𝑛𝛼
D𝑛𝛼 𝑋

∐
𝜙𝑛𝛼
D𝑛𝛼

𝑓

𝜄

Remark 1.4.4. This shows that 𝑋∐
𝜙𝑛𝛼
D𝑛𝛼 is a pushout in Top.

Definition 1.4.5. Let 𝑋 be a topological space. ACWdecomposition of 𝑋 is a sequence of subspaces

𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ · · · ⊆ 𝑋𝑛 ⊆ · · · 𝑛 ∈ N,

of 𝑋 such that the following three conditions are satisfied:
(1) The space 𝑋0 is discrete.
(2) The space 𝑋𝑛 is obtained from 𝑋𝑛−1 by attaching a (possibly) infinite number of 𝑛-cells
{D𝑛𝛼}𝛼∈𝐴𝑛 via attaching maps 𝜙𝑛𝛼 : S𝑛−1

𝛼 → 𝑋𝑛−1.
(3) The topology of 𝑋 is compatible with quotient topology on 𝑋 that makes the∐

𝑛∈N
𝑋𝑛 → 𝑋

continuous. In other words, 𝐴 ⊆ 𝑋 is open if and only if 𝐴 ∩ 𝑋𝑛 is open for all 𝑛 ≥ 0.

Remark 1.4.6. If 𝑋 admits a CW decomposition, then it can be easily checked that 𝑋 is a colimit of
{𝑋𝑛}𝑛∈N∪{0} . In particular, 𝑋 is the colimit of the diagram

𝑋0 𝑗0−→ 𝑋1 → · · · → 𝑋𝑛
𝑗𝑛−−→ 𝑋𝑛+1 → · · ·

in Top. Here 𝑗𝑛 is the inclusion of 𝑋𝑛 into 𝑋𝑛+1.



1.4. CW COMPLEXES 17

We can now define the category of CW complexes, CW. The objects of the category are topo-
logical spaces that admit a CW structure (CW complexes), and morphisms between CW complexes
are cellular continuous maps. That is, 𝑓 (𝑋𝑛) ⊆ 𝑌𝑛 for each 𝑛 ≥ 0 where 𝑓 is a continuous map. In
other words, if 𝑋 and 𝑌 are CW complexes and we have a commutative diagram

𝑋0 𝑋1 · · · 𝑋𝑛 𝑋𝑛+1 · · ·

𝑌0 𝑌1 · · · 𝑌𝑛 𝑌𝑛+1 · · ·
then, on forming the colimits, we obtain an induced map 𝑓 : 𝑋 → 𝑌 which is a cellular map.
Remark 1.4.7. CW∗ is the category of pointed CW complexes defined analogously to Top∗. Simi-
larly, CW2 is the category of pairs of CW complexes defined analogously to Top2.

Each cellD𝑛𝛼 has its characteristic map 𝜙𝑛𝛼, which is by definition the composition of continuous
maps:

D𝑛𝛼 𝑋𝑛−1 ∐
D𝑛𝛼 𝑋𝑛−1 ∐

𝜙 D
𝑛
𝛼 𝑋

𝜙𝑛𝛼

Proposition 1.4.8. Let 𝑋 be a topological space with a CW decomposition. 𝐴 ⊆ 𝑋 is open if and
only if (𝜙𝑛𝛼)−1(D𝑛𝛼) is continuous for each 𝛼 ∈ 𝐴𝑛 and 𝑛 ∈ N. In particular, 𝑋 is a quotient space
of

∐
𝛼∈𝐴𝑛 ,𝑛∈ND

𝑛
𝛼

PROOF. The forward implication is clear. Conversely, suppose (𝜙𝑛𝛼)−1(D𝑛𝛼) is open in D𝑛𝛼 for each
for each 𝛼 ∈ 𝐴𝑛 and 𝑛 ∈ N. Suppose by induction on 𝑛 that 𝐴 ∩ 𝑋𝑛−1 is open in 𝑋𝑛−1. Since
(𝜙𝑛𝛼)−1(D𝑛𝛼) is open inD𝑛𝛼 for all 𝛼 ∈ 𝐴𝑛, then 𝐴∩𝑋𝑛 is open in 𝑋𝑛 by the definition of the quotient
topology on 𝑋𝑛. The last implication is clear by definition. □

Definition 1.4.9. Let 𝑋 be a topological space. 𝑋 is a CW complex if 𝑋 admits a CW decomposition
satisfying the following two properties:

(1) The closure of each open cell is contained in a union of finitely many cells.
(2) The topology of 𝑋 is coherent with {{D𝑛𝛼}𝛼∈𝐴𝑛 : 𝑛 ∈ N}².

A CW complex is finite (or finite-dimensional) if there are only finitely many cells involved.
Every finite CW decomposition is automatically a finite CW complex. In fact, every locally finite
CW decomposition is automatically a CW complex as we show below.
Proposition 1.4.10. Let 𝑋 be a topological space endowed with a CW decomposition. If {D𝑛𝛼 | 𝛼 ∈
𝐴𝑛, 𝑛 ∈ N} is a locally finite collection, then 𝑋 is a CW complex.
PROOF. By assumption, every point D𝑛𝛼 has a neighborhood that intersects only finitely many cells.
Since D𝑛𝛼 is compact, it is covered by finitely many such neighborhoods. This readily implies (1) in
Definition 1.4.9. Suppose 𝐴 ⊆ 𝑋 is a subset such that 𝐴 ∩D𝑛𝛼 is closed for each 𝛼 ∈ 𝐴𝑛 and 𝑛 ∈ N.
Given 𝑥 ∈ 𝑋 \ 𝐴, let 𝑊𝑥 be a neighborhood of 𝑥 that intersects the closures of only finitely many
cells, say D𝑛1

1 , . . . ,D
𝑛𝑘
𝑘 . Since 𝐴 \ D𝑛 𝑗𝑗 is closed in D𝑛 𝑗𝑗 and thus in 𝑋 , it follows that

𝑊 \ 𝐴 = 𝑊 \
(
𝐴 ∩ D𝑛1

1
)
∪ . . . ∪

(
𝐴 ∩ D𝑛𝑘𝑘

)
²That is, 𝐴 ⊆ 𝑋 is open/closed if and only if 𝐴 ∩ D𝑛𝛼 is open/closed for each 𝛼 ∈ 𝐴𝑛 and 𝑛 ∈ N.
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is a neighborhood of 𝑥 contained in 𝑋 \ 𝐴. Thus 𝑋 \ 𝐴 is open, so 𝐴 is closed. This readily implies
(2) in Definition 1.4.9. □

1.4.2. Examples. In the examples that follows, we will not explicitly check that condition (3)
in Definition 1.4.5 is satisfied. It should be straightforward to do verify these claims, though.

Example 1.4.11. Let 𝑁 = (0, . . . , 0, 1) in S𝑛. Consider the map 𝜎𝑁 : S𝑛 \ {𝑁} → R𝑛 by ³

𝜎𝑁 (𝑢1, . . . , 𝑢𝑛+1) =
(

𝑢1

1 − 𝑢𝑛+1 , . . . ,
𝑢𝑛

1 − 𝑢𝑛+1

)
Similarly, consider 𝛽𝑁 : R𝑛 → S𝑛 \ {𝑁}

𝛽𝑁 (𝑢1, . . . , 𝑢𝑛) =
(

2𝑢1

|𝑢 |2 + 1
, · · · , 2𝑢𝑛

|𝑢 |2 + 1
,
|𝑢 |2 − 1
|𝑢 |2 + 1

)
.

It is easy to check that 𝜎𝑁 , 𝛽𝑁 are inverses of each other. Hence, R𝑛 � S𝑛 \ {𝑁}. The map 𝜎𝑁 is
called the stereographic projection. S𝑛 can now be given a CW structure with one 0-cell (D0) and
one 𝑛-cell (D𝑛). The attaching map for the 𝑛-cell is 𝜙 : S𝑛−1 = 𝜕D𝑛 → {∗}.

Example 1.4.12. S𝑛 can be given a different CW structure with two 𝑘-cells in each dimension for
0 ≤ 𝑘 ≤ 𝑛. Let 𝑋0 = S0 = {D0

1,D
0
2}. Then 𝑋1 = S1 where the two 1-cells D1

1,D
1
2 are attached to the

0-cells by homeomorphisms on their boundary. Similarly, two 2-cells can be attached to 𝑋1 = S1 by
homeomorphism on their boundary, giving 𝑋2 = S2. Proceed inductively.

Example 1.4.13. There are natural inclusions

S0 ⊆ S1 ⊆ · · · ⊆ S𝑛 ⊆ · · · ⊆
We can then define S∞ = lim−−→𝑛∈N

S𝑛. If S𝑛 is given a CW structure as in Example 1.4.12 for each
𝑛 ≥ 0, then S∞ is a CW complex as well. Note that S∞ is a colimit of the S𝑛’s for 𝑛 ≥ 0.

Example 1.4.14. Consider RP𝑛 as the quotient of S𝑛 with anti-podal points identified. An easy
observation shows that RP𝑛 is a quotient of D𝑛 by the relation 𝑥 ∼ −𝑥 on the boundary S𝑛−1⁴. Thus,
RP𝑛 can be obtained from RP𝑛−1 by attaching a one cell.

S𝑛−1 D𝑛

RP𝑛−1 RP𝑛

Thus RP𝑛 can be built as a CW complex with a single cell in each dimension ≤ 𝑛.

Example 1.4.15. There are natural inclusions

RP0 ⊆ RP1 ⊆ · · · ⊆ RP𝑛 ⊆ · · · ⊆
We can then define RP∞ = lim−−→𝑛∈N

RP𝑛. Note that RP∞ is a colimit of the RP𝑛’s for 𝑛 ≥ 0. We can
define CP∞ similarly to RP∞.

³Let 𝑥 = (𝑥1, . . . , 𝑥𝑛+1) ∈ S𝑛 \ {𝑁}. The line through 𝑁 and 𝑥 is parameterized by

𝑢1 = 𝑥1𝑡, . . . , 𝑢𝑛 = 𝑥𝑛𝑡, 𝑢𝑛+1 = (𝑥𝑛+1 − 1)𝑡 + 1
The intersection of this line with 𝑢𝑛+1 = 0 occurs when 𝑡 = 1

1−𝑥𝑛+1 . Hence, the intersection point is (𝜎𝑁 (𝑥), 0), as
desired. Therefore, 𝜎𝑁 (𝑥) is the intersection of the line through 𝑁 and 𝑥 with the R𝑛 plane.
⁴It is easy to check that these identifications are consistent with out discussion of the real projective plane, which is RP2.
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Example 1.4.16. The complex projective space, CP𝑛, is defined as the quotient spaceCP𝑛 = (C𝑛+1\
{0})/∼ with the equivalence relation 𝑥 ∼ 𝑦 in C𝑛+1 \ {0} if and only if 𝑥 = 𝜆𝑦 for some 𝜆 ≠ 0. Note
that there is a map

D2𝑛 → CP𝑛

(𝑧0, . . . , 𝑧𝑛−1) ↦→ [𝑧0, . . . , 𝑧𝑛−1,
√

1 − ∥𝑧∥]

The boundary of D2𝑛 (where
√

1 − ∥𝑧∥ = 0) is sent to CP𝑛−1. In this way, CP𝑛 is obtained from
CP𝑛−1 by attaching one 2𝑛-cell. So CP𝑛 has a CW structure with one cell in each even dimension
0, 2, . . . , 2𝑛.

Example 1.4.17. There are natural inclusions

CP0 ⊆ CP1 ⊆ · · · ⊆ CP𝑛 ⊆ · · · ⊆

We can then define CP∞ = lim−−→𝑛∈N
CP𝑛 as before.

Let’s discuss some 2-dimensional examples. It is well-known that compact, connected 2-dimensional
manifolds are classified into the following types:

(1) S2,
(2) A connected sum of 𝑔-tori T (or a 𝑔-hold torus) for 𝑔 ≥ 2,
(3) A connected sum of 𝑔-projective spaces RP2, for 𝑔 ≥ 2.

We have already discussed a CW-structure on S2. We discuss examples of the other 2-manifolds
below:

Example 1.4.18. Consider 𝑋 = T2 = S1 × S1 (the 1-torus) or RP2 (the real projective plane). Both
spaces can be constructed as quotients of a rectangle by identifying edges according to specific rules:
for the torus, opposite edges are identified in the same direction, while for RP2, one pair of opposite
edges are identified normally and the other pair with reversed orientation. These identification dia-
grams offer a convenient way to visualize the topology of each space. Each space admits a natural
CW complex structure with the following cells:

(1) a single 0-cell representing the vertex of the rectangle,
(2) two 1-cells corresponding to the edges of the rectangle,
(3) a single 2-cell which is attached via a continuous map from the boundary circle S1 into the

1-skeleton.

𝑏

𝑎

𝑏

𝑎

𝑣 𝑣

𝑣𝑣

𝑋 = T

𝑏

𝑎

𝑏

𝑎

𝑣 𝑣

𝑣𝑣

𝑋 = RP2
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Example 1.4.19. For 𝑔 ≥ 1, a model for a connected sum of 𝑔 copies of the torus T2 = S1 × S1 is
denoted by𝑀𝑔, and is known as an orientable surface of genus 𝑔. The surface𝑀𝑔 can be constructed
by taking a polygon with 4𝑔 sides and identifying its edges in pairs according to the word

𝑎1𝑏1𝑎
−1
1 𝑏−1

1 · · · 𝑎𝑔𝑏𝑔𝑎−1
𝑔 𝑏−1

𝑔 ,

which encodes the edge identifications that yield a closed orientable surface. Each pair 𝑎𝑖 , 𝑎−1
𝑖 and

𝑏𝑖 , 𝑏
−1
𝑖 contributes a ‘handle,’ so𝑀𝑔 can be visualized as a torus with 𝑔 holes, or a 𝑔-holed doughnut.

This construction endows 𝑀𝑔 with a natural CW complex structure consisting of:

(1) a single 0-cell where all loops based on the edges are attached;
(2) 2𝑔 1-cells corresponding to the edges of the polygon;
(3) a single 2-cell attached along the loop described by the edge word above.

𝑎 𝑏

𝑎

𝑎
𝑐

𝑑

𝑐

𝑑

Example 1.4.20. For 𝑔 ≥ 2, a model for the connected sum of 𝑔 copies of the real projective plane
RP2 is denoted by 𝑁𝑔, and is known as a non-orientable surface of genus 𝑔. The surface 𝑁𝑔 can be
constructed from a polygon with 𝑔 sides by identifying the edges according to the word

𝑎1𝑎1 · · · 𝑎𝑔𝑎𝑔,

where each pair 𝑎𝑖𝑎𝑖 represents an edge identification. This construction yields a closed surface that
is non-orientable and has genus 𝑔. The surface 𝑁𝑔 admits a CW complex structure consisting of:

(1) a single 0-cell to which all loops are attached;
(2) 𝑔 1-cells corresponding to the edges of the polygon;
(3) a single 2-cell attached via a loop following the word 𝑎1𝑎1 · · · 𝑎𝑔𝑎𝑔.

𝑏
𝑎

𝑎

𝑑
𝑑

𝑐

𝑐

𝑏
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Remark 1.4.21. 𝑁2 is usually called a Klein bottle. Another model for the Klein bottle is given by
the CW structure shown below:

𝑏

𝑎

𝑏

𝑎

𝑣 𝑣

𝑣𝑣

It can be checked that both models are homeomorphic.

1.4.3. Properties. A sub-complex of 𝑋 is a subspace 𝑌 ⊆ 𝑋 that is a union of open cells of 𝑋 ,
such that if 𝑌 contains a cell, it also contains its closure. It follows immediately that the union and
the intersection of any collection of sub-complexes are themselves sub-complexes. Examples of a
sub-complexes would be be the subspaces 𝑋𝑛 for 𝑛 ≥ 0 in the definition of a CW complex.

Proposition 1.4.22. Suppose 𝑋 is a CW complex and 𝑌 is a sub-complex of X. Then 𝑌 is closed
in X, and with the subspace topology and the cell decomposition that it inherits from 𝑋 , it is a CW
complex.

PROOF. Let B𝑛 ⊆ 𝑌 denote such an open 𝑛-cell in 𝑌 . Since B𝑛 ⊆ 𝑌 , the finitely many cells of 𝑋 that
have nontrivial intersections with B𝑛 must also be cells of 𝑌 . So condition (1) in Definition 1.4.9 is
automatically satisfied by𝑌 . In addition, any characteristic map 𝜙 : B𝑛 → 𝑋 for D𝑛 in 𝑋 also serves
as a characteristic map for B𝑛 in 𝑌 . Suppose 𝐴 ⊆ 𝑌 is a subset such that 𝐴 ∩ D𝑛 is closed in D𝑛 for
every 𝑛-cell D𝑛 contained in 𝑌 . Let D𝑛 be a 𝑛-cell of 𝑋 that is not contained in 𝑌 . We know that
D𝑛 \B𝑛 is contained in the union of finitely many open cells of 𝑋; some of these, say B𝑛1

1 , . . . ,B
𝑛𝑘
𝑘 ,

might be contained in 𝑌 . Then B𝑛1
1 ∪ . . . ∪ B

𝑛𝑘
𝑘 ⊆ 𝑌 , and

𝐴 ∩ D𝑛 = 𝐴 ∩ (B𝑛1
1 ∪ . . . ∪ B

𝑛𝑘
𝑘 ) ∩ D

𝑛 = ((𝐴 ∩ B𝑛1
1 ) ∪ · · · ∪ (𝐴 ∩ B

𝑛𝑘
𝑘 )) ∩ D

𝑛

which is closed in D𝑛. It follows that 𝐴 is closed in 𝑋 and therefore in 𝑌 . This implies (2) in
Definition 1.4.9. Hence 𝑌 is a CW complex. Taking 𝐴 = 𝑌 shows that 𝑌 is closed. □

Proposition 1.4.23. The following is a list of some categorical/topological properties of CW com-
plexes.

(1) If 𝐴 is a sub-complex of 𝑋 , then the inclusion 𝜄 : 𝐴 ↩→ 𝑋 is a cellular map.
(2) If 𝐴 is a sub-complex of 𝑋 , then 𝑋/𝐴 is a CW complex such that the quotient map 𝑋 → 𝑋/𝐴

is a cellular map.
(3) If 𝑋 and 𝑌 are finite 𝐶𝑊 complexes, then 𝑋 × 𝑌 is a CW complex.
(4) The closure of each cell in a CW complex is contained in a finite sub-complex.
(5) A subset of a CW complex is compact if and only if it is closed and contained in a finite

sub-complex. In particular, a CW complex is compact if and only if it is a finite complex.
(6) A CW complex is locally compact if and only if it is locally finite.
(7) A CW complex is locally path-connected.
(8) A CW complex is a 𝑇1, normal space. Hence, a CW complex is a Hausdorff space. More-

over, a CW complex is a paracompact space.

PROOF. (Sketch) The proof of some of the properties is given below:
(1) This is clear given the definition of a sub-complex.
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(2) The cells of the quotient space 𝑋/𝐴 consist of the cells of 𝑋 that lie in the complement
𝑋 \ 𝐴, together with a single new 0-cell corresponding to the image of the inclusion

𝐴 ↩→ 𝑋 → 𝑋/𝐴
This is well-defined because since 𝐴 ⊆ 𝑋 is a subcomplex, every cell of 𝑋 is either con-
tained in 𝐴 or in 𝑋 \ 𝐴. Let 𝜙𝑛𝛼 : S𝑛−1

𝛼 → 𝑋𝑛−1 be the attaching map of an 𝑛-cell in 𝑋 \ 𝐴.
The corresponding 𝑛-cell in the quotient 𝑋/𝐴 is attached via the composite map

S𝑛−1
𝛼

𝜙𝑛𝛼−−→ 𝑋𝑛−1 → 𝑋𝑛−1/𝐴𝑛−1,

where 𝐴𝑛−1 ⊆ 𝑋𝑛−1 is the (𝑛 − 1)-skeleton of 𝐴, and this inclusion holds because 𝐴 is a
subcomplex of 𝑋 . Moreover, the image of the cellular filtration satisfies 𝑞(𝑋𝑛) ⊆ 𝑋𝑛/𝐴𝑛 =
(𝑋/𝐴)𝑛, so the quotient 𝑋/𝐴 inherits a CW-complex structure and is therefore cellular.

(3) The proof is skipped.
(4) LetD𝑛 be an 𝑛-cell of a CW complex. We prove the claim by induction on 𝑛. If 𝑛 = 0, then
D0 = D0 is itself a finite subcomplex. Assume the claim is true for every cell of dimension
less than 𝑛. By (1) in Definition 1.4.9, D𝑛 \ D𝑛 is contained in the union of finitely many
cells of lower dimension, each of which is contained in a finite subcomplex by the inductive
hypothesis. The claim now follows by taking a union of these these finite subcomplexes
together with D𝑛.

(5) Every finite subcomplex 𝑌 ⊆ 𝑋 is compact because it is the union of finitely many closed
cells. Thus, if 𝐾 ⊆ 𝑋 is closed and contained in a finite subcomplex, it is also compact.
Conversely, suppose 𝐾 ⊆ 𝑋 is compact. If 𝐾 intersects infinitely many cells, by choosing
one point of 𝐾 in each such cell, we obtain an infinite discrete subset of 𝐾 , which is im-
possible. Therefore, 𝐾 is contained in the union of finitely many cells, and thus in a finite
subcomplex by (1).

(6) This follows from (4).
(7) Consider the spaces 𝑋𝑛 ⊆ 𝑋⁵. We induct on 𝑛 ∈ N. 𝑋0 is obviously locally path-connected.

If 𝑋𝑛−1 is locally path-connected then 𝑋𝑛 is also locally path-connected since it is the
the quotient of the disjoint union of 𝑋𝑛−1 and a bunch of 𝑛-cells which are locally path-
connected. Therefore,

∐
𝑛∈N 𝑋𝑛 is locally path-connected. Since∐

𝑛∈N
𝑋𝑛 → 𝑋

is a quotient map, 𝑋 is locally-path connected.
(8) See [Hat02] for a proof.

This completes the proof. □

Remark 1.4.24. Every topological space is not a CW complex. Consider the Hawaiian earring, 𝑋:

The easiest way to see the Hawaiian earring has no CW decomposition is using information about
the first homology group. If 𝑋 were a CW-complex, then it would have to be a finite CW-complex

⁵We will use the following facts from general topology. A disjoint union of locally path-connected spaces is locally path-
connected. Moreover, a quotient of a locally path-connected space is locally path-connected.
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by Proposition 1.4.23(6) since it is compact. Since every finite CW-complex has finitely generated
homology, it suffices to show that the homology of 𝑋 is not finitely generated. Observe that for any
𝑛 ∈ N, 𝑋 has a retract which is a wedge of 𝑛 circles - namely, the union of 𝑛 of the circles that make
up 𝑋 (the retraction just maps all the other circles to the origin). The first homology group of a
wedge of 𝑛 circles is Z𝑛, which cannot be generated by fewer than 𝑛 elements. It follows that 𝐻1(𝑋)
cannot be generated by fewer than 𝑛 elements for any 𝑛 ∈ N, and thus cannot be finitely generated.
We have

CW ⊊ Top
as inclusion of categories.
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CHAPTER 2

Fundamental Group

2.1. Paths & Homotopy
2.1.1. Paths and 𝜋0.

Definition 2.1.1. Let 𝑋 ∈ Top. A path in 𝑋 from 𝑥 to 𝑦 is a continuous map 𝑓 : [0, 𝑎] → 𝑋 such
that 𝑓 (0) = 𝑥 and 𝑓 (𝑎) = 𝑦 for some 𝑎 ≥ 0.

Proposition 2.1.2. Let 𝑋 ∈ Top. Paths in 𝑋 form a category, called the path category, Paths𝑋.

PROOF. The objects of this category are points of 𝑋 and a morphism between two points, 𝑥, 𝑦, is
simply a path. Composition of paths is defined as: if 𝑓1, : [0, 𝑎1] and 𝑓2, : [0, 𝑎2] such that 𝑓1(𝑎1) =
𝑓2(0) are two paths, then the product path is defined as follows:

𝑓2 · 𝑓1 : [0, 𝑎1 + 𝑎2] → 𝑋

𝑡 ↦→
{
𝑓1(𝑡) if 𝑡 ∈ [0, 𝑎1]
𝑓2(𝑡 − 𝑎1) if 𝑡 ∈ [𝑎1, 𝑎1 + 𝑎2]

For each 𝑥 ∈ 𝑋 , the identity path Id𝑥 is simply the path Id𝑥 : [0, 0] → 𝑋 such that Id𝑥 (𝑡) = 𝑥 for
each 𝑡 ∈ [0, 0]. Associativity and the identity axiom can be easily checked. □

Being connected by paths is an equivalence relation on 𝑋: each 𝑥 ∈ 𝑋 is connected to 𝑥 via the
identity path. if 𝑥 is connected to 𝑦 by a path 𝑓 : [0, 𝑎] → 𝑋 such that 𝑓 (0) = 𝑥 and 𝑓 (𝑎) = 𝑦, then
𝑦 is connected to 𝑥 via the reverse path:

𝑓𝑟 : [0, 𝑎] → 𝑋

𝑡 ↦→ 𝑓 (𝑎 − 𝑡)
If 𝑥 is connected to 𝑦 by a path 𝑓 and 𝑦 is connected to 𝑧 via a path 𝑔, then 𝑥 is connected to 𝑧 via
the path 𝑓2 · 𝑓1.

Definition 2.1.3. Let 𝑋 ∈ Top. An equivalence relation on 𝑋 under the equivalence relation of
being connected by a path is a path-component.

We denote by 𝜋0(𝑋) the set of path components, and by 𝜋0(𝑥) the path component of the point
𝑥. 𝜋0 then defines a functor

𝜋0 : Top→ Sets
𝑋 ↦→ 𝜋0(𝑋)

Indeed, a map 𝑓 : 𝑋 → 𝑌 induces 𝜋0( 𝑓 ) : 𝜋0(𝑋) → 𝜋0(𝑌 ) given by 𝜋0(𝑥) ↦→ 𝜋0( 𝑓 (𝑥)) for each
𝑥 ∈ 𝑋 . 𝜋0 assigns an invariant to a topological space in the sense that if 𝑋 and 𝑌 are homeomorphic
topological space via a map 𝑓 : 𝑋 → 𝑌 , then

𝜋0(𝑋) � 𝜋0(𝑌 )
25
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as sets. This can be easily checked. See Proposition 2.1.12 for a more general argument. Hence, the
cardinality of 𝜋0(𝑋) can be used to distinguish some simple topological spaces.

Example 2.1.4. R is not homeomorphic toR𝑛 for 𝑛 > 1. Suppose 𝑓 : R→ R𝑛 is a homeomorphism.
Then R � R𝑛. WLOG let 𝑓 (0) = 0. Hence, R \ 0 � R𝑛 \ 0. R \ 0 has two path-components and
R𝑛 \ 0 has a single path-component, a contradiction.

Example 2.1.5. Let
𝑋 = {(𝑥, 𝑦) ∈ R2 : 𝑥 = 0 or 𝑦 = 0}

be the union of the 𝑥 and 𝑦 axes in R2. 𝑋 is not homeomorphic to R since 𝑋 \ {(0, 0)} has four
path-components and R \ {0} has two path-components.

Example 2.1.6. Assume that R � 𝑋 × 𝑌 . Then 𝑋 × 𝑌 and hence 𝑋,𝑌 are path-connected. Assume
|𝑋 |, |𝑌 | ≥ 2. Let (𝑥0, 𝑦0) ∈ 𝑋 × 𝑌 . Then 𝑋 × 𝑌 \ (𝑥0, 𝑦0) is path-connected ¹. However, R \ {∗} is
not path-connected. Hence, either |𝑋 | = 1 or |𝑌 | = 1.

2.1.2. Homotopy. Topology can at best be thought of as ‘squishy geometry.’ Perhaps it is pos-
sible to continuously deform a path while still retaining its underlying topological properties. More
generally, perhaps two functions 𝑓 , 𝑔 : 𝑋 → 𝑌 can be ‘deformed into each other’ This leads to the
notion of homotopy.

Definition 2.1.7. Let 𝑋,𝑌 ∈ Top and let 𝑓 , 𝑔 : 𝑋 → 𝑌 be continuous maps. A homotopy from 𝑓 to
𝑔 is a continuous map

𝐻 : 𝑋 × [0, 1] → 𝑌

such that 𝑓 (𝑥) = 𝐻 (𝑥, 0) and 𝑔(𝑥) = 𝐻 (𝑥, 1) for 𝑥 ∈ 𝑋 . In this case, we write 𝑓 ∼ 𝑔. 𝐻 is said to be
relative to 𝐴 ⊆ 𝑋 if the restriction 𝐻 |𝐴 is constant on 𝐴. In this case, we write 𝑓 ∼𝐴 𝑔.

Example 2.1.8. A homotopy between paths 𝑓𝑖 : [0, 𝑎𝑖] → 𝑋 from 𝑥 to 𝑦 is a continuous map

𝐻 : 𝐼 × 𝐼 → 𝑋

such that

ℎ(𝑠, 0) = 𝑓1(𝑠)
ℎ(𝑠, 1) = 𝑓2(𝑠)
ℎ(0, 𝑡) = 𝑥
ℎ(1, 𝑡) = 𝑦

for all 𝑠, 𝑡 ∈ 𝐼. In other words, we have a homotopy relative to the set {𝑥, 𝑦}.

Proposition 2.1.9. The homotopy operation satisfies the following properties:
(1) ∼ is an equivalence relation.
(2) ∼ is compatible with composition of maps.
(3) If 𝑓 : 𝑋 → 𝑌 is a continuous function, then 𝑓 ◦ Id𝑋 ∼ Id𝑌 ◦ 𝑓

PROOF. The proof is as follows:

¹Let (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑋 × 𝑌 . If 𝑎 = 𝑐 ≠ 𝑥0 or 𝑏 = 𝑑 ≠ 𝑦0, then exists a path between (𝑎, 𝑏) & (𝑐, 𝑑) in either {𝑎} × 𝑌
or 𝑋 × {𝑏} resp. avoiding (𝑥0, 𝑦0). If 𝑎 = 𝑐 = 𝑥0, then 𝑏, 𝑑 ≠ 𝑦0. Choose a point 𝑥 ≠ 𝑥0 ∈ 𝑋 . Consider the path
(𝑎, 𝑏) → (𝑥, 𝑏) → (𝑥, 𝑑) → (𝑐, 𝑑) which avoids (𝑥0, 𝑦0). A similar argument works if 𝑏 = 𝑑 = 𝑦0. If 𝑎 ≠ 𝑐 and 𝑏 ≠ 𝑑,
consider two paths: (𝑎, 𝑏) → (𝑐, 𝑏) → (𝑐, 𝑑) and (𝑎, 𝑏) → (𝑎, 𝑑) → (𝑐, 𝑑). (𝑥0, 𝑦0) cannot be on both paths. This
covers all cases.
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(1) Any map 𝑓 : 𝑋 → 𝑌 is homotopic to itself via the constant homotopy

𝐻 (𝑥, 𝑡) : 𝑋 × [0, 1] → 𝑌

(𝑥, 𝑡) ↦→ 𝑓 (𝑥)

Hence, 𝑓 ∼ 𝑓 . Given 𝐻 : 𝑓 ∼ 𝑔, the inverse homotopy

𝐻 (𝑥, 𝑡) : 𝑋 × [0, 1] → 𝑌

(𝑥, 𝑡) ↦→ 𝐻 (𝑥, 1 − 𝑡)

shows 𝑔 ∼ 𝑓 . Let 𝐾 : 𝑓 ∼ 𝑔 and 𝐿 : 𝑔 ∼ ℎ be given. The product homotopy 𝐾 ∗ 𝐿 is
defined by

(𝐾 ∗ 𝐿)(𝑥, 𝑡) =
{
𝐾 (𝑥, 2𝑡) 0 ≤ 𝑡 ≤ 1

2
𝐿 (𝑥, 2𝑡 − 1) 1

2 ≤ 𝑡 ≤ 1

and shows 𝑓 ∼ ℎ.
(2) Consider continuous functions

𝑓𝑖 : 𝑋 → 𝑌

𝑔𝑖 : 𝑌 → 𝑍

for 𝑖 = 1, 2. Assume 𝑓1 ∼ 𝑓2 via a homotopy 𝐹 and 𝑔1 ∼ 𝑔2 via a homotopy 𝐺. Define a
homotopy:

𝐺 ◦ 𝐹 : 𝑋 × 𝐼 → 𝑍

(𝑥, 𝑡) ↦→ 𝐺 (𝐹 (𝑥, 𝑡), 𝑡)

This shows that 𝑓2 ◦ 𝑓1 ∼ 𝑔2 ◦ 𝑔1.
(3) This is clear.

This completes the proof. □

We now have a new category hTop: objects in hTop are the same as objects as in Top and
morphisms are homotopy classes of continuous maps. Proposition 2.1.9 shows that hTop is well-
defined. If 𝑋,𝑌 ∈ hTop, the set of homotopy classes of continuous maps between 𝑋 and𝑌 is denoted
by [𝑋,𝑌 ].

Remark 2.1.10. We can also define hTop∗ corresponding toTop∗. For instance, if (𝑋, 𝑥0), (𝑌, 𝑦0) ∈
hTop∗, then a pointed homotopy in hTop∗ is a continuous function such that

𝐻 : (𝑋, 𝑥0) × 𝐼 → (𝑌, 𝑦0)

such that 𝐻 | (𝑋,𝑥0 )×{𝑡 } for each 𝑡 ∈ 𝐼 is a pointed map. The set of pointed homotopy classes from 𝑋
to 𝑌 is denoted as [𝑋,𝑌 ]∗. Note that [𝑋,𝑌 ]∗ is itself a pointed set with the basepoint given by the
homotopy class of the constant map 𝑋 → 𝑦0.

Remark 2.1.11. If 𝐴 = {•}, then Definition 2.1.7 is a statement about the homotopy of maps con-
sidered as morphisms in Top∗. We can also define a notion of homotopy for morphisms in Top2. If
there are two maps 𝑓 , 𝑔 : (𝑋, 𝐴) → (𝑌, 𝐵) in Top2, a homotopy of pairs from 𝑓 to 𝑔 is a homotopy
𝐻 : 𝑓 ≃ 𝑔 that, in addition, satisfies 𝐻 (𝑎, 𝑡) ∈ 𝐵 for all 𝑡 ∈ [0, 1] and 𝑎 ∈ 𝐴. This defines a new
category, hTop2.

We now show that 𝜋0 is a topological invariant in hTop.
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Proposition 2.1.12. Let 𝑋,𝑌 ∈ Top. If 𝑋 and 𝑌 are homotopy equivalent, then

𝜋0(𝑋) � 𝜋0(𝑌 )
as sets.

PROOF. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 be the homotopy equivalent maps. We have a function

𝑓∗ : 𝜋0(𝑋) → 𝜋0(𝑌 ),
that sends the path component [𝑥] in 𝑋 to the path component [ 𝑓 (𝑥)] in 𝑌 . Clearly, this is well-
defined. We similarly have a function

𝑔∗ : 𝜋0(𝑌 ) → 𝜋0(𝑋),
that sends the path component [𝑦] in 𝑌 to the path component [𝑔(𝑦)] in 𝑋 . Moreover, homotopic
maps give the same function, since 𝐼 × 𝐼 is path-connected. Since 𝑔 ◦ 𝑓 � Id𝑋 and 𝑓 ◦ 𝑔 � Id𝑌 , we
must have that 𝜋0(𝑋) � 𝜋0(𝑌 ). □

We discuss a few basic but useful results:

Proposition 2.1.13. The following statements are true:
(1) Let 𝐴, 𝑋,𝑌 ∈ Top. If 𝑓0 ∼ 𝑓1 : 𝐴→ 𝑋 and 𝑔0 ∼ 𝑔1 : 𝐴→ 𝑌 , then

( 𝑓0, 𝑔0) ∼ ( 𝑓1, 𝑔1) : 𝐴→ 𝑋 × 𝑌 .
(2) Let 𝑋,𝑌, 𝐵 ∈ Top∗. If 𝑓0 ∼ 𝑓1 : 𝑋 → 𝐵 and 𝑔0 ∼ 𝑔1 : 𝑌 → 𝐵, then

{ 𝑓0, 𝑔0} ∼ { 𝑓1, 𝑔1} : 𝑋 ∨ 𝑌 → 𝐵.

PROOF. For (1), let 𝐻𝑡 be the homotopy between 𝑓0 and 𝑓1 and 𝐺𝑡 the homotopy between 𝑔0 and
𝑔1. Then (𝐻𝑡 , 𝐺𝑡 ) : 𝐴 → 𝑋 × 𝑌 is a homotopy between ( 𝑓0, 𝑔0) and ( 𝑓1, 𝑔1). The proof of (2) is
similar. □

Remark 2.1.14. Proposition 2.1.13 implies that we have bijections

[𝐴, 𝑋] × [𝐴,𝑌 ] � [𝐴, 𝑋 × 𝑌 ]
[𝑋, 𝐵]∗ × [𝑌, 𝐵]∗ � [𝑋 ∨ 𝑌, 𝐵]∗

An important instance of a homotopy arises when we consider the following question: perhaps
it is possible to deform a topological space into a ‘smaller’ space continuously. This leads to the
notion of a deformation retraction which is a specific instance of a homotopy.

Definition 2.1.15. Let 𝑋 ∈ Top. A deformation retraction of 𝑋 onto a subspace 𝐴 is a homotopy

𝐻 : 𝑋 × [0, 1] → 𝑋

such that 𝐻 (·, 0) = Id𝑋, 𝐻 (·, 1) = 𝐴, and 𝐻 (·, 𝑡) |𝐴 = Id𝐴 for all 𝑡 ∈ [0, 1]. 𝑋 is said to be
contractible if deformation retracts to a point 𝐴 = {∗}.

Example 2.1.16. The following are examples of some deformation retractions:
(1) R𝑛 is contracible. More genrally, any star-shaped region is contractible. Indeed, if 𝑋 is

star-shaped with respect to some point 𝑎 ∈ 𝑋 , then
𝐻 (𝑥, 𝑡) = (1 − 𝑡)𝑥 + 𝑡𝑎

defines a homotopy between the constant map and the identity map. Hence star-shaped sets
are contractible.
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(2) R𝑛 \ 0 deformation retracts to S𝑛−1. Simply consider the straight-line homotopy:

𝐻 (𝑥, 𝑡) = (1 − 𝑡)𝑥 + 𝑡𝑥

∥𝑥∥ .

(3) S∞ is contractible. Let 𝐻1 be given by
𝐻1 : R∞ × 𝐼 → R∞,

(𝑥, 𝑡) ↦→ (1 − 𝑡) (𝑥1, 𝑥2, 𝑥3, . . .) + 𝑡 (0, 𝑥1, 𝑥2, . . .).
Note that 𝐻1(−, 1) is the right shift map. For any 𝑥 ∈ S∞, the vector 𝐻1(𝑥,−) is not a
multiple of 𝑥, so the line segment between them does not pass through the origin. Thus,
we can define a homotopy from the identity on S∞ by setting 𝐻1/∥𝐻1∥. The idea is now to
contract the image of 𝐻1(−, 1), which is a codimension-1 sphere, to a point not on it-say,
(1, 0, 0, 0, 0, . . . ). Let

𝐻2 : R∞ × 𝐼 → R∞

(𝑥, 𝑡) = (1 − 𝑡)(0, 𝑥1, 𝑥2, . . .) + 𝑡 (1, 0, 0, . . .).
Clearly, 𝐻2 = 𝐻2/∥𝐻2∥ is a homotopy from the map 𝐻1(−, 1) to the constant map at
(1, 0, 0, . . .) on S∞. The composition is the desired homotopy that shows that S∞ is con-
tractible.

(4) Let𝑌 be the topological space obtained by identifying opposite sides [−1, 1] × [−1, 1]. Let
𝑋 = 𝑌 \ {(0, 0)}. See the diagram below:

𝑏

𝑎

𝑏

𝑎

Consider the homotopy 𝐻 : 𝑋 × 𝐼 → 𝑋 defined by the formula

𝐻 ((𝑥, 𝑦), 𝑡) =
{
(𝑡 𝑥|𝑦 | + (1 − 𝑡)𝑥, 𝑡

𝑦
|𝑦 | + (1 − 𝑡)𝑦) |𝑦 | > |𝑥 |

(𝑡 𝑥|𝑥 | + (1 − 𝑡)𝑥, 𝑡
𝑦
|𝑥 | + (1 − 𝑡)𝑦) |𝑥 | > |𝑦 |

If (𝑥, 𝑦) ∈ 𝑋 and |𝑦 | > |𝑥 |, the homotopy 𝐻 linearly slides (𝑥, 𝑦) onto a point such that the
𝑥-coordinate of 𝐻 ((𝑥, 𝑦), 1) is sgn(𝑥). See the diagram below:

𝑏

𝑎

𝑏

𝑎

The image of 𝐻 (·, 1) is clearly the identified edges of 𝑋 , which is, geometrically, a figure
eight: a graph consisting of two circles intersecting in a point.
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(5) Consider the Mobius strip, 𝑀 , obtained as the quotient space of the square [0, 1] × [0, 1]
by identifying

(𝑥, 0) ∼ (1 − 𝑥, 1) for all 0 ≤ 𝑥 ≤ 1.
The line {(𝑥, 1

2 ) : 𝑥 ∈ [0, 1]} ⊆ S1 is S1 as a subspace of 𝑀 . Then the map

𝐻 : 𝑀 × [0, 1] → 𝑀

((𝑥, 𝑦), 𝑡) ↦→
(
𝑥, (1 − 𝑡)𝑦 + 𝑡

2

)
gives a well-defined strong deformation retract of 𝑀 to S1 (as can be checked).

The following example is quite important:

Example 2.1.17. D𝑛 × 𝐼 deformation retracts onto D𝑛 × {0} ∪ S𝑛−1 × 𝐼. Define

𝑟 (𝑥, 𝑡) =
{
( 2𝑥

2−𝑡 , 0) ∥𝑥∥ ≤ 2−𝑡
2

( 𝑥∥𝑥 ∥ , 2 −
2−𝑡
∥𝑥 ∥ ) ∥𝑥∥ ≥

2−𝑡
2

It is easy to check that this is a well-defined continuous map. For 𝑡 = 0 we get 2−𝑡
2 = 1 and thus

𝑟 (𝑥, 0) = (𝑥, 0) for all 𝑥 ∈ D𝑛. For 𝑥 ∈ S𝑛−1 we have 𝑟 (𝑥, 𝑡) = (𝑥, 𝑡). Thus 𝑟 is a retraction.

Remark 2.1.18. There is a geometric interpretation of 𝑟 in Example 2.1.17. For each (𝑥, 𝑡) consider
the line 𝐿𝑥,𝑡 through (0, 2) and (𝑥, 𝑡). This line intersectsD𝑛×{0}∪S𝑛−1× 𝐼 in a single point 𝑟 (𝑥, 𝑡).

Example 2.1.19. Let 𝑋 = {•1, •2} be a two-point topological space. If 𝑋 is given the discrete
topology, then 𝑋 is not contractible. Indeed, contractible spaces are path-connected and 𝑋 is not
path connected with the discrete topology. If 𝑋 is given the Sierpinski topology, {∅, 𝑋, {•1}}, then
𝑋 is contractible. Define

𝐻 : 𝑋 × [0, 1] → 𝑋

so that 𝐻 (𝑥, 0) = 𝑥 for all 𝑥 ∈ 𝑋 , and 𝐻 (𝑥, 𝑡) = •1 for all 𝑥 ∈ 𝑋 and 𝑡 ∈ (0, 1]. It is easy to see that
𝐻 is continuous and hence defines a homotopy.

Definition 2.1.20. A map 𝑓 : 𝑋 → 𝑌 defines a homotopy equivalence if there exists 𝑔 : 𝑌 → 𝑋
such that 𝑔 ◦ 𝑓 and 𝑓 ◦ 𝑔 are both homotopic to the identity. 𝑋 and 𝑌 are homotopy equivalent if
there exists a homotopy equivalence. In this case, we write 𝑋 ∼ 𝑌 .

Example 2.1.21. For any 𝑋 ∈ Top, 𝑋 × 𝐼 is homotopy equivalent to 𝑋 . Consider the maps
𝜋1 : 𝑋 × 𝐼 → 𝑋,

(𝑥, 𝑡) ↦→ 𝑥.
𝑖0 : 𝑋 → 𝑋 × 𝐼,

𝑥 ↦→ (𝑥, 0).
Note that 𝜋1 ◦ 𝑖0 = Id𝑋. Moreover, 𝑖0 ◦ 𝜋1 ∼ Id𝑋×𝐼 via the homotopy:

𝐻 : (𝑋 × 𝐼) × 𝐼 → 𝑋 × 𝐼,
((𝑥, 𝑡), 𝑠) ↦→ (𝑥, (1 − 𝑠)𝑡).

Remark 2.1.22. Example 2.1.21 can generalized to prove that if 𝑋 is a topological space and 𝑌 is
a contractible topological space, then the projection

𝜋1 : 𝑋 × 𝑌 → 𝑋

is a homotopy equivalence.

Proposition 2.1.23. Let 𝑋,𝑌 be topological space. The following are some properties of the homo-
topy and homotopy equivalence concept.
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(1) 𝑋 is contractible if and only if every map 𝑓 : 𝑋 → 𝑌 , for arbitrary 𝑌 , is homotopic to a
constant map. Similarly, 𝑋 is contractible if and only if every map 𝑓 : 𝑌 → 𝑋 is homotopic
to a constant map.

(2) Let 𝑓 : 𝑋 → 𝑌 be a continuous map. Suppose there exist 𝑔, ℎ : 𝑌 → 𝑋 , possibly different,
such that 𝑓 ◦ 𝑔 ≃ Id𝑌 and ℎ ◦ 𝑓 ≃ Id𝑋. Then 𝑓 is a homotopy equivalence.

PROOF. The proof is given below:
(1) Suppose 𝑋 is contractible. Let 𝐻 : 𝑋 × 𝐼 → 𝑋 be a homotopy such that 𝐻 (·, 0) = Id𝑋 and

𝐻 (·, 1) is the constant map with value 𝑥0.
(a) If 𝑓 : 𝑋 → 𝑌 is a continuous map for any topological space𝑌 , then 𝑓 ◦𝐺 : 𝑋 × 𝐼 → 𝑌

is a homotopy from 𝑓 to the constant map with value 𝑓 (𝑥0). Thus, 𝑓 is homotopic to
a constant map. Conversely, letting 𝑌 = 𝑋 and 𝑓 = Id𝑋 shows that 𝑋 is contractible.

(b) If 𝑓 : 𝑌 → 𝑋 is a continuous map for any topological space 𝑌 , then the map

𝐻 : 𝑌 × 𝐼 → 𝑋 𝐻 (𝑦, 𝑡) ↦→ 𝐻 ( 𝑓 (𝑦), 𝑡)
is a homotopy from 𝑓 to the constant map with value 𝑥0. Thus, 𝑓 is homotopic to a
constant map. Conversely, letting 𝑌 = 𝑋 and 𝑓 = Id𝑋 shows that 𝑋 is contractible.

(2) If ℎ ◦ 𝑓 ∼ Id𝑋 and 𝑓 ◦ 𝑔 ∼ Id𝑌 , then

𝑔 ∼ Id𝑋 ◦ 𝑔 ∼ (ℎ ◦ 𝑓 ) ◦ 𝑔 ∼ ℎ ◦ ( 𝑓 ◦ 𝑔) ∼ ℎ ◦ Id𝑌 ∼ ℎ
Thus, 𝑔 ◦ 𝑓 ∼ ℎ ◦ 𝑓 ∼ Id𝑋, and since 𝑓 ◦ 𝑔 ∼ Id𝑌 , 𝑔 is a homotopy equivalent to 𝑓 .

This completes the proof. □

2.2. Fundamental Group
2.2.1. 𝜋1. Let 𝑋 ∈ Top. Recall the definition of homotopy from the previous section. In this

section, we focus on homotopy of paths relative to the boundary of 𝐼 = [0, 1], denoted as 𝜕𝐼. We
have the following observations:

Lemma 2.2.1. The product of paths (read left to right) has the following properties:
(1) Let 𝛼 : 𝐼 → 𝐼 be continuous and 𝛼(0) = 0, 𝛼(1) = 1. Then 𝑓 ∼ 𝑓 ◦ 𝛼.
(2) 𝑓 · (𝑔 · ℎ) ∼ ( 𝑓 · 𝑔) · ℎ²
(3) 𝑓 ∼ 𝑓 ′ and 𝑔 ∼ 𝑔′ implies 𝑓 · 𝑔 ∼ 𝑓 ′ · 𝑔′.
(4) If 𝑐𝑥 denotes the constant path at 𝑥 ∈ 𝑋 , then 𝑐 𝑓 (0) · 𝑓 ∼ 𝑓 ∼ 𝑓 · 𝑐 𝑓 (1)
(5) 𝑓 · 𝑓𝑟 ∼ 𝑐 𝑓 (1) and 𝑓𝑟 · 𝑓 ∼ 𝑐 𝑓 (0) where 𝑓𝑟 is the reverse of 𝑓

PROOF. The proof is given below:
(1) 𝛼 defines a reparamterization of the identity map from 𝐼 to 𝐼. Let 𝐻 : 𝐼 × 𝐼 → 𝐼 denote

the straight-line homotopy from Id𝐼 to 𝛼. Then 𝑓 ◦ 𝐻 is a path homotopy from 𝑓 to 𝑓 ◦ 𝛼
(2) We provide a proof in words. We need to show that

( 𝑓 · 𝑔) · ℎ ∼ 𝑓 · (𝑔 · ℎ)
for any three paths in 𝑋 such that the left-hand side is well-defined. The first path follows
𝑓 and then 𝑔 at quadruple speed for 𝑠 ∈ [0, 1

2 ], and then follows ℎ at double speed for
𝑠 ∈ [ 12 , 1], while the second follows 𝑓 at double speed and then 𝑔 and ℎ at quadruple
speed. The two paths are therefore reparametrizations of each other and thus homotopic.

²This assumes that at least one side of the equation is well-defined.
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(3) We show that 𝑐 𝑓 (0) · 𝑓 ∼ 𝑓 . The other homotopy follows similarly. Define 𝐻 : 𝐼 × 𝐼 → 𝑋
as

𝐻 (𝑠, 𝑡) =
{
𝑓 (0), 𝑡 ≥ 2𝑠,
𝑓
(

2𝑠−𝑡
2−𝑡 )

)
, 𝑡 ≤ 2𝑠.

Geometrically, this maps the portion of the square on the left of the line 𝑡 = 2𝑠 to the point
𝑓 (0), and it maps the portion on the right along the path 𝑓 at increasing speeds as 𝑡 goes
from 0 to 1. This map is continuous by the gluing lemma, and we have that 𝐻 (𝑠, 0) = 𝑓 (𝑠)
and 𝐻 (𝑠, 1) = 𝑐 𝑓 (0) ∗ 𝑓 (𝑠). The claim follows.

(4) We just show that 𝑓 · 𝑓𝑟 ≃ 𝑐 𝑓 (1) . Define a homotopy by the following recipe: at any time 𝑡,
the path 𝐻𝑡 follows 𝑓 as far as 𝑓 (𝑡) at double speed while the parameter 𝑠 is in the interval
[0, 𝑡/2]; then for 𝑠 ∈ [𝑡/2, 1 − 𝑡/2], it stays at 𝑓 (𝑡); then it retraces 𝑓 at double speed back
to 𝑝. Formally,

𝐻 (𝑠, 𝑡) =

𝑓 (2𝑠), 0 ≤ 𝑠 ≤ 𝑡/2,
𝑓 (𝑡), 𝑡/2 ≤ 𝑠 ≤ 1 − 𝑡/2,
𝑓 (2 − 2𝑠), 1 − 𝑡/2 ≤ 𝑠 ≤ 1.

It is easy to check that 𝐻 is a homotopy from 𝑐 𝑓 (1) to 𝑓 · 𝑓𝑟 .
This completes the proof. □

For 𝑋 ∈ Top, Lemma 2.2.1 implies that one can consider a category Π(𝑋) whose objects are
points of 𝑋 and morphisms are homotopy classes of paths between points of 𝑋 relative to 𝜕𝐼. Π(𝑋)
is called the fundamental groupoid of 𝑋 because each element in HomΠ (𝑋) (·, ·) has an inverse path.
In particlar, HomΠ (𝑋) (𝑋, 𝑥0) is a group for each 𝑥 ∈ 𝑋 .

Definition 2.2.2. Let 𝑋 ∈ Top and 𝑥0 ∈ 𝑋 . The fundamental group of 𝑋 at 𝑥 is
𝜋1(𝑋, 𝑥0) = AutΠ (𝑋) (𝑥0)

𝑋 is simply connected (or 1-connected) if it is path connected and its fundamental group is trivial.

Remark 2.2.3. A loop based at 𝑥0 ∈ 𝑋 is a map 𝑓 : 𝐼 → 𝑋 such that 𝑓 (0) = 𝑓 (1) = 𝑥. Since
𝐼/𝜕𝐼 � S1 where the homemorphism is given by the exponential function, 𝜀(𝑡) = exp(2𝜋𝑖𝑡), 𝑓
descends to a continuous map from S1 to 𝑋 .

𝐼

S1 𝑋

𝜀
𝑓

𝑓

Therefore, we have
𝜋1(𝑋, 𝑥0) � [(S1, ∗), (𝑋, 𝑥0)]

where [(S1, ∗), (𝑋, 𝑥0)] denotes the set of homotopy classes of maps from (S1, ∗) to (𝑋, 𝑥0) such that
∗ ↦→ 𝑥0.

We next state an important lemma:

Lemma 2.2.4. (Square Lemma) Let 𝐹 : 𝑊 → 𝐼 × 𝑋 be a continuous map, and let 𝑓 , 𝑔, ℎ, and 𝑘 be
the paths in 𝑋 defined by:

𝑓 (𝑠) = 𝐹 (𝑠, 0) 𝑔(𝑠) = 𝐹 (1, 𝑠) ℎ(𝑠) = 𝐹 (0, 𝑠) 𝑘 (𝑠) = 𝐹 (𝑠, 1)
Then 𝑓 · 𝑔 ∼ ℎ · 𝑘 .
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PROOF. (Sketch) Consider an appropriate straight-line homotopy from the corners of the square 𝐼 ×
𝐼. □

Proposition 2.2.5. Let (𝑋, 𝑥0) ∈ Top∗. The following are some properties of the fundamental group
of 𝑋 at 𝑥0.

(1) For each 𝑥′0 ∈ 𝑋, such that 𝑥′0 ∈ 𝜋0(𝑥0), we have

𝜋1(𝑋, 𝑥0) � 𝜋1(𝑋, 𝑥′0)

More generally, if 𝑋0 is a path component of 𝑋 that contains 𝑥0, and 𝑖 : 𝑋0 → 𝑋 is the
inclusion map, then

𝑖∗ : 𝜋1(𝑋0, 𝑥0) → 𝜋1(𝑋, 𝑥0)
is an isomorphism.

(2) Π(·) is a functor from Top to Grpd, the category of groupoids.
(3) 𝜋1 is a functor from Top∗ to Grp, the category of groups.
(4) if (𝑋, 𝑥0) and (𝑌, 𝑦0) are pointed topological spaces, then

𝜋1(𝑋 × 𝑌, (𝑥0, 𝑦0)) � 𝜋1(𝑋, 𝑥0) � 𝜋1(𝑌, 𝑦0)

That is, 𝜋1 preserves products.
(5) If 𝑓 , 𝑔 : 𝑋 → 𝑌 are homotopic with a homotopy 𝐻 : 𝑋 × 𝐼 → 𝑌 and ℎ is the path

ℎ(𝑡) = 𝐻 (𝑥, ·), then the following diagram commutes:

𝜋1(𝑋, 𝑓 (𝑥0))

𝜋1(𝑋, 𝑥0)

𝜋1(𝑋, 𝑔(𝑥0))

Φ𝑔

𝑓∗

𝑔∗

(6) If 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence, then the induced homomorphism

𝑓∗ : 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, 𝑓 (𝑥0))

is an isomorphism.

PROOF. The proof is given below:
(1) Let 𝛼 be a path from 𝑥 to 𝑥′. Consider the map

Φ𝛼 : 𝜋(𝑋, 𝑥0) → 𝜋(𝑋, 𝑥′0) 𝛽 ↦→ 𝛼 · 𝛽 · 𝛼𝑟
Note that Φ𝛼 is a homomorphim:

Φ𝛼 [𝛽2 · 𝛽1] = [𝛼 · 𝛽2 · 𝛽1 · 𝛼𝑟 ]
= [𝛼 · 𝛽2 · 𝛼𝑟 · 𝛼 · 𝛽1 · 𝛼𝑟 ]
= [𝛼 · 𝛽2 · 𝛼𝑟 ] · [𝛼 · 𝛽1 · 𝛼𝑟 ]
= Φ𝛼 [𝛽2] · Φ𝛼 [𝛽1]

It is clear that Φ𝛼 is bijective with inverse

Φ𝛼𝑟 : 𝜋(𝑋, 𝑥′0) → 𝜋(𝑋, 𝑥0) 𝛽 ↦→ 𝛼𝑟 · 𝛽 · 𝛼
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More generally, any loop in 𝑋 based at 𝑥 must in fact be a loop in 𝑋0, so it is necessary
only to check that two homotopic loops in 𝑋 are homotopic in 𝑋0. But this is immediate
since if

𝐹 : 𝐼 × 𝐼 → 𝑋

is a homotopy whose image contains 𝑥0, its image must lie entirely in 𝑋0, because 𝐼 × 𝐼 is
path-connected.

(2) A continuous map 𝑓 : 𝑋 → 𝑌 induces a homomorphism

𝑓∗ : Π(𝑋) → Π(𝑌 )

defined by 𝑓∗([𝛼]) = [ 𝑓 ◦ 𝛼]. We have

𝑓∗( [𝛽] · [𝛼]) = 𝑓∗( [𝛽 · 𝛼])
= [ 𝑓 ◦ (𝛽 · 𝛼)]
= [( 𝑓 ◦ 𝛽) · ( 𝑓 ◦ 𝛼)]
= 𝑓∗ [𝛽] ◦ 𝑓∗ [𝛼]

The rest of the axioms can be checked in a straightforward way.
(3) This is similar to (2).
(4) Consider the map

Φ : 𝜋1(𝑋 × 𝑌, (𝑥0, 𝑦0)) → 𝜋1(𝑋, 𝑥0) × 𝜋1(𝑌, 𝑦0)
[𝛼] ↦→ ([𝛼𝑋], [𝛼𝑌 ])

It is clear that Φ is well-defined since 𝑓 ∼ 𝑔 implies that

𝛼𝑋 = 𝜋 ◦ 𝛼 ∼ 𝜋 ◦ 𝛼 = 𝛼𝑋

Similarly, 𝛼𝑌 ∼ 𝛼𝑌 . The universal property of the product topology shows that Φ is a sur-
jective. Moreover, if [𝛼𝑋] = [𝑐𝑥] and [𝛼𝑌 ] = [𝑐𝑦] we can choose we choose homotopies
𝐻𝑥 and 𝐻𝑦 . Then the map 𝐻 : 𝐼 × 𝐼 → 𝑋 × 𝑌 given by

𝐻 (𝑠, 𝑡) = (𝐻𝑥 (𝑠, 𝑡), 𝐻𝑦 (𝑠, 𝑡))

is a homotopy from 𝑓 to the constant loop 𝑐 (𝑥0,𝑦0 ) . Checking that Φ is a homomorphism
is easy.

𝐼

𝑋 × 𝑌

𝑋 𝑌

𝑓

𝑓𝑋 𝑓𝑌

𝜋𝑋 𝜋𝑌

(5) Let 𝛼 be any loop in 𝑋 based at 𝑥. What we need to show is

𝑔∗ [𝛼] = Φ𝑔 ◦ 𝑓∗ [𝛼]
⇐⇒ 𝑔 ◦ 𝛼 ∼ ℎ · ( 𝑓 ◦ 𝛼) · ℎ𝑟
⇐⇒ ( 𝑓 ◦ 𝛼) · ℎ ∼ ℎ · (𝑔 ◦ 𝛼)

This readily follows from the square lemma applied to the map 𝐹 : 𝐼 × 𝐼 → 𝑌 defined by
𝐹 (𝑠, 𝑡) = 𝐻 (𝛼(𝑠), 𝑡).
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(6) Let 𝑔 : 𝑌 → 𝑋 be a homotopy inverse for 𝑔, so that 𝑓 ◦ 𝑔 ≃ 1𝑌 and 𝑔 ◦ 𝑓 ≃ 1𝑋. Consider
the maps:

𝜋1(𝑋, 𝑥0)
𝑓∗−→ 𝜋1(𝑌, 𝑓 (𝑥0))

𝑔∗−→ 𝜋1(𝑋, 𝑔( 𝑓 (𝑥0)))
𝑓∗−→ 𝜋1(𝑌, 𝑓 (𝑔( 𝑓 (𝑥0))))

The composition of the first twomaps is an isomorphism by (4). In particular, 𝑓∗ is injective.
The same reasoning with the second and third maps shows that 𝑔∗ is injective. Thus the
first two of the three maps are injections and their composition is an isomorphism, so 𝑔∗
must be injective and surjective.

This completes the proof. □

Remark 2.2.6. Note that the homomorphismΦ𝛼 in Proposition 2.2.5(a) depends only on the homo-
topy class of 𝛼. Indeed, assume that 𝛼 � 𝛼′ where 𝛼 and 𝛼′ are continuous path joining 𝑥 and 𝑥′.
Then:

Φ𝛼 [𝛽] = [𝛼 · 𝛽 · 𝛼𝑟 ] = [𝛼] · [𝛽] · [𝛼𝑟 ] = [𝛼′] · [𝛽] · [𝛼′𝑟 ] = Φ𝛼′ [𝛽] .
Hence we have Φ𝛼 = Φ𝛼′ .

Remark 2.2.7. Proposition 2.2.5 implies that if 𝑋 is a path-connected space, then
𝜋1(𝑋, 𝑥0) � 𝜋1(𝑋, 𝑥′0)

for each 𝑥, 𝑥′ ∈ 𝑋 . We shall mostly be concerned with path-connected spaces. Therefore, we shall
not write the basepoint from now on.

How does one compute fundamental groups? This might be a difficult problem. But we can at
the very least state some trivial calculations:

Proposition 2.2.8. The following are calculations of some fundamental groups:
(1) If 𝑋 = {•} is a one-point space, then 𝜋1(𝑋) = {1}, is the trivial group.
(2) If 𝑋 is contractible, then 𝜋1(𝑋, 𝑥0) = {1} is the trivial group.

PROOF. The proof is given below:
(1) A one-point space has only the constant loop. Hence, its fundamental group is trivial.
(2) This follows from the Proposition 2.2.5(5) and (1) above.

This completes the proof. □

Remark 2.2.9. A topological space, 𝑋 , is simply connected if its fundamental group is the trivial
group. One can easily check that 𝑋 is simply connected if and only if there is a unique homotopy class
of paths connecting any two points in 𝑋 . For the forward direction, let 𝑥, 𝑦 ∈ 𝑋 , and 𝑓 , 𝑔 : 𝐼 → 𝑋
are paths from 𝑥 to 𝑦. Then we have the following sequence of homotopies:

𝑓 ∼ 𝑓 ∗ 𝑐𝑦 ∼ 𝑓 ∗ 𝑔 ∗ 𝑔 ∼ 𝑐𝑥 ∗ 𝑔 ∼ 𝑔,
where we use the fact that 𝑔 ∗𝑔 and 𝑓 ∗𝑔 are loops at 𝑦 and 𝑥, respectively, and hence are homotopic
to the respective constant paths. For the reverse direction, take 𝑥 = 𝑦. By hypothesis, any loop 𝛾 at
𝑥 ∈ 𝑋 is in the homotopy class of the constant loop 𝑐𝑥 .

As we shall see by way of examples, fundamental groups are rarely abelian. However, there is
an important class of groups for which the fundamental groups are abelian. Before identifying this
class, we identify when a fundamental group is abelian.

Lemma 2.2.10. Let 𝑋 be a path-connected topological space 𝑋 . For any 𝑥 ∈ 𝑋 , 𝜋1(𝑋, 𝑥0) is abelian
if and only if all basepoint-change homomorphisms Φ𝛼 depend only on the endpoints of the path 𝛼.
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PROOF. Assume 𝜋1(𝑋, 𝑥0) is abelian and consider two paths 𝛼, 𝛼′ with same endpoints 𝑥 and 𝑥′.
Since 𝜋1(𝑋, 𝑥0) is abelian, 𝜋1(𝑋, 𝑥′0) is also abelian since 𝜋1(𝑋, 𝑥0) � 𝜋1(𝑋, 𝑥′0). We have:

Φ𝛼 [𝛽] = [𝛼] · [𝛽] · [𝛼𝑟 ]
= [𝛼] · [𝛽] · [𝑐𝑥] · [𝛼𝑟 ]
= [𝛼] · [𝛽] · [𝛼′𝑟 · 𝛼′] · [𝛼𝑟 ]
= ([𝛼] · [𝛽] · [𝛼′𝑟 ]) · ( [𝛼′ · 𝛼𝑟 ])
= ([𝛼′ · 𝛼𝑟 ]) · ( [𝛼] · [𝛽] · [𝛼′𝑟 ])
Φ𝛼 [𝛽] = [𝛼′] · [𝛽] · [𝛼′𝑟 ] = Φ𝛼′ (𝛽).

Hence Φ𝛼 = Φ𝛼′ . Conversely, assume all basepoint-change homomorphisms Φ𝛼 depend de-
pend only on the endpoints of the path 𝛼. Consider 𝑥′ = 𝑥 and loops 𝑐𝑥 (constant loop) and
[𝛽] ∈ 𝜋1(𝑋, 𝑥0). Then Φ𝛽 = Φ𝑐𝑥 . We can easily see that this is implies

[𝛽] · [𝛽′] = [𝛽′] · [𝛽]
for each [𝛽′] ∈ 𝜋1(𝑋, 𝑥0). Hence 𝜋1(𝑋, 𝑥0) is abelian. □

Example 2.2.11. We argue that the fundamental group of a topological group, 𝐺, is abelian. Let 𝑒𝐺
be the identity element chosen as the base point. Let [𝛼], [𝛽] ∈ 𝜋1(𝐺, 𝑒𝐺). Define a map

𝐹 : 𝐼 × 𝐼 → 𝐺

(𝑡, 𝑠) ↦→ 𝛼(𝑡) · 𝛽(𝑠)
In 𝐼 × 𝐼, let
(0, 0) 𝜖1−−→ (1, 0), (1, 0) 𝜖2−−→ (1, 1), (0, 0) 𝜖3−−→ (0, 1), (1, 0) 𝜖4−−→ (1, 1), (0, 0) 𝜖5−−→ (1, 1)

be the straight line paths. Applying 𝐹 𝜀5 yields a path
𝛼 ∗ 𝛽(𝑡) = 𝛼(𝑡) · 𝛽(𝑡)

Since 𝐼 × 𝐼 is convex, we have 𝜖2 · 𝜖1 ≃ 𝜖5 ≃ 𝜖4 · 𝜖3 since all three are paths from (0, 0) → (1, 1).
Applying 𝐹 to this gives

𝛽 · 𝛼 ∼ 𝛼 ∗ 𝛽 ∼ 𝛼 · 𝛽
Hence [𝛽 · 𝛼] = [𝛼 · 𝛽]. Hence, 𝜋1(𝐺, 𝑒𝐺) is abelian.

2.2.2. Categorical Remarks. We end this section with some categorical remarks that will be
useful in the next section. Recall that there is a useful notion of a skeleton of a category 𝒞. This
is a full subcategory with one object from each isomorphism class of objects of 𝒞. We denote the
skeleton as Sk𝒞. The inclusion functor

𝒥 : Sk𝒞 ↩→ 𝒞

is an equivalence of categories. Indeed, an inverse functor
𝒞 : 𝒞 → Sk𝒞

is obtained by lettingℱ(𝑋) be the unique object in Sk𝒞 that is isomorphic to 𝑋 . We also choose an
isomorphism 𝛼𝑋 ∈ Hom(𝑋,ℱ(𝑋)). We choose 𝛼𝑋 = Id𝑋 to be the identity morphism if 𝑋 ∈ Sk𝒞.
If 𝑓 ∈ Hom(𝑥0, 𝑦0), we define

ℱ( 𝑓 ) = 𝛼𝑌 ◦ 𝑓 ◦ 𝛼−1
𝑋

We have ℱ ◦ 𝒥 = IdSk𝒞. Moreover, the 𝛼𝑋’s specify a natural isomorphism
𝛼 : Id𝑋 → 𝒥 ◦ℱ
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A category 𝒞 is said to be connected if any two of its objects can be connected by a sequence of
morphisms. For example, a sequence

𝐴← 𝐵→ 𝐶

connects 𝐴 to 𝐶, although there need be no morphism 𝐴 → 𝐶. However, a groupoid 𝒞 is con-
nected if and only if any two of its objects are isomorphic. Hence if 𝒞 is a groupoid, the group of
endomorphisms of any object in 𝒞 is then a skeleton of 𝒞. Hence, we have:

Corollary 2.2.12. Let 𝑋 be a path-connected space. For each point 𝑥0 ∈ 𝑋 , the inclusion 𝜋1(𝑋, 𝑥0) ↩→
Π(𝑋) is an equivalence of categories.

PROOF. 𝜋1(𝑋, 𝑥0) is a category with a single object 𝑥, and it is a skeleton of Π(𝑋). □

2.3. Seifert-Van Kampen Theorems
The Seifert Van Kampen (SVK) theorems gives a method for computing the fundamental groups

of spaces that can be decomposed into simpler spaces whose fundamental groups are already known.

Proposition 2.3.1. (SVK for Groupoids) Let 𝑋 ∈ Top, and let {𝑈𝑖}𝑖∈𝐼 be an open cover of 𝑋 such
that that the intersection of finitely many open sets again belongs to the open cover. Then

Π(𝑋) = lim−−→
𝑖∈𝐼

Π(𝑈𝑖)

in the category of groupoids.

Remark 2.3.2. Note that Proposition 2.3.1 states that Π preserves colimits.

PROOF. We verify the universal property of colimits in the category of groupoids. Let 𝐺 be some
groupoid and let Γ𝑖 : Π(𝑈𝑖) → 𝐺 be groupoid morphisms. We show that there exists a unique
groupoid morphism Φ : Π(𝑋) → 𝐺 such that the diagram

Π(⋂ 𝑗∈𝐽⊆𝐼 𝑈 𝑗) Π(𝑈𝑖|𝐽 | )

Π(𝑈𝑖1) Π(𝑋)

𝐺

Γ𝑖|𝐽 |

Γ𝑖1

Φ

for each subset 𝐽 ⊆ 𝐼. Consider the following observations:
(1) An object of Π(𝑋) is a point 𝑥 ∈ 𝑋 and so lies in one of𝑈𝑖 . If 𝑥 ∈ 𝑈𝑖 , we are forced to set

Γ(𝑥) = Γ𝑖 (𝑥). If 𝑥 is contained in the intersection of finitely many 𝑈𝑖’s, these definitions
agree by the commutative square above³.

(2) A morphism in Π(𝑋) is a homotopy class of a path 𝛼 in 𝑋 . If 𝛼 is solely contained in some
𝑈𝑖 , we would be forced to set Φ(𝛼) = Γ𝑖 (𝛼). Since the open cover is closed under finite
intersections, this specification is independent of the choice of𝑈𝑖 if 𝛼 lies entirely in more
than one 𝑈𝑖 . What if a path intersects ∩ 𝑗∈𝐽⊆𝐼𝑈 𝑗 for some subset 𝐽 ⊆ 𝐼 such that |𝐽 | ≥ 2?
If 𝛼 : 𝐼 → 𝑋 , then the Lebesgue covering lemma implies that there is a decomposition

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑚−1 < 𝑡𝑚 = 1

³We implicitly use here the fact that the open cover is closed under finite intersections.
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such that 𝛼( [𝑡𝑖 , 𝑡𝑖+1]) is contained in solely on of𝑈𝑖 . In this case, we are forced to set

Φ(𝛼) = 𝐹1(𝛼1) ◦ · · · ◦ 𝐹𝑚(𝛼𝑚)

where each 𝐹𝑘 is one of the Γ𝑖’s as necessary.

The observations above pin down the map Φ. However, in order for Φ to be well-defined, we must
show that it is independent of the choice of a path, 𝛼, in a homotopy class of paths. Let

𝐻 : 𝐼 × 𝐼 → 𝑋

be a homotopy of paths from 𝑥 to 𝑦. By the Lebesgue covering lemma, there exists 𝑛 ∈ N such that
𝐻 sends each sub-square [

𝑖

𝑛
,
𝑖 + 1
𝑛

]
×

[
𝑗

𝑛
,
𝑗 + 1
𝑛

]
into one of 𝑈𝑖 . Consider edge-paths in the subdivided square 𝐼 × 𝐼 which differ by a sub-square, as
indicated in the following figure.

We apply 𝐻 and obtain two paths in 𝑋 . They yield the same result since they differ by a homotopy
on some subinterval which stays inside one of the sets 𝑈𝑖 . Changes of this type allow us to pass
inductively from 𝐻 on the lower to 𝐻 on the upper boundary path from (0, 0) to (1, 1). Hence, Φ is
well-defined. It is easy to check that Φ is indeed a functor between Π(𝑋) and 𝐺. By construction,
the diagram commutes. □

Proposition 2.3.1 contains a lot of redundant information since we only want to know how to
compute 𝜋1(𝑋, 𝑥0) for some 𝑥 ∈ 𝑋 .

Corollary 2.3.3. (SVK for Groups) Let (𝑋, 𝑥0) ∈ Top be path-connected. Let {𝑈𝑖}𝑖∈𝐼 be an open
cover of 𝑋 by path-connected open subsets such that {𝑈𝑖}𝑖∈𝐼 is closed under taking finite intersec-
tions and such that 𝑥0 ∈ 𝑈𝑖 for each 𝑖 ∈ 𝐼, then

𝜋1(𝑋, 𝑥0) = lim−−→
𝑖∈𝐼

𝜋(𝑈𝑖 , 𝑥0)

PROOF. (Sketch)We will only prove the case where the open cover is finite. The proof for the general
case can be found in See [May99, Section 2.7]. We need to verify the universal property of colimits in
the category of groups. Let𝐺 be some group and let Γ𝑖 : 𝜋(𝑈𝑖 , 𝑥0) → 𝐺 be group homomorphisms.



2.3. SEIFERT-VAN KAMPEN THEOREMS 39

We show that there exists a unique group homomorphismΦ : 𝜋1(𝑋, 𝑥0) → 𝐺 such that the diagram

𝜋1(
⋂
𝑗∈𝐽⊆𝐼 𝑈 𝑗 , 𝑥0) 𝜋1(𝑈𝑖|𝐽 | , 𝑥0)

𝜋1(𝑈𝑖1 , 𝑥0) 𝜋1(𝑋, 𝑥0)

𝐺

Γ𝑖|𝐽 |

Γ𝑖1

Φ

for each subset 𝐽 ⊆ 𝐼. Recall that the inclusion of categories 𝒥 : 𝜋1(𝑋, 𝑥0) → Π(𝑋) is actually an
equivalence of categories. An inverse equivalenceℱ : Π(𝑋) → 𝜋1(𝑋, 𝑥0) is determined by a choice
of path classes 𝑥 → 𝑦 for 𝑦 ∈ 𝑋 . We choose 𝑐𝑥 when 𝑦 = 𝑥 and so ensure that ℱ ◦ 𝒥 = Id𝜋1 (𝑋,𝑥0 ) .
Because the cover is finite and closed under finite intersections, we can choose our paths inductively
so that the path 𝑥 → 𝑦 lies entirely in every 𝑈𝑖 for all 𝑈𝑖 such that 𝑦 ∈ 𝑈𝑖⁴. This ensures that
the chosen paths determine compatible inverse equivalences ℱ𝑈𝑖 : Π(𝑈𝑖) → 𝜋1(𝑈𝑖 , 𝑥0) to the
inclusions 𝒥𝑈𝑖 : 𝜋1(𝑈𝑖 , 𝑥0) → Π(𝑈𝑖). Thus, the functors

Π(𝑈𝑖)
ℱ𝑈𝑖−−−→ 𝜋1(𝑈𝑖 , 𝑥0)

Γ𝑈𝑖−−−→ 𝐺

specify diagram of groupoids. By Corollary 2.3.3, there is a unique map of groupoids

Γ̃ : Π(𝑋) → 𝐺

that restricts to Γ𝑈𝑖 ◦ℱ𝑈𝑖 on Π(𝑈𝑖) for each𝑈𝑖 . The composite

Γ : 𝜋1(𝑋, 𝑥0)
𝒥−→ Π(𝑋) Γ̃−→ 𝐺

It restricts to Γ𝑖 on 𝜋1(𝑈𝑖 , 𝑥0) by a diagram chase argument and the fact thatℱ𝑈𝑖 ◦𝒥𝑈𝑖 = Id𝜋1 (𝑈𝑖 ,𝑥0 ) .
Indeed, we have that the following diagram commutes:

𝜋1(𝑋, 𝑥0)

Π(𝑋) Π(𝑈𝑖) 𝜋1(𝑈𝑖 , 𝑥0)

𝐺

𝒥

Γ̃

𝒥𝑈𝑖

Γ̃𝑖◦𝒥𝑈𝑖

Γ𝑖

It is unique because Γ̃ is unique. Indeed, if we are given Γ′ : 𝜋1(𝑋, 𝑥0) → 𝐺 that restricts to
Γ𝑖 on each 𝜋1(𝑈, 𝑥0), then Γ′ ◦ ℱ : Π(𝑋) → 𝐺 restricts to Γ𝑖 ◦ ℱ𝑈𝑖 on each Π(𝑈𝑖). Therefore
Γ̃ = Γ′ ◦ℱ and thus Γ̃ ◦ 𝒥 = Γ′. This completes the proof. □

Note that the Seifert-Van Kampen theorem does not apply when the open sets in the cover we
consider do not have path-connected intersections. An important example is S1. If we cover it by
two open semi-circles, their intersection would be two disjoint open intervals which is not path-
connected. This leads to the idea of constructing a “fundamental group with multiple basepoints”
and its corresponding Seifert-Van Kampen theorem. We discuss this approach briefly.

⁴We assume here that the open cover is finite
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Definition 2.3.4. Let 𝑋 ∈ Top be path-connected. For a set 𝐴 ⊆ 𝑋 , let Π(𝑋, 𝐴) denote the full
subcategory of Π(𝑋) on the objects in 𝐴.

As before, our strategy for proving the Seifert-Van Kampen theorem for multiple basepoints will
be to deduce it from the version for the full fundamental groupoid.

Proposition 2.3.5. (SVK for Groupoids - Multiple Base-points) Let 𝑋 ∈ Top be path-connected.
Let {𝑈𝑖}𝑖∈𝐼 be an open cover of 𝑋 of open subsets such that {𝑈𝑖}𝑖∈𝐼 is closed under taking finite
intersections. Let 𝐴 ⊆ 𝑋 (not necessarily a singleton) such that 𝐴 contains one point from each
path-component of𝑈𝑖 . Then

Π(𝑋, 𝐴) = lim−−→
𝑖∈𝐼

Π(𝑈𝑖 , 𝐴)

Remark 2.3.6. We will need to invoke the notion of a retract of a diagram in a category, 𝒞. Recall
that an object 𝑋 ∈ 𝒞 in a category is called a retract of an object 𝑌 ∈ 𝒞 if there are morphisms

𝑖 : 𝑋 → 𝑌, 𝑟 : 𝑌 → 𝑋

such that 𝑟 ◦ 𝑖 = Id𝑋. In this case, 𝑟 is called a retraction of 𝑌 onto 𝑋 . A commutative diagram,𝒟1,
in𝒞 is a retract of another commutative diagram,𝒟2, in𝒞 if each ‘corner’ of𝒟1 is a rectract of the
corresponding corner of 𝒟2 such that all of the inclusions and retractions are compatible with one
another in the sense that the diagram obtained by ‘pasting together’ 𝒟1 and 𝒟2 via the inclusions
and retractions commutes. We will use below the categorical fact that the retract of a colimit diagram
in category is a colimit diagram.

PROOF. Consider the diagram determined by Π(𝑈𝑖)’s and also consider the diagram determined by
Π(𝑈𝑖 , 𝐴)’s. Denote the diagrams 𝒟1 and 𝒟2 respectively. We claim that 𝒟2 is a retraction of 𝒟1.
The inclusions at each ‘corner’ are the just inclusions

Π(𝑈𝑖 , 𝐴) ↩→ Π(𝑈𝑖)

The retractions are built as follows. To retract Π(𝑈𝑖) onto Π(𝑈𝑖 , 𝐴), pick for every point 𝑥 ∈ 𝑈𝑖 , a
path 𝛼𝑥 from 𝑥 to some point 𝑦 ∈ 𝐴 but do this in such a way that if 𝑥 ∈ 𝐴, then 𝛼𝑥 is the identity
morphism at 𝑥⁵. We define the retraction by sending each 𝑥 ∈ 𝑈𝑖 to the other endpoint of 𝛼𝑥 , and
each morphism 𝛽 : 𝑥 → 𝑦 to the morphism 𝛼𝑦 ◦ 𝛽 ◦ 𝛼−1

𝑥 ⁶. The claim follows by noting that 𝒟1
is a colimit diagram. See [Bro06, Proposition 6.7.2] and [Die08, Theorem 2.6.2] for some relevant
partial details. □

2.4. Computations
We calculate the fundamental group of some topological spaces. Our main working tool will be

the SVK theorems. Let’s first discuss a general example.

2.4.1. Fundamental Group of Circle. We cannot use Corollary 2.3.3 to compute the the fun-
damental group of S1. This is because if we cover S1 by two open semi-circles, their intersection
would be two disjoint open intervals which is not path-connected. Instead, we use Proposition 2.3.5.

⁵We can always pick these paths because the hypothesis includes that 𝐴 has at least one point in each component of𝑈𝑖 .
⁶To ensure that the cube formed by the two van Kampen squares and the four retractions commutes, simply always pick
the same 𝛼𝑥 for 𝑥 in all of the groupoids it appears in.
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Let
𝑈1 = S1 \ {(0, 1)}
𝑈2 = S1 \ {(0,−1)}
𝐴 = {(−1, 0), (1, 0)}

Then 𝑈1,𝑈2 are simply connected (they are both homeomorphic to R) while 𝑈1 ∩𝑈2 is a homeo-
morphic to a disjoint union of two copies of R. What is Π(𝑈, 𝐴)? There are clearly morphisms

(1, 0) → (−1, 0)
(−1, 0) → (1, 0)

and they are inverses of each other since any path (1, 0) → (−1, 0) → (1, 0) can be shrunk to (1, 0)
alone. So Π(𝑈, 𝐴) is simply a category with two objects and a single isomorphism between them.
Similar remarks apply toΠ(𝑉, 𝐴). Similarly, Π(𝑈∩𝑉, 𝐴) is a category with two distinct objects and
no morphisms between the distinct objects. In other words, it is a two object discrete category. What
is Π(𝑋, 𝐴)? It is a groupoid with two objects and two isomorphisms between. One isomorphism
comes from Π(𝑈, 𝐴) and the other from Π(𝑉, 𝐴). Denote the isomorphisms as 𝑖𝑈 and 𝑖𝑉 . Beyond
that it is free as possible. So, for example, all the composites (𝑖−1

𝑉 ◦ 𝑖𝑈)𝑛 are distinct (because there
is no reason for them not to be). We get that

𝜋1(S1, (1, 0)) � {𝑖−1
𝑉 ◦ 𝑖𝑈)𝑛 | 𝑛 ∈ Z} � Z

Remark 2.4.1. Usually, 𝑥0 is chosen to be the point (1, 0) if we consider S1 ⊆ C. We denote the
basepoint as ∗. We can also use the theory of covering spaces (which are special instances of fiber
bundles) that

𝜋1(S1, ∗) � Z
We now derive a number of consequences of this result:

Proposition 2.4.2. The following statements are true:
(1) We have 𝜋1(R2 \ {0}, 𝑥0) � Z
(2) We have

𝜋1

(
S1 × · · · × S1︸          ︷︷          ︸

𝑛−times

, (∗1, · · · , ∗𝑛)
)
� 𝜋1(S1, ∗1) × · · · × 𝜋1(S1, ∗𝑛)︸                                ︷︷                                ︸

𝑛−times

� Z𝑛

(3) R2 is not homeomorphic to R𝑛 for 𝑛 ≥ 3⁷.
(4) (Brouwer’s Fixed Point Theorem) If 𝑓 : D2 → D2 is a continuous function, then 𝑓 has a

fixed point. That is, there is a 𝑥 ∈ D2 such that 𝑓 (𝑥) = 𝑥.
(5) (Fundamental Theorem of Algebra) Any non-constant polynomial 𝑝 ∈ C[𝑥] has a root.
(6) There are no retractions 𝑟 : 𝑋 → 𝐴 in the following cases:

(a) 𝑋 = R3, with 𝐴 any subspace homeomorphic to S1.
(b) 𝑋 = S1 × D2, with 𝐴 its boundary torus S1 × S1.
(c) 𝑋 is the Möbius band and 𝐴 its boundary circle.

PROOF. The proof is given below:
(1) This follows since R2 \ {0} deformation retracts to S1.
(2) This is a straightforward consequence of Proposition 2.2.5 and that 𝜋1(S1, ∗) � Z.

⁷Clearly, R2 is not homemorphic to R0. We have already checked above that R2 is not homeomorphic to R1. Clearly, R2

is homeomorphic to R2.
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(3) Suppose 𝑓 : R2 → R𝑛 is a homeomorphism. Without loss of generality, let 𝑓 (0) = 0.
Hence, R2 \ {0} � R𝑛 \ {0}. R2 \ 0 deformation retracts to S1 and R𝑛 \ {0} deformation
retracts to S𝑛−1. Therefore,

Z � 𝜋1(S1, ∗) � 𝜋1(R2 \ 0) � 𝜋1((R𝑛 \ 0) � 𝜋1(S𝑛−1, ∗) � {1}.
a contradiction. Here we use the fact that 𝜋1(S𝑛−1, ∗) � {1} = 0 for 𝑛 ≥ 3. See [Lee10,
Lemma 7.19 & Theorem 7.20] for a proof of this fact. See also below.

(4) Assume that 𝑓 (𝑥) ≠ 𝑥 for all 𝑥 ∈ D2. There is then a deformation retraction 𝑟 : D2 → S1

that carries a point 𝑥 ∈ D2 to the intersection of the ray from 𝑓 (𝑥) to 𝑥 with the boundary
circle S1. Hence, we have the following diagram:

S1 D2 D2

IdS1

𝑟

Applying 𝜋1, we have the following diagram:

Z � 𝜋1(S1, ∗) {•} 𝜋1(S1, ∗) � Z

IdZ

This is clearly a contradiction.
(5) We may assume that the polynomial 𝑝(𝑧) is of the form

𝑝(𝑧) = 𝑧𝑛 + 𝑎1𝑧
𝑛−1 + · · · + 𝑎𝑛.

Suppose that 𝑝(𝑧) has no roots. Fix a 𝑅 > 0 such that

𝑅 > max
{
1,

𝑛∑
𝑖=1
|𝑎𝑖 |

}
Then for |𝑧 | = 𝑅 we have

|𝑧𝑛 | > (|𝑎1 | + · · · + |𝑎𝑛 |) |𝑧𝑛−1 |
> |𝑎1𝑧

𝑛−1 | + · · · + |𝑎𝑛 |
≥ |𝑎1𝑧

𝑛−1 + · · · + 𝑎𝑛 |.
From the inequality |𝑧𝑛 | > |𝑎1𝑧

𝑛−1 + · · · + 𝑎𝑛 |, it follows that the polynomial
𝑝𝑡 (𝑧) = 𝑧𝑛 + 𝑡 (𝑎1𝑧

𝑛−1 + · · · + 𝑎𝑛)
has no roots on the circle |𝑧 | = 𝑅 when 0 ≤ 𝑡 ≤ 1. Note that 𝑝𝑡 defines a homotopy between
the polynomials 𝑧𝑛 and 𝑝(𝑧). Consider the formula

𝑓𝑡 (𝑠) =
𝑝(𝑡𝑅𝑒2𝜋𝑖𝑠)/𝑝(𝑡𝑅)
|𝑝(𝑡𝑅𝑒2𝜋𝑖𝑠)/𝑝(𝑡𝑅) |

defined on [0, 1] × [0, 1]. For each fixed t, Then each 𝑓𝑡 (𝑠) defines a loop in the unit circle
S1 ⊆ C based at 1. Note that

𝑓0(𝑠) = 1, 𝑓1(𝑠) =
𝑝(𝑅𝑒2𝜋𝑖𝑠)/𝑝(𝑅)
|𝑝(𝑅𝑒2𝜋𝑖𝑠)/𝑝(𝑅) |

Write 𝑝(𝑧) = 𝑧𝑛 + 𝑞(𝑧). Consider

𝐻𝑡 (𝑠) =
[𝑟𝑒2𝜋𝑖𝑠)𝑛 + 𝑡𝑞(𝑟𝑒2𝜋𝑖𝑠)/(𝑟𝑛 + 𝑡𝑞(𝑟))
| [𝑟𝑒2𝜋𝑖𝑠)𝑛 + 𝑡𝑞(𝑟𝑒2𝜋𝑖𝑠)/(𝑟𝑛 + 𝑡𝑞(𝑟)) |
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This defines a homotopy between 𝑓1 and𝜔𝑛 = 𝑒2𝜋𝑖𝑛𝑠. Since 𝑓0 is homotopic to the constant
map and 𝑓0 is homotopic to 𝑓1, we have that 𝜔𝑛 is homotopic to the constant map. Hence,
𝑛 = 0. This is a contradiction.

(6) We use the fact that if 𝑟 : 𝑋 → 𝐴 is retraction, then the induced map on fundamental
groups is injective.
(a) This follows because there is no injection from 0→ Z.
(b) This follows because there is no injection from Z × Z to Z. Let ℎ : Z × Z → Z be

any group homomorphism. Suppose ℎ(1, 0) = 𝑎 and ℎ(0, 1) = 𝑏. It follows that
ℎ(−𝑏, 𝑎) = (0, 0), and hence ker(ℎ) ≠ (0, 0).

(c) Skipped.
This completes the proof. □

Remark 2.4.3. Here are two cute applications of Brouwer’s fixed point theorem:
(1) A 3 × 3 real invertible matrix with non-negative entries has a real positive eigenvalue. Let

𝑇 : R3 → R3 be the linear map corresponding to a matrix 𝐴. Define

𝐵 = S2 ∩
{
(𝑥1, 𝑥2, 𝑥3) ∈ R3 | 𝑥1, 𝑥2, 𝑥3 ≥ 0

}
� D2.

If 𝑥 ∈ 𝐵, then all coordinates of 𝑇𝑥 = 𝐴𝑥 are non-negative and not all zero since 𝐴 is non-
singular and not all coordinates of 𝑥 ∈ 𝐵 can be zero. Therefore, the normalized vector
𝑇𝑥/∥𝑇𝑥∥ lies in 𝐵. Now, consider the continuous map 𝑓 : 𝐵→ 𝐵 defined by

𝑓 (𝑥) = 𝑇𝑥

∥𝑇𝑥∥ .

By Brouwer’s Fixed Point Theorem, there exists a point 𝑥0 ∈ 𝐵 such that 𝑓 (𝑥0) = 𝑥0, which
implies 𝑇𝑥0 = ∥𝑇𝑥0∥𝑥0. Setting 𝜆 = ∥𝑇𝑥0∥, we conclude that 𝜆 is an eigenvalue of 𝐴, with
𝜆 ∈ R and 𝜆 > 0.

(2) A 3 × 3 real matrix with positive entries has a positive real eigenvalue. This follows as in
(1).

2.4.2. Fundamental Group of Spheres. Let 𝑋 = S𝑛 for 𝑛 ≥ 2. Let

𝑈 = S \ {𝑁}, 𝑉 = S \ {𝑆}
Clearly, 𝑈,𝑉 � R𝑛−1 via the stereographic projection. Hence, 𝑈 and 𝑉 are two open simply con-
nected subsets of S𝑛 with path connected intersection. Hence, we have that S𝑛 is simply connected
for 𝑛 ≥ 2, since the colimit of two trivial groups is the trivial the group. Let’s consider a basic
application:

Example 2.4.4. Consider 𝑋𝑚 = R𝑛 − {𝑚 points} for 𝑛 ≥ 3. We compute the fundamental group of
𝑋𝑛 by induction on 𝑛. The case 𝑚 = 1 is easy since

R𝑛 − {a point} � S𝑛−1 × R+

which is simply connected:

𝜋1(R𝑛 − {a point}) � 𝜋1(S𝑛−1, ∗) × 𝜋1(R+, 1) � {•}
Now assume that 𝑚 > 1. Divide the points in into two sets of smaller size, 𝐴 and 𝐵. 𝐴 and 𝐵 can be
separated by the hyperplane 𝐻, and that 𝑁+ and 𝑁− are two open neighborhoods of the half-spaces
that result. For an arbitrary base-point 𝑥0 ∈ 𝐻, Van Kampen theorem applies, giving a surjection

𝜋1(𝑁+ \ 𝐴, 𝑥0) ∗ 𝜋1(𝑁− \ 𝐵, 𝑥0) ↠ 𝜋1(R𝑛 − {𝑚 points}, 𝑥0)
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By the induction hypothesis⁸, both 𝑁+ \ 𝐴 and 𝑁− \ 𝐵 are simply connected. Hence,

𝜋1(R𝑛 − {𝑚, points }, 𝑥0) � 0.

Example 2.4.5. Let 𝑉 be a finite-dimensional real vector space and 𝑊 ⊂ 𝑉 a (proper) linear sub-
space. We compute the fundamental group 𝜋1(𝑉 \𝑊). Since every finite-dimensional real vector
space is linearly homeomorphic to some R𝑛, we can assume WLOG that 𝑉 = R𝑛 and 𝑊 = R𝑚

for 𝑚 < 𝑛. Projecting first onto (𝑅𝑚)⊥ and then unit sphere shows that R𝑛 \ R𝑚 is homotopically
equivalent to S𝑛−𝑚−1, Therefore, we have:

𝜋1(R𝑛 \ R𝑚) =
{
Z, if 𝑚 = 𝑛 − 2,
0, otherwise.

2.4.3. Fundamental Group of Wedge Sums. In order to use Van Kampen’s theorem to com-
pute the fundamental group of the wedge sum, we need to put a mild restriction on the type of base
points we consider. A point 𝑝 in a topological space 𝑋 is said to be a non-degenerate base point if
𝑝 has a neighborhood that admits a strong deformation retraction onto 𝑝.

Lemma 2.4.6. Suppose 𝑥𝑖 ∈ 𝑋𝑖 is a non-degenerate base point for 𝑖 = 1, . . . , 𝑛. Then
∨𝑛
𝑖=1 𝑥𝑖 is a

non-degenerate base point in 𝑋1 ∨ · · · ∨ 𝑋𝑛.

PROOF. For each 𝑖, choose a neighborhood𝑊𝑖 of 𝑥𝑖 that admits a deformation retraction 𝑟𝑖 : 𝑊𝑖 →
{𝑥𝑖}, and let 𝐻𝑖 : 𝑊𝑖 × 𝐼 → 𝑊𝑖 be the associated homotopy. Define a map

𝐻 :
𝑛∐
𝑖=1

𝑊𝑖 × 𝐼 →
𝑛∐
𝑖=1

𝑊𝑖

by letting 𝐻 = 𝐻𝑖 on𝑊𝑖 × 𝐼. Let𝑊 be the image of
∐𝑛
𝑖=1𝑊𝑖 under the quotient map

𝑞 :
𝑛∐
𝑖=1

𝑋𝑖 →
𝑛∨
𝑖=1

𝑋𝑖

Since
∐𝑛
𝑖=1𝑊𝑖 is a saturated open set,𝑊 is an open set of 𝑋1 ∨ · · · ∨ 𝑋𝑛 that is a neighbourhood of∨𝑛

𝑖=1 𝑥𝑖 . We have that

𝑞 × Id𝐼 :
𝑛∐
𝑖=1

𝑊𝑖 × 𝐼 → 𝑊 × 𝐼

is a quotient map. Since 𝑞◦𝐻 respects the identifications made by 𝑞× Id𝐼 , it descends to the quotient
and yields a deformation retraction of𝑊 onto ∨𝑛𝑖=1𝑥𝑖 . □

Proposition 2.4.7. Let 𝑋1, . . . , 𝑋𝑛 be spaces with non-degenerate base points 𝑥𝑖 ∈ 𝑋𝑖 . The map

Φ : 𝜋1(𝑋1, 𝑥1) ∗ · · · ∗ 𝜋1(𝑋𝑛, 𝑥𝑛) → 𝜋1

( 𝑛∨
𝑖=1

𝑋𝑖 ,
𝑛∨
𝑖=1

𝑥𝑖

)
induced by 𝜄𝑖 : 𝜋1(𝑋𝑖 , 𝑥𝑖) → 𝜋1(

∨𝑛
𝑖=1 𝑋𝑖 ,

∨𝑛
𝑖=1 𝑥𝑖) is an isomorphism.

PROOF. It suffices to consider the case 𝑛 = 2. The general case follows by induction. Choose neigh-
borhoods𝑊𝑖 in which 𝑥𝑖 is a deformation retract, and let

𝑈 = 𝑞(𝑋1
∐

𝑊2), 𝑉 = 𝑞(𝑊1
∐

𝑋2)

⁸Here we use the observation that a open half space in R𝑛 is homeomorphic to R𝑛.
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where 𝑞 : 𝑋1
∐
𝑋2 → 𝑋1∨ 𝑋2 is the quotient map. Since 𝑋1

∐
𝑊2 and𝑊1

∐
𝑋2 are saturated open

sets in 𝑋1
∐
𝑋2, the restriction of 𝑞 to each of them is a quotient map onto its image, and 𝑈 and 𝑉

are open in the wedge sum. The three maps
{∗} ↩→ 𝑈 ∩𝑉,
𝑋1 ↩→ 𝑈,

𝑋2 ↩→ 𝑉

are all homotopy equivalences. Because 𝑈 ∩ 𝑉 is contractible, we have: 𝑈 ↩→ 𝑋1 ∨ 𝑋2 and 𝑉 ↩→
𝑋1 ∨ 𝑋2 induce an isomorphism

𝜋1(𝑈) ∗ 𝜋1(𝑉) � 𝜋1(𝑋1 ∨ 𝑋2).
Moreover, the injections 𝜙1 : 𝑋1 ↩→ 𝑈 and 𝜙2 : 𝑋2 ↩→ 𝑉 , which are homotopy equivalences, induce
isomorphisms

𝜋1(𝑋1, 𝑥1) � 𝜋1(𝑈)
𝜋1(𝑋2, 𝑥2) � 𝜋1(𝑉)

Hence,
𝜋1(𝑋1, 𝑥1) ∗ 𝜋1(𝑋2, 𝑥2) � 𝜋1(𝑋1 ∨ 𝑋2, 𝑥1 ∨ 𝑥2).

The general case follows by induction. □

Example 2.4.8. The following is a list of computations based on the information about the funda-
mental group of wedge sums:

(1) Consider𝑋 =
∨𝑛
𝑖=1 S

1. We have

𝜋1(S1 ∨ · · · ∨ S1,
𝑛∨
𝑖=1
∗𝑖) � 𝜋1(S1, ∗1) ∗ · · · ∗ 𝜋1(S1, ∗𝑛) � Z ∗ · · · ∗ Z︸      ︷︷      ︸

𝑛 times

(2) Let 𝑋 be the union of 𝑛 lines through the origin in R3. Then R3 − 𝑋 deformation retracts
to S2 minus 2𝑛 points, which is homeomorphic to R2 minus 2𝑛 − 1 points. This in turn
admits a deformation retraction to a wedge of 2𝑛 − 1 circles, so

𝜋1(R3 − 𝑋, 𝑥0) � Z ∗ · · · ∗ Z︸      ︷︷      ︸
2𝑛−1 times

2.4.4. Fundamental Group of Graphs.
Definition 2.4.9. A graph is a CW complex of dimension 0 or 1. The 0-cells of a graph are called
its vertices, and the 1-cells are called its edges.

It follows from the definition of a CW complex that for each edge 𝑒, the set 𝑒 \ 𝑒 consists of one
or two vertices. If a vertex 𝑣 is contained in 𝑒, we say that 𝑣 and 𝑒 are incident. A subgraph is a
subcomplex of a graph. Thus, if a subgraph contains an edge, it also contains the vertex or vertices
incident with it. Here is some more important terminology:

• An edge path in a graph is a finite sequence (𝑣0, 𝑒1, 𝑣1, . . . , 𝑣𝑘−1, 𝑒𝑘 , 𝑣𝑘) that starts and ends
with vertices and alternates between vertices and edges, such that for each 𝑖, {𝑣𝑖−1, 𝑣𝑖} is
the set of vertices incident with the edge 𝑒𝑖 .
• An edge path is said to be closed if 𝑣0 = 𝑣𝑘 , and simple if no edge or vertex appears more

than once, except that 𝑣0 might be equal to 𝑣𝑘 .
• A cycle is a nontrivial simple closed edge path.
• A tree is a connected graph that contains no cycles.
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Lemma 2.4.10. Let 𝐺 be a finite graph.
(1) If 𝐺 is a tree, then 𝐺 is contractible and hence simply connected. In fact, if 𝑣0 is a vertex

of 𝐺, then 𝑣0 is a deformation retract of 𝐺.
(2) If 𝐺 is a connected graph, then 𝐺 contains a maximal tree - called a spanning tree.

PROOF. The proof is given below:
(1) We induct on the number of edges, 𝑛. If 𝑛 = 1, it 𝐺 is homeomorphic to an interval 𝐼. The

claim is clearly true in this case. Assume the claim is true for 𝑛 ∈ N and consider the case
𝑛+1 ∈ N. Since𝐺 is simple, every edge of𝐺 is incident with exactly two vertices. If every
vertex in 𝐺 is incident with at least two edges, then, we can construct sequences (𝑣 𝑗) 𝑗∈Z of
vertices and (𝑒 𝑗) 𝑗∈Z of edges such that for each 𝑗 , 𝑣 𝑗−1 and 𝑣 𝑗 are the two vertices incident
with 𝑒 𝑗 , and 𝑒 𝑗 , 𝑒 𝑗+1 are two different edges incident with 𝑣 𝑗 . Because 𝑇 is finite, there
must be some integers 𝑛 and 𝑛+𝑘 > 𝑛 such that 𝑣𝑛 = 𝑣𝑛+𝑘 . If 𝑛 and 𝑘 are chosen so that 𝑘 is
the minimum positive integer with this property, this means that (𝑣𝑛, 𝑒𝑛+1, . . . , 𝑒𝑛+𝑘 , 𝑣𝑛+𝑘)
is a cycle, contradicting the assumption that𝐺 is a tree. Hence, we can choose 𝑣1 ∈ 𝐺 such
that 𝑣1 is incident to only one edge. Let 𝑣′1 denote the other vertex. Then 𝑒 deformation
retracts onto the vertex 𝑣′1. The result is then a tree with 𝑛 edges, which deformation retracts
onto 𝑣0.

(2) Since the empty subgraph is a tree, an application of Zorn’s lemma shows that 𝐺 contains
a maximal subtree - a subgraph that is a tree and is not properly contained in any larger tree
in 𝐺.

This completes the proof. □

Remark 2.4.11. Lemma 2.4.10 can be extended to the case of infinite graphs.

Remark 2.4.12. A spanning tree 𝑇 ⊆ 𝐺 contains every vertex of 𝐺. Indeed, suppose that there is a
vertex 𝑣 ∈ 𝐺 that is not contained in 𝑇 . Because 𝐺 is connected, there is an edge path from a vertex
𝑣0 ∈ 𝑇 to 𝑣, say (𝑣0, 𝑒1, . . . , 𝑒𝑘 , 𝑣𝑘 = 𝑣). Let 𝑣𝑖 be the last vertex in the edge path that is contained
in 𝑇 . Then the edge 𝑒𝑖+1 is not contained in 𝑇 , because if it were, 𝑣𝑖+1 would also be in 𝑇 since 𝑇
is a subgraph. The subgraph 𝑇 ′ = 𝑇 ∪ {𝑒𝑖+1} properly contains 𝑇 , so it is not a tree, and therefore
contains a cycle. This cycle must include 𝑒𝑖+1 or 𝑣𝑖+1, because otherwise it would be a cycle in 𝑇 .
However, since 𝑒𝑖+1 is the only edge of 𝑇 ′ that is incident with 𝑣𝑖+1, and 𝑣𝑖+1 is the only vertex of 𝑇 ′
incident with 𝑒𝑖+1, there can be no such cycle.

Proposition 2.4.13. Let 𝐺 be a finite graph and let 𝑇 ⊆ 𝐺 be a spanning tree. Let 𝑛𝐺\𝑇 denote the
number of edges in 𝐺 \ 𝑇 . If 𝑣0 ∈ 𝐺, then

𝜋1(𝐺, 𝑣0) � Z ∗ · · · ∗ Z︸      ︷︷      ︸
𝑛𝐺\𝑇 times

PROOF. The proof is by induction on the number of edges in 𝐺 \ 𝑇 . Let 𝑛 = 1. Clearly, 𝐺/𝑇 � S1.
Consider the map

𝑞 : 𝐺 → 𝐺/𝑇 � S1.

We show 𝑞 is a homotopy equivalence. We define a map

𝑞′ : 𝐺/𝑇 � S1 → 𝐺.

Let 𝑒 be the edge not contained in 𝑇 . Pick paths 𝛼1 and 𝛼2 in 𝑇 from 𝑣0 to 𝑣1 and 𝑣2, respectively.
Consider the loop 𝛼1 ◦ 𝑒 ◦𝛼−1

2 . It is easily checked that 𝑞 ◦𝑞′ and 𝑞′ ◦𝑞 are homotopic to the identity
maps. If 𝑛 > 1 and assume that the claim is true for 𝑛 ∈ N. we can use Van Kampen’s theorem to
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prove the case for 𝑛 + 1 ∈ N. Let 𝑒1, · · · , 𝑒𝑛+1 be edges in 𝐺 \ 𝑇 . For each 𝑖 = 1, . . . , 𝑛 + 1, choose
a point 𝑥𝑖 ∈ 𝑒𝑖 Let

𝑈 = 𝐺 \ {𝑥1, . . . , 𝑥𝑛}
𝑉 = 𝐺 \ {𝑥𝑛+1}

Both 𝑈 and 𝑉 are open in 𝐺. Just as before, it is easy to construct deformation retractions to show
that

𝑈 ∩𝑉 ≃ 𝑇, 𝑈 ≃ 𝑇 ∪ 𝑒𝑛+1 𝑉 ≃ 𝐺 \ 𝑒𝑛+1.
By the inductive hypothesis, we have 𝜋1(𝑉, 𝑣0) � Z and

𝜋1(𝑉, 𝑣0) = Z ∗ · · · ∗ Z︸      ︷︷      ︸
𝑛 times

The claim follows by Van Kampen’s theorem noting that Since𝑈 ∩𝑉 � 𝑇 is simply connected. □

2.4.5. Fundamental Group of CW Complexes. Let 𝑋 be a connected CW complex. If 𝑋 =
𝑋0, then 𝑋 is a point and the fundamental group of 𝑋 is the trivial. If 𝑋 = 𝑋1, then 𝑋 is a graph and
we have already covered that case.

Proposition 2.4.14. Let 𝑋 be a path-connected CW complex such that 𝑋 = 𝑋2. Let 𝑥0 ∈ 𝑋 and let
𝜑𝛼 : S1 → 𝑋 be the attaching maps of the 2-cells D𝛼 and let 𝛾𝛼 : 𝐼 → 𝑋 be a path from 𝑥0 to
𝜑𝛼 (1). Then

𝜋1(𝑋, 𝑥0) � 𝜋1(𝑋1, 𝑥0)/𝑁,
where 𝑁 is the normal subgroup generated by the path {𝛾𝛼 ◦ 𝜑𝛼 ◦ 𝛾𝛼}.

PROOF. The proof is given below:
(1) Let 𝐴 be a subcomplex generated by the union of the 2-cells, D2

𝛼 and toegether with the
𝜑𝛼’s. Then 𝐴 is a contractible subcomplex. Hence,

𝜋1(𝐴, 𝑥0) � {1}
(2) Choose points 𝑥𝛼 ∈ D2

𝛼 and define the subset 𝐵 = 𝑋2 −⋃
𝛼{𝑥𝛼}. Then 𝐵 retracts to 𝑋1.

Hence,
𝜋1(𝐵, 𝑥0) � 𝜋1(𝑋1, 𝑥0)

(3) We have 𝑋2 = 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 consists of precisely those edge-cycles starting at 𝑥0 that
make up loops homotopic to the boundaries of 2-cells, or in other words, the images of
S1
𝛼 under the attaching maps. Therefore, each element of 𝜋1(𝐴 ∩ 𝐵, 𝑥0) represents a an of
{𝛾𝛼 ◦ 𝜑𝛼 ◦ 𝛾𝛼}.

(4) By Van-Kampen’s theorem,

𝜋1(𝑋, 𝑥0) � 𝜋1(𝑋2, 𝑥0) �
𝜋1(𝐴, 𝑥0) ∗ 𝜋1(𝐵, 𝑥0)

𝑁
� 𝜋1(𝑋1, 𝑥0)/𝑁

This completes the proof. □

In fact, we now show that the fundamental group of a CWcomplex only depends on its 2-skeleton
with basepoint 𝑥0.

Corollary 2.4.15. Let 𝑋 be a path-connected CW complex. If 𝑥0 ∈ 𝑋 , then
𝜋1(𝑋, 𝑥0) � 𝜋1(𝑋2, 𝑥0).
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PROOF. This follows simply because 𝐴∩𝐵 as in Proposition 2.4.14 will comprised on boundaries of
𝑛-cells for 𝑛 ≥ 3. These are all contractible. Hence, an application of Van-Kampen’s theorem yields
the desired result. □

Example 2.4.16. We can use the discussion in the previous section to compute the fundamental
groups of topological spaces introduced Section 1.4.2.

(1) Let 𝑋 = S1 × S1. We have already computed the fundamental group of 𝑋 , but we can also
compute it using the discussion above. We have,

𝜋1(𝑋, 𝑥0) �
Z ∗ Z

⟨𝑎𝑏𝑎−1𝑏−1⟩ � ⟨𝑎, 𝑏 | 𝑎𝑏𝑎
−1𝑏−1⟩ � Z × Z

(2) Let 𝑋 = RP2. We have,

𝜋1(𝑋, 𝑥0) =
Z

⟨𝑎2⟩ � ⟨𝑎 | 𝑎
2⟩ � Z2

In general, if 𝑋 = RP𝑛, we have
𝜋1(RP𝑛, 𝑥0) � Z2

This follows at once from the computation above and that 2-skeleton of RP𝑛 is just RP2.
(3) If 𝑋 = CP𝑛 then 𝑋 is simply-connected. This is because the 1-skeleton of 𝑋 consists of a

single 0-cell.
(4) Let 𝑋 be the 𝑔-holed surface in Example 1.4.19. We have

𝜋1(𝑋, 𝑥0) = ⟨𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔 | [𝑎1, 𝑏1] · · · [𝑎𝑔, 𝑏𝑔] = 1⟩
This follows pretty much by the definition of 𝑋 and the fact that the 1-skeleton is a wedge
sum of 2𝑔 circles.

(5) Let 𝑋 = 𝐾 (Klein bottle). We have,

𝜋1(𝑋, 𝑥0) =
Z ∗ Z
⟨𝑎𝑏𝑎𝑏−1⟩ � ⟨𝑎, 𝑏 | 𝑎𝑏𝑎𝑏

−1⟩

Let 𝐴 be the subgroup generated by 𝑎 and 𝐵 be the subgroup generated by 𝑏. We have
𝐴, 𝐵 � Z. Then since 𝑏𝑎𝑏−1 = 𝑎−1, we have that 𝐵 is a normal subgroup. Clearly, 𝐴 and
𝐵 generate 𝜋1(𝑋, 𝑣) and since every element has a unique representation in the form 𝑏𝑛𝑎𝑚,
we have that and 𝐴 ∩ 𝐵 = {𝑒}. Hence,

𝜋1(𝑋, 𝑥0) � Z ⋊ Z



CHAPTER 3

Covering Spaces

3.1. Definitions & Examples
Covering spaces offer a powerful framework in topology by enabling the study of complex spaces

through simpler, well-behaved ones. One of their most compelling features is the ability to lift paths
and homotopies from the base space to the covering space. This lifting property allows us to analyze
the behavior of loops and paths in the base space by observing their images in the covering space,
where the geometry and topology are often easier to handle. Importantly, this process reveals rich
information about the fundamental group of the base space.

3.1.1. Definitions.

Definition 3.1.1. Let 𝑋 be a topological space. A covering space of 𝑋 is a topological space 𝑋
together with a continuous surjective map 𝑝 : 𝑋 → 𝑋 called a covering map such that for every
point 𝑥 ∈ 𝑋 , there exists an open neighborhood𝑈𝑥 ⊆ 𝑋 and a discrete topological spaces, 𝐷𝑥 , such
that

𝑝−1(𝑈𝑥) =
∐
𝛼∈𝐷𝑥

𝑈𝛼

where 𝑉𝑑 is an open set of 𝑋 homeomrophic to𝑈𝑥 .

Remark 3.1.2. Covering spaces are special examples of fiber bundles where the fiber is a discrete
topological space. In a covering space 𝑝 : 𝑋 → 𝑋 , the local triviality condition resembles that of
fiber bundles: for each 𝑥 ∈ 𝑋 , there exists an open neighborhood 𝑈𝑥 ⊆ 𝑋 such that 𝑝−1(𝑈𝑥) �
𝑈𝑥 × 𝐹, where 𝐹 is a discrete set (the fiber).

Remark 3.1.3. If 𝑋 is a connected topological space, the cardinality of 𝐷𝑥 in Definition 3.1.1 is
constant. That is, |𝐷𝑥 | = |𝐷𝑦 | for each 𝑥, 𝑦 ∈ 𝑋 . Indeed, let 𝑥 ∈ 𝑋 and let 𝑈𝑥 be an open set as
in Definition 3.1.1. Then for each 𝑦 ∈ 𝑈𝑥 and 𝛼 ∈ 𝐷𝑥 , the intersection 𝑝−1({𝑦}) ∩ 𝑈𝛼 contains
exactly one point, since the restriction of 𝑝 to𝑈𝛼 is a homeomorphism onto𝑈𝑥 . Now fix 𝑎 ∈ 𝑋 , and
define the set

𝐴 := {𝑥 ∈ 𝑋 | |𝑝−1({𝑥}) | = |𝑝−1({𝑎}) |}.
By the above argument, the cardinality of the fiber is locally constant so both 𝐴 and its complement
𝐴𝑐 are open sets in 𝑋 . Since 𝑋 is connected, it follows that 𝑋 \ 𝐴 = ∅, and thus 𝐴 = 𝑋 . If the
cardinality is 𝑛, we say that 𝑝 is a 𝑛-sheeted covering map.

Example 3.1.4. The following is a list of examples of covering spaces:
(1) Any homeomorphism is a covering map.
(2) If 𝑋 is any topological space and 𝐷 is a discrete topological spaces, then the projection

𝑝 : 𝑋 × 𝐷 → 𝑋 is a covering map.
(3) The map 𝑝 : R→ S1 defined by

𝑝(𝑡) = (cos 2𝜋𝑡, sin 2𝜋𝑡).
49
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Indeed, let 𝑥 = (𝑥1, 𝑥2) ∈ S1 be a point on the unit circle such that 𝑥1 > 0. Consider the
open set

𝑈 := {(𝑥1, 𝑥2) ∈ S1 | 𝑥1 > 0},
which is an open neighborhood of 𝑥 in S1. The pre-image of𝑈 under 𝑝 is the disjoint union

𝑝−1(𝑈) =
⊔
𝑛∈Z

(
𝑛 − 1

4 , 𝑛 +
1
4
)
,

where each interval (𝑛 − 1/4, 𝑛 + 1/4) is mapped homeomorphically onto𝑈 by 𝑝. Hence,
𝑝 is an∞-sheeted covering map. The fiber over the point 1 ∈ S1 is given by Z.

−5 −4 −3 −2 −1 0 1 2 3 4 5

The fiber over the point 1 ∈ S1 is given by Z.

(4) The map 𝑝 : S1 → S1 defined by 𝑝(𝑧) = 𝑧𝑛 for 𝑛 ∈ N is an 𝑛-sheeted covering map. The
fiber of 1 are the 𝑛-th roots of unity.

The fiber of 1 are the 8-th roots of unity.

Let’s now prove some general properties bout covering spaces:

Proposition 3.1.5. The following are properties of covering spaces.
(1) A covering map is an open map.
(2) A covering map is a local homeomorphism.
(3) The restriction of a covering map is a convering map.
(4) A finite product of covering maps is a covering map.

PROOF. The proof is given below:
(1) Let 𝑝 : 𝑋 → 𝑋 be a covering map. Let 𝑈 be an open set in 𝑋 , and fix a point 𝑝(𝑥) ∈

𝑝(𝑈). Since 𝑝 is a covering map, let 𝑈𝑝 (𝑥 ) ⊆ 𝑋 be as in Definition 3.1.1. Let 𝑈𝛼 be the
slice of 𝑝−1(𝑈𝑝 (𝑥 ) ) containing 𝑥. Then 𝑝 maps 𝑈𝛼 homeomorphically onto 𝑈𝑝 (𝑥 ) . So
𝑝(𝑈𝛼 ∩𝑈) ⊆ 𝑝(𝑈) is open in 𝑋 . Hence, 𝑝 is an open map.

(2) This is clear.
(3) Let 𝑝 : 𝑋 → 𝑋 be a covering map. Let 𝑋0 ⊆ 𝑋 and consider the restricted map 𝑝 |𝑝−1 (𝑋0 ) :

𝑝−1(𝑋0) → 𝑋0. The map is clearly continuous. Since 𝑝 : 𝑋 → 𝑋 is a covering space, for
each 𝑥 ∈ 𝑋 there exists an open set 𝑈𝑥 such that 𝑝−1(𝑈𝑥) satisfies Definition 3.1.1. The
map 𝑝 |𝑝−1 (𝑋0 ) satisfies Definition 3.1.1 if we choose the open set to be𝑈𝑥 ∩ 𝑋0.

(4) 𝑝𝑖 : 𝑋𝑖 → 𝑋𝑖 be covering maps for 𝑖 = 1, 2. Choose (𝑥1, 𝑥2) ∈ 𝑋1 × 𝑋2. Then there is a
neighborhood𝑈𝑥𝑖 of 𝑥𝑖 in 𝑋𝑖 such that 𝑝−1

𝑖 (𝑈𝑥𝑖 ) satisfies Definition 3.1.1. Then𝑈𝑥1 ×𝑈𝑥2

is an open set of 𝑋1 × 𝑋2 such that (𝑝1 × 𝑝2)−1(𝑈𝑥1 ×𝑈𝑥2) satisfies Definition 3.1.1.
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This completes the proof. □

How are two covering spaces of a topological space related? Can we define a map between two
covering spaces to identify them up to isomorphism? This question leads us to the definition of
homomorphisms between covering spaces.
Definition 3.1.6. Let (𝑋1, 𝑝1) and (𝑋2, 𝑝2) be covering spaces of a topological space 𝑋 . A mor-
phism of (𝑋1, 𝑝1) into (𝑋2, 𝑝2) is a continuous map 𝜙 : 𝑋1 → 𝑋2 such that the following diagram
commutes:

𝑋1 𝑋2

𝑋

𝑝1

𝜙

𝑝2

A homomorphism 𝜙 of (𝑋1, 𝑝1) into (𝑋2, 𝑝2) is an isomorphism if there exists a homomorphism 𝜓
of (𝑋2, 𝑝2) into (𝑋1, 𝑝1) such that 𝜓 ◦ 𝜙 and 𝜙 ◦ 𝜓 are the identity maps on 𝑋1 and 𝑋2.

3.1.2. Examples. Group actions on topological spaces provide a rich source of covering maps,
which have significant applications in various areas of mathematics, particularly in geometric topol-
ogy and geometric group theory. For instance, in geometric topology the quotient spaces formed
by group actions often inherit interesting topological properties, which can be studied via covering
space theory. These spaces provide insights into the structure of manifolds and their fundamental
groups.
Proposition 3.1.7. Let 𝐺 be a topological group acting on a topological space 𝑋 . Assume that for
each 𝑥 ∈ 𝑋 , there exists an open set 𝑈𝑥 ⊆ 𝑋 containing 𝑥 such that for each 𝑔 ∈ 𝐺 with 𝑔 ≠ 𝑒, we
have 𝑔𝑈𝑥 ∩𝑈𝑥 = ∅. The quotient map 𝑝 : 𝑋 → 𝑋/𝐺 is a covering map.
Remark 3.1.8. A group action satisfying the condition in Proposition 3.1.7 is called a covering
space action. We use this terminology from now.
PROOF. (Proposition 3.1.7) Since 𝑞−1(𝑞(𝑈𝑥)) =

⊔
𝑔∈𝐺 𝑔𝑈𝑥 , the set 𝑞(𝑈𝑥) = 𝐺𝑈𝑥 is open in 𝑋/𝐺

and satisfies Definition 3.1.1. Hence, 𝑝 : 𝑋 → 𝑋/𝐺 is a covering map. □

Example 3.1.9. The following is a list of examples of covering maps generated by group actions:
(1) Let Z act on R by translations: for each 𝑛 ∈ Z, define the action 𝑛 · 𝑥 = 𝑥 + 𝑛. This action

satisfies the assumptions in Proposition 3.1.7. Hence, the mapR→ R/Z � S1 is a covering
map. This reproves Example 3.1.4(1).

(2) Let Z2 act on the 𝑛-sphere S𝑛 by the antipodal map:
𝑔 · 𝑥 = −𝑥, for all 𝑥 ∈ S𝑛.

where 𝑔 ≠ 𝑒 ∈ Z2. This action satisfies Proposition 3.1.7. Hence, the projection map
𝑝 : S𝑛 → S𝑛/Z2 � RP𝑛 is a covering space. In fact, it is a two-sheeted covering map since
each point in RP𝑛 corresponds to a pair of antipodal points on S𝑛.

(3) We can generalize (2). Let Z𝑝 act on the odd-dimensional sphere S2𝑛−1 ⊆ C𝑛 by
𝜁 · (𝑧1, 𝑧2, . . . , 𝑧𝑛) = (𝜁𝑞1𝑧1, 𝜁

𝑞2𝑧2, . . . , 𝜁
𝑞𝑛 𝑧𝑛),

where 𝜁 ∈ Z𝑝 is a primitive 𝑝-th root of unity (i.e., 𝜁 = 𝑒2𝜋𝑖/𝑝) and 𝑞1, . . . , 𝑞𝑛 ∈ Z are
integers coprime to 𝑝. This action satisfies Proposition 3.1.7, so the quotient

S2𝑛−1 → S2𝑛−1/Z𝑝
is a covering map. 𝐿 (𝑝; 𝑞1, . . . , 𝑞𝑛) := S2𝑛−1/Z𝑝 is called a lens space. The projection
map is a 𝑝-sheeted covering map.
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Remark 3.1.10. Lens spaces generalize real projective spaces RP2𝑛−1 � 𝐿 (2; 1, . . . , 1). and play
an important role in low-dimensional topology and the study of 3-manifolds.

3.2. Lifting Properties
Studying the lifting properties of maps in covering spaces is fundamental because it allows us to

transfer complex topological problems to simpler, often more manageable spaces. Lifting of paths
helps in understanding how loops and homotopies in the base space relate to the structure of the
covering space, providing key insights into the fundamental group.

Proposition 3.2.1. Let 𝑝 : 𝑋 → 𝑋 be a covering map. Any path 𝑓 : 𝐼 → 𝑋 with initial point 𝑥0 can
be uniquely lifted to a path 𝑓 : 𝐼 → 𝑋 with an initial point in 𝑝−1(𝑥0) such that 𝑝 ◦ 𝑓 = 𝑓 .

PROOF. We first prove existence. First assume that 𝑓 (𝐼) ⊆ 𝑈𝑥0 , where𝑈𝑥0 satisfies Definition 3.1.1.
For any 𝑥0 ∈ 𝑝−1(𝑥0), let 𝑈 be an open set containing 𝑥0 that is mapped homemorphically to 𝑈𝑥0 .
the path component of 𝑝−1(𝑈) which contains 𝑥0. Clearly, the path 𝑓 = 𝑝−1 |𝑈𝑥0

◦ 𝑓 : 𝐼 → 𝑋 is a
path such that such that 𝑝 ◦ 𝑓 = 𝑓 . Now assume that the image of 𝑓 is not contained in 𝑈𝑥0 or in a
single. In this case, let {𝑈𝑖}𝑖 be an open cover of 𝑋 by open sets satisfying Definition 3.1.1. Then,
{ 𝑓 −1(𝑈𝑖)}𝑖 is an open covering of 𝐼. Let 𝜆 be the Lebesgue number of the covering. Now, choose
𝑛 ∈ N such that 1/𝑛 < 𝜆. Divide the interval 𝐼 into the closed sub-intervals of length 1/𝑛. Since
the diameter of these intervals is less than 𝜆, 𝑓 maps each of these intervals inside some 𝑈𝑖 . We
can now apply the argument above. We now show uniqueness by proving that given any two maps
𝑓0, 𝑓1 : 𝐼 → 𝑋 with same initial point such that 𝑝 ◦ 𝑓0 = 𝑝 ◦ 𝑓1, the set

𝐴 = {𝑡 ∈ 𝐼 | 𝑓0(𝑡) = 𝑓1(𝑡)}
is either empty or all of 𝐼. It suffices to show that 𝐴 is cl-open. First we will see that it is a closed set.
Let 𝑡 be in the closure of 𝐴 and let 𝑥 = 𝑝 ◦ 𝑓0(𝑡) = 𝑝 ◦ 𝑓1(𝑡). Assume 𝑓0(𝑡) ≠ 𝑓1(𝑡). We will see that
this leads to a contradiction. Let 𝑥 ∈ 𝑈𝑥 be an open satisfying Definition 3.1.1, and let 𝑈0 and 𝑈1
be open sets of 𝑋 containing 𝑓0(𝑡) and 𝑓1(𝑡) respectively that are mapped homeomorphically to 𝑥.
Since 𝑓0 and 𝑓1 are both continuous, we can find a neighborhood 𝑡 ∈ 𝑊 ⊆ 𝐼 such that 𝑓0(𝑊) ⊆ 𝑈0
and 𝑓1(𝑊) ⊆ 𝑈1. But 𝑈0 ∩𝑈1 = ∅. This is a contradiction to the fact that every neighborhood of 𝑡
must intersect the set 𝐴. This shows that 𝐴 is closed. Analogously, we can argue that every point in
𝐴 is an interior point and therefore the set is open. Since 𝑓0 and 𝑓1 agree on at least one point in 𝐼,
i.e., 𝑓0(0) = 𝑓1(0), they have to be equal. □

Proposition 3.2.2. Let 𝑝 : 𝑋 → 𝑋 be a covering map. Any homotopy 𝐻 : 𝑌 × 𝐼 → 𝑋 can be
uniquely lifted to 𝑋 if 𝐻0 : 𝑌 → 𝑋 can be lifted to 𝑋 provide that 𝐻0 has been specified.

PROOF. A more general version of Proposition 3.2.2 will be proved in Proposition 11.2.4. For an
alternative approach, see [Lee10], which demonstrates how Proposition 3.2.2 can be applied by
generalizing the argument in Proposition 3.2.1. □

Let us now use Proposition 3.2.1 and Proposition 3.2.2 to recompute the fundamental group of
S1.

Example 3.2.3. (Homotopy Classification of Loops in S1) Consider the covering space 𝑝 : R →
S1. We compute the fundamental group of S1 in the following steps:

(1) If 𝑓 : 𝐼 → S1, then any two lifts 𝑓1, 𝑓2(0) such that 𝑓1(0) = 𝑓2 differ by an integer. Indeed,
the fact that 𝑝( 𝑓1) = 𝑝( 𝑓2)) implies that 𝑓1(𝑡) − 𝑓2(𝑡) ∈ Z for each 𝑡 ∈ 𝐼. Since 𝑓1 − 𝑓2
is a continuous function from the connected space 𝐼 into the discrete space Z, it must be
constant.
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(2) Let 𝑓0, 𝑓1 : 𝐼 → S1 be two paths in S1 with same initial and terminal points. If 𝑓0(0) =
𝑓1(0), then 𝑓0 ∼ 𝑓1 if and only if 𝑓0(1) = 𝑓1(1). The forward direction is clear since R
is simply-connected (Remark 2.2.9). For the reverse direction, suppose that 𝑓0 ∼ 𝑓1. Let
𝐻 : 𝐼 × 𝐼 → S1 be a between 𝑓0 and 𝑓1. Then Proposition 3.2.2 implies that 𝐻 lifts to a
homotopy

𝐻 : 𝐼 × 𝐼 → R
such that 𝐻 (·, 0) = 𝑓0. Now 𝐻1(·, 1) : 𝐼 → R is a path of that is a lift of 𝑓1 starting at
𝑓1(0). By uniqueness of lifts, it must be equal to 𝑓1. Thus, 𝑓0 ∼ 𝑓1 and this implies that
𝑓0(1) = 𝑓1(1).

(3) (Winding Number) Suppose 𝑓 : 𝐼 → S1 is a loop based at a point 𝑥0 ∈ S1. If 𝑓 : 𝐼 → R
is any lift of 𝑓 , then 𝑓 (1) and 𝑓 (0) are both points in the fiber 𝑝−1(𝑥0), so they differ by
an integer. Since any other lift differs from 𝑓 by an additive constant, the difference

𝑓 (1) − 𝑓 (0)
is an integer that depends only on 𝑓 , and not on the choice of lift. This integer is denoted
by 𝑁 ( 𝑓 ), and is called the winding number of 𝑓 . (1) and (2) at once imply that two loops
in S1 based at the same point are path-homotopic if and only if they have the same winding
number.

(4) (Fundamental Group of S1)We can now show that 𝜋1(S1, 1) � Z generated by [𝜔] where
𝜔 : 𝐼 → S1 such that 𝜔(𝑡) = 𝑒2𝜋𝑖𝑡 . Define the maps

𝐽 : Z→ 𝜋1(S1, 1),
𝑛 ↦→ [𝜔𝑛]

𝐾 : 𝜋1(S1, 1) → Z,
[ 𝑓 ] ↦→ 𝑁 ( 𝑓 )

It is clear that 𝐽, 𝐾 are well-defined and that 𝐽, 𝐾 are homomorphisms. We show that 𝐽, 𝐾
are two-sided inverses. To prove that 𝐾 ◦ 𝐽 = IdZ, let 𝑛 ∈ Z be arbitrary. Note that

𝐾 (𝐽 (𝑛)) = 𝐾 ([𝜔𝑛]) = 𝐾 ([𝛼𝑛]) = 𝑁 (𝛼𝑛) = 𝑛,
where 𝛼𝑛 : 𝐼 → S1 is the map 𝛼𝑛 (𝑡) = 𝑒2𝜋𝑖𝑛𝑡 . To prove that 𝐽 ◦ 𝐾 = Id𝜋1 (S1,1) , suppose 𝑓
is any element of 𝜋1(S1, 1), and let 𝑛 be the winding number of 𝑓 . Then 𝑓 and 𝛼𝑛 are path-
homotopic because they are loops based at 1 with the same winding number. Therefore,

𝐽 (𝐾 ([ 𝑓 ])) = 𝐽 (𝑛) = [𝜔]𝑛 = [𝛼𝑛] .

Let us now use Proposition 3.2.1 and Proposition 3.2.2 to determine how the fundamental groups
of the based space and covering space in a covering map relate to each other.

Proposition 3.2.4. Let 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0) be a covering map such that 𝑥0 = 𝑝(𝑥0).
(1) The induced homomorphism 𝑝∗ : 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑋, 𝑥0) is injective. Hence, 𝜋1(𝑋, 𝑥0)

can be identified with a subgroup of 𝜋1(𝑋, 𝑥0).
(2) If 𝑋 is path-connected, the subgroups 𝑝∗(𝜋1(𝑋, 𝑥)) for 𝑥 ∈ 𝑝−1(𝑥0) are exactly the conju-

gacy class of subgroups of 𝑝∗(𝜋1(𝑋, 𝑥0)).
(3) If 𝑋 is path-connected, the the number of sheets of 𝑝 equals the index of 𝑝∗ : 𝜋1(𝑋, 𝑥0) in

𝜋1(𝑋, 𝑥0).
(4) If 𝑋 is path-connected and simply connected, then

𝜋1(𝑋, 𝑥0) � 𝑝−1(𝑥0)
as sets.

PROOF. The proof is given below:
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(1) Let [𝛼] and [𝛽] be two homotopy classes of paths in 𝑋 and suppose that 𝑝∗ [𝛼] = 𝑝∗ [𝛽].
If 𝑓𝛼 ∈ [𝛼] and 𝑓𝛽 ∈ [𝛽], then 𝑝 ◦ 𝑔𝛼 ∼ 𝑝 ◦ 𝑔𝛽 . It follows from Proposition 3.2.2 that
𝑔𝛼 ∼ 𝑔𝛽 in 𝑋 . So, [𝛼] = [𝛽]. Thus the map is injective.

(2) First suppose that 𝑥0, 𝑥1 ∈ 𝑝−1(𝑥0). Let 𝛾 be a path from 𝑥0 to 𝑥1. This defines an isomor-
phism (Proposition 2.2.5):

𝜙 : 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑋, 𝑥1)
[𝛼] ↦→ [𝛾 ◦ 𝛼 ◦ 𝛾−1]

We thus have the following commutative diagram:

𝜋1(𝑋, 𝑥0) 𝜋1(𝑋, 𝑥0)

𝜋1(𝑋, 𝑥1) 𝜋1(𝑋, 𝑥0)

𝑝∗

𝜙 𝜓

𝑝∗

Here, 𝜓 is defined such that
𝜓([𝛽]) = [(𝑝∗(𝛾))−1 ◦ 𝛽 ◦ (𝑝∗(𝛾))]

We conclude that the images of 𝜋1(𝑋, 𝑥0) and 𝜋1(𝑋, 𝑥1) are conjugate via [𝑝∗(𝛾)]. Con-
versely, any subgroup in the conjugacy class of 𝑝∗(𝜋1(𝑋, 𝑥0)) is of the form

[𝛼−1] 𝑝∗(𝜋1(𝑋, 𝑥0)) [𝛼]
for some [𝛼] ∈ 𝜋1(𝑋, 𝑥0). Let 𝑓 ∈ [𝛼]. By Proposition 3.2.1 𝑔 : 𝐼 → 𝑋 is a unique lift of
𝑓 initial point 𝑥0. Let 𝑥1 be the terminal point of the lifted path. Then

𝑝∗(𝜋1(𝑋, 𝑥1)) = [𝛼−1] 𝑝∗(𝜋1(𝑋, 𝑥0)) [𝛼]
(3) Let 𝐻 = 𝑝∗(𝜋1(𝑋, 𝑥0). Define a map

𝜙 : 𝜋1(𝑋, 𝑥0)
𝐻

→ 𝑝−1(𝑥0)

[ 𝑓 ] + 𝐻 ↦→ 𝑓 (1)

Here 𝑓 is a lift of the path 𝑓 . We claim that 𝜙 is well-defined. Given [ 𝑓 ] ∈ 𝜋1(𝑋, 𝑥0)
and [ℎ] ∈ 𝐻, let ℎ̄ be a loop in 𝑋 based at 𝑥0. Thus, ( ℎ̄ · 𝑓 )(1) = 𝑓 (1). This shows
that 𝜙 is well-defined. We claim that 𝜙 is a bijection. Since 𝑋 is path-connected, for any
𝑥 ∈ 𝑝−1(𝑥0), there exists a path 𝑔 from 𝑥0 to 𝑥, and it must project to a loop 𝑔 in 𝑋 based
at 𝑥0. Thus, 𝜙 is surjective. Now suppose

𝜙( [ 𝑓 ] + 𝐻) = 𝜙( [ 𝑓 ′] + 𝐻)
Then 𝑓 (1) = 𝑓 ′(1), and so the path 𝑓 · ( 𝑓 ′)−1 lifts to a loop in 𝑋 based at 𝑥0, i.e.,
[ 𝑓 ] [ 𝑓 ′]−1 ∈ 𝐻. This shows that 𝜙 is connected.

(4) This follows from (3).
This completes the proof. □

Example 3.2.5. Consider the covering 𝑝 : S𝑛 → RP𝑛. For 𝑛 ≥ 2, S𝑛 is path-connected and simply-
connected. Hence, Proposition 3.2.4 implies that

𝜋1(RP𝑛, 𝑥0) → 𝑝−1(𝑥0)
as sets. Since |𝑝−1(𝑥0) | = 2 and there is a unique group of order 2, it follows that

𝜋1(RP𝑛, 𝑥0) � Z/2Z
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for 𝑛 ≥ 2. For 𝑛 = 1, we have that RP1 � S1. Hence, 𝜋1(RP1, 𝑥0) � Z.
Previously, we considered a path in the unit interval 𝐼 within 𝑋 and lifted it to a corresponding

path in the covering space 𝑋 . We now extend this concept by studying the lifting of paths in 𝑋 from
an arbitrary connected space 𝑌 . Let 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0) be a covering space. Let (𝑌, 𝑦0) be a
topological space and let 𝑓 : (𝑌, 𝑦0) → (𝑋, 𝑥0) be a pointed continuous map. We seek to determine
conditions under which there exists a map 𝜙 : (𝑌, 𝑦0) → (𝑋, 𝑥0) such that the following diagram
commutes:

(𝑋, 𝑥0)

(𝑌, 𝑦0) (𝑋, 𝑥0)

𝑝

𝜙

𝜙

If 𝜙 exists, we say that 𝜙 can be lifted to 𝑋 . We refer to 𝜙 as a lifting of 𝜙. Note that if 𝜙 exists, then
the following commutative diagram of group homomorphisms holds:

𝜋1(𝑋, 𝑥0)

𝜋1(𝑌, 𝑦0)

𝜋1(𝑋, 𝑥0)

𝑝∗

𝜙∗

𝜙∗

Since 𝑝∗ is injective, for the diagram to commute it is necessary that
𝜙∗(𝜋1(𝑌, 𝑦0)) ⊆ 𝑝∗(𝜋1(𝑋, 𝑥0))

This condition is also sufficient.

Proposition 3.2.6. Let 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0) be a covering map. Let (𝑌, 𝑦0) be a connected and
locally path-connected space. Given a pointed continuous map 𝜙 : (𝑌, 𝑦0) → (𝑋, 𝑥0), there exists
a lifting 𝜙 : (𝑌, 𝑦0) → (𝑋, 𝑥0) if and only if

𝜙∗(𝜋1(𝑌, 𝑦0)) ⊆ 𝑝∗(𝜋1(𝑋, 𝑥0))
PROOF. Skipped. □

3.2.1. Covering Space Automorphisms. An automorphism of a covering map is an isomor-
phism from a covering space to itself. An automorphism of a covering map interchanges points in
the fiber point in the base space. The set of all automorphisms of forms a group under composition
and can be interpreted as the symmetries of the covering space.

Remark 3.2.7. Automorphisms of a covering map are also called deck transformations.
Using Proposition 3.2.1 and Proposition 3.2.6, we first establish various properties of the mor-

phisms of a covering map.

Corollary 3.2.8. Let (𝑋1, 𝑝1) and (𝑋2, 𝑝2) be covering spaces of a topological space (𝑋, 𝑥0) such
that 𝑝1(𝑥1) = 𝑝2(𝑥2) = 𝑥0

(1) Let 𝜙0 and 𝜙1 be homomorphisms of (𝑋1, 𝑝1) into (𝑋2, 𝑝2). If there exists a point 𝑥 ∈ 𝑋1
such that 𝜙0(𝑥) = 𝜙1(𝑥), then 𝜙0 = 𝜙1.

(2) There exists a morphism 𝜙 of (𝑋1, 𝑝1) into (𝑋2, 𝑝2) such that 𝜙(𝑥1) = 𝑥2 if and only if
𝑝1∗(𝜋1(𝑋1, 𝑥1)) ⊆ 𝑝2∗(𝜋1(𝑋2, 𝑥2))
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(3) The morphism in (2) is an isomorphism if and only if

𝑝1∗(𝜋1(𝑋1, 𝑥1)) = 𝑝2∗(𝜋1(𝑋2, 𝑥2))

(4) (𝑋1, 𝑝1) and (𝑋2, 𝑝2) are isomorphic if and only if the subgroups 𝑝1∗(𝜋1(𝑋1, �̃�1)) and
𝑝2∗(𝜋1(𝑋2, �̃�2)) of 𝜋1(𝑋, 𝑥0) belong to the same conjugacy class.

PROOF. The proof is given below:
(1) This follows from Proposition 3.2.1.
(2) This is a special case of Proposition 3.2.6.
(3) This follows from (2).
(4) This follows (3) and Proposition 3.2.4(3).

This completes the proof. □

We can now specialize to the case of an automorphism of a covering map.

Corollary 3.2.9. Let 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0) be a covering map.
(1) If 𝜙 is an automorphism (𝑋, 𝑥0) and 𝜙 is not the identity map then 𝜙 has no fixed points.
(2) Let 𝑥1, 𝑥2 ∈ 𝑝−1(𝑥0). There exists an automorphism 𝜙 ∈ Aut(𝑋, 𝑝) such that 𝜙(𝑥1) = 𝑥2

if and only if
𝑝∗(𝜋1(𝑋, 𝑥1)) = 𝑝∗(𝜋1(𝑋, 𝑥2))

PROOF. The proof is given below:
(1) This follows from Corollary 3.2.8(1).
(2) This follows from Corollary 3.2.8(3).

This completes the proof. □

3.3. Action of Fundamental Group on Fibers
We have seen in Proposition 3.2.4 if 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0) is a covering map, then if 𝑋 is

path-connected and simply-connected, then

𝜋1(𝑋, 𝑥0) � 𝑝−1(𝑥0)
as sets. We provide another perspective on this bijection of sets by observing that 𝜋1(𝑋, 𝑥0) acts
naturally on 𝑝−1(𝑥0). For any point 𝑥 ∈ 𝑝−1(𝑥0) and any [𝛼] ∈ 𝜋1(𝑋, 𝑥0), define 𝑥 · [𝛼] ∈ 𝑝−1(𝑥)
as follows: let �̄� be the lift of 𝛼 to 𝑋 starting at 𝑥, so that 𝑝∗(�̄�) = 𝛼. Then define 𝑥 · [𝛼] to be the
terminal point of the path class �̄�.

Remark 3.3.1. It can be verified that the action defined above is well-defined.

It follows from the definition that:
(1) 𝑥 · [𝑐𝑥0] = 𝑥
(2) (𝑥 · 𝛼) · 𝛽 = 𝑥 · (𝛼𝛽)

Therefore, this defines a right group action of 𝜋1(𝑋, 𝑥0) on the set 𝑝−1(𝑥0).

Proposition 3.3.2. Let 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0) be a covering map. If 𝑋 is path-connected, the action
of 𝜋1(𝑋, 𝑥0) on 𝑝−1(𝑥0) is transitive. As a right 𝜋1(𝑋, 𝑥0)-space, we have

𝑝−1(𝑥0) �
𝜋1(𝑋, 𝑥)

𝑝∗(𝜋1(𝑋, 𝑥0))
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PROOF. Let 𝑥, 𝑦 ∈ 𝑝−1(𝑥0). Since 𝑋 is path-connected, there exists a path �̄� in 𝑋 with the initial
point 𝑥 and terminal point 𝑦. Let [𝛼] = [𝑝∗(�̄�)]. We have 𝑥 · [𝛼] = 𝑦. This shows that the action is
transitive. Note that the isotropy subgroup of any 𝑥0 is the set.

{[𝛼] ∈ 𝜋1(𝑋, 𝑥) | 𝑥0 · [𝛼] = 𝑥0} � 𝑝∗(𝜋1(𝑋, 𝑥0))
The desired isomorphism of 𝜋1(𝑋, 𝑥0)-sets follows by the orbit-stabilizer theorem. □

In fact, the automorphism group of the covering space, denoted as Aut(𝑋, 𝑝), acts on the fiber
𝑝−1(𝑥0) as a right 𝜋1(𝑋, 𝑥)-space. This action is compatible with the group action of 𝜋1(𝑋, 𝑥0) on
the fiber. Indeed, let 𝜙 ∈ Aut(𝑋, 𝑝), any point 𝑥 ∈ 𝑝−1(𝑥0), and any [𝛼] ∈ 𝜋1(𝑋, 𝑥0). Lift 𝛼 to
a path �̄� in 𝑋 with initial point 𝑥, such that 𝑝∗(�̄�) = 𝛼. Note that 𝑥 · [𝛼] is the terminal point of
�̄�. Now consider the path 𝜙 ◦ �̄� in 𝑋 . Its initial point is 𝜙(𝑥) and the terminal point is 𝜙(𝑥 · [𝛼]).
Observe that:

𝑝(𝜙 ◦ �̄�) = (𝑝 ◦ 𝜙) (�̄�) = 𝑝(�̄�) = 𝛼.
This implies that 𝜙 ◦ �̄� is also a lifting of 𝛼. By definition, (𝜙(𝑥)) · [𝛼] is the terminal point of 𝜙 ◦ �̄�.
Therefore, we have

𝜙(𝑥 · [𝛼]) = 𝜙(𝑥) · [𝛼]
We now state an important result relating automorphisms of covering spaces to automorphisms

of the fiber.

Proposition 3.3.3. Let 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0) be a covering map.
(1) Aut(𝑋, 𝑝) is naturally isomorphic to the group of automorphisms of the set 𝑝−1(𝑥0) con-

sidered as a right 𝜋1(𝑋, 𝑥)-set.
(2) The automorphism group Aut(𝑋, 𝑝) is isomorphic to the quotient group

𝑁 (𝑝∗(𝜋1(𝑋, 𝑥0))
𝑝∗(𝜋1(𝑋, 𝑥0))

,

where 𝑁 (𝑝∗(𝜋1(𝑋, 𝑥0)) denotes the normalizer of 𝜋1(𝑋, 𝑥0)) in 𝜋1(𝑋, 𝑥0).
PROOF. The proof is given below:

(1) Note that if 𝜙 is an automorphism of 𝑋 , then 𝜙 |𝑝−1 (𝑥 ) is an automorphism of the fiber
𝑝−1(𝑥0). We will prove that the map

𝜙 ↦→ 𝜙|𝑝−1 (𝑥0 )

is bijective. Suppose 𝜙 |𝑝−1 (𝑥0 ) = 𝜓 |𝑝−1 (𝑥0 ) . This implies that (𝜙◦𝜓−1) |𝑝−1 (𝑥 ) = Id𝑝−1 (𝑥0 ) .
Since automorphisms of covering spaces have no fixed points unless they are the identity
(Corollary 3.2.8)(1)), it follows that 𝜙 ◦ 𝜓−1 = Id(𝑋,𝑝) , and thus 𝜙 = 𝜓. This shows the
map is injective. If 𝜙 is an automorphism of the fiber 𝑝−1(𝑥0) such that 𝜙(𝑥0) = 𝑥1, where
𝑥1 ∈ 𝑝−1(𝑥0). Then 𝑝∗(𝜋1(𝑋, 𝑥0)) = 𝑝∗(𝜋1(𝑋, 𝑥1)). By Corollary 3.2.9(2), there exists
an automorphism 𝜓 ∈ Aut(𝑋, 𝑝) such that 𝜓(𝑥0) = 𝑥1. This shows the map is surjective.

(2) This follows from (1) and the group-theoretic fact that if 𝑍 is a transtive 𝐺-set and 𝐻 is the
isotropy subgroup of some 𝑧 ∈ 𝑍 . Then the automorphism group Aut(𝑍) is isomorphic to
the quotient group

Aut(𝑍) � 𝑁 (𝐻)
𝐻

This completes the proof. □

We now state two important corollaries of the previous result:

Corollary 3.3.4. Let 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0) be a covering map.
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(1) If 𝑝∗(𝜋1(𝑋, 𝑥0)) is a normal subgroup of 𝜋1(𝑋, 𝑥0), then

Aut(𝑋, 𝑝) � 𝜋1(𝑋, 𝑥0)
𝑝∗(𝜋1(𝑋, 𝑥0))

(2) If 𝑋 is simply-connected then
Aut(𝑋, 𝑝) � 𝜋1(𝑋, 𝑥0)

PROOF. (1) follows at once from Proposition 3.3.3. (2) also follows from (1) since 𝑁 ({𝑐𝑥0} =
𝜋1(𝑋, 𝑥0). □

Corollary 3.3.4 provides key insights into the structure of the automorphism group of a covering
space.

(1) The first part shows that when the image of the induced map on the fundamental group
𝑝∗(𝜋1(𝑋, 𝑥0)) is a normal subgroup of 𝜋1(𝑋, 𝑥0), the automorphism group of the covering
space is isomorphic to the quotient of the fundamental group of the base space by this
normal subgroup. Moreover, for any 𝑥 ∈ 𝑝−1(𝑥0), we have

𝑝∗(𝜋1(𝑋, 𝑥0)) � 𝑝∗(𝜋1(𝑋, 𝑥))
since there is only one conjugacy class of 𝑝∗(𝜋1(𝑋, 𝑥)). Covering spaces that satisfy this
property are called regular/normal covering spaces.

(2) The second part of the corollary, which applies when 𝑋 is simply-connected, shows that
the automorphism group of such a covering space is isomorphic to the fundamental group
of the base space. Covering spaces that are simply connected are called universal covering
spaces

3.4. Classification of Covering Spaces
If 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0) is a covering map, we have proven that a covering space (𝑋, 𝑝) is

determined up to isomorphism by the conjugacy class of the subgroup 𝑝∗(𝜋1(𝑋, 𝑥0)) of 𝜋1(𝑋, 𝑥0)
(Corollary 3.2.9). Now, we address the inverse question:

Suppose (𝑋, 𝑥0) is a topological space and we are given a conjugacy class of subgroups of
𝜋1(𝑋, 𝑥). Does there exist a topological space (𝑋, 𝑥0) and a covering map 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0)

such that 𝑝∗(𝜋1(𝑋, 𝑥)) belongs to the given conjugacy class?

We will see that the properties of regular and universal covering spaces are closely related to
this question.

Proposition 3.4.1. Let (𝑋, 𝑥0) be a topological space that is connected, locally path-connected, and
semi-locally simply connected. Then, given any conjugacy class of subgroups of 𝜋1(𝑋, 𝑥0), there
exists a topological space (𝑋, 𝑥0) and a covering map 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0) such that 𝑝∗(𝜋1(𝑋, 𝑥))
belongs to the given conjugacy class.

Remark 3.4.2. A topological space (𝑋, 𝑥0) is semi-locally simply connected if every 𝑥 ∈ 𝑋 has a
neighborhood𝑈𝑥 such that the homomorphism

𝜋1(𝑈𝑥 , 𝑥) → 𝜋1(𝑋, 𝑥)
is trivial. That is, every loop in 𝑈𝑥 can be contracted to 𝑥 within 𝑋 . Note that 𝑈 need not be sim-
ply connected since every loop in 𝑈 may not be contractible within 𝑈. For this reason, a space
can be semi-locally simply connected without being locally simply connected. The definition of
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the latter is obvious. It turns out that (𝑋, 𝑥0) has a universal cover if and only if (𝑋, 𝑥0) is con-
nected, locally path-connected, and semi-locally simply connected. See [Lee10; Hat02] for de-
tails. Universal covering spaces are called universal because they satisfy the following property: let
𝑞 : (𝑌, 𝑦0) → (𝑋, 𝑥0) be a covering map such that (𝑌, 𝑦0) is a universal covering space. Then for
any other covering space 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0), there exists a unique covering map

𝜙 : (𝑌, 𝑦0) → (𝑋, 𝑥0)
such that the following diagram commutes:

(𝑌, 𝑦0) (𝑋, 𝑥0)

(𝑋, 𝑥0)
𝑞

𝜙

𝑝

This follow at once from Corollary 3.2.8(2).

PROOF. (Proposition 3.4.1) The assumptions on (𝑋, 𝑥0) imply that there exists a universal covering
space, (𝑌, 𝑦0), for (𝑋, 𝑥0). Let 𝑞 : (𝑌, 𝑦0) → (𝑋, 𝑥0) denote the corresponding (universal) covering
map. We know the following facts:

(1) 𝜋1(𝑋, 𝑥0) acts freely and transitively on the set 𝑞−1(𝑥0).
(2) Aut(𝑌, 𝑞) � 𝜋1(𝑋, 𝑥0).

Choose a subgroup 𝐺 ⊆ 𝜋1(𝑋, 𝑥0) that lies in the given conjugacy class. Consider the following
subgroup:

𝐻 := {𝜙 : Aut(𝑌, 𝑞) | there exists 𝛼𝜙 ∈ 𝐺 such that 𝜙(𝑦) = 𝑦 · [𝛼] ∈ 𝑝−1(𝑥0)}
Note that 𝐺 � 𝐻 under the correspondence 𝜙 ↦→ 𝛼𝜙. Since 𝐻 is a subgroup of Aut(𝑌, 𝑞), it is
a satisfies the hypothesis of Proposition 3.1.7. Hence, the quotient map 𝑟 : 𝑌 → 𝑌/𝐺 := 𝑋 is a
covering map. The universal property of universal covering spaces (Remark 3.4.2) implies that we
have a commutative diagram:

(𝑌, 𝑦0)

(𝑋, 𝑥0)

(𝑌, 𝑥0)

𝑞

𝑟

𝑝

Here 𝑝 : 𝑋 → 𝑋 is a map induced by 𝑞 and 𝑥0 = 𝑟 (𝑦0) ∈ 𝑝−1(𝑥0). It is not hard to verify
that 𝑝 : 𝑋 → 𝑋 is a covering map. Thus, the group 𝜋1(𝑋, 𝑥0) acts transitively on the right of
the set 𝑝−1(𝑥0). Since 𝑌 is simply-connected, we have Aut(𝑌, 𝑟) � 𝜋1(𝑋, 𝑥0). We claim that
Aut(𝑌, 𝑟) = 𝐻. Clearly, 𝐻 ⊆ Aut(𝑌, 𝑟). Suppose 𝑦1, 𝑦2 ∈ 𝑌 , and let 𝜙 ∈ 𝐺 be such that 𝜙(𝑦1) = 𝑦2.
Since 𝜙 is a covering transformation, we can choose an automorphism 𝜓 ∈ Aut(𝑌, 𝑝) such that
𝜓(𝑦1) = 𝑦2. It follows that 𝜙 = 𝜓. Hence, Aut(𝑌, 𝑝) ⊆ 𝐺, and therefore 𝐺 = Aut(𝑌, 𝑝)¹. Hence,
we have

Aut(𝑌, 𝑟) � 𝐻 � 𝐺.
So 𝑝∗ maps 𝜋1(𝑋, 𝑥0) onto 𝐺. This completes the proof. □

¹This shows that 𝑟 : 𝑌 → 𝑌/𝐺 is a regular covering map.
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Remark 3.4.3. Proposition 3.4.1 proves the additional fact that if a group acts on a simply-connected
space 𝑋 such that the group action satisfies the hypotheses in Proposition 3.1.7, then the quotient
map 𝑝 : 𝑋 → 𝑋/𝐺 is a regular covering map, and

Aut(𝑋/𝐺, 𝑝) � 𝜋1(𝑋, 𝑥0) � 𝐺
We have shown that there is a one-to-one correspondence:

{Conjugacy classes of 𝜋1(𝑋, 𝑥0)} ←→ {Covering maps 𝑝 : (𝑋, 𝑥0) → (𝑋, 𝑥0)}
provided that (𝑋, 𝑥0) is connected, locally path-connected, and semi-locally simply connected. Since
the universal covering space is connected, we in fact have a one-to-one correspondence for connected
covering maps. Let us now consider some examples to illustrate this correspondence.

Example 3.4.4. (Coverings of S1) Sice R is simply connected, the covering map 𝑝 : R → S1 is
a universal covering map. We know that 𝜋1(S1, 𝑥0) � Z. Every connected covering space of S1

corresponds to a subgroup of Z. Every non-trivial subgroup of Z is of the form 𝑛Z for some integer
𝑛 ≥ 1. Note that the index of 𝑛Z is 𝑛. For each 𝑛 ≥ 1, Proposition 3.4.1 implies that there exists a
unique (up to isomorphism) connected 𝑛-fold covering space of S1, which can be described as the
quotient R/𝑛Z � S1. The associated covering map is the 𝑛-th power map on S1.
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CHAPTER 4

Homological Algebra

We now begin an algebraic interlude to introduce foundational concepts from homological al-
gebra. In this chapter, we discuss exact sequences and (co)chain complexes. While our exposition
is framed within the category Mod𝑅 of 𝑅-modules over a commutative ring, all results and con-
structions extend verbatim to any abelian category. Section 4.1 explores simplicial homology as a
motivating example for the core ideas of homological algebra. Section 4.2 formally defines (co)chain
complexes and their associated (co)homology theories. Section 4.3–Section 4.6 provide an overview
of the motivation, definition, construction, and applications of spectral sequences. For further de-
tails, see [Wei94; Rot09].

4.1. Motivation via Simplicial Homology
To keep the discussion grounded and to motivate the forthcoming material, we present a de-

tailed treatment of simplicial homology in this section. This serves to illustrate the application of
homological algebra techniques to topological contexts. Simplicial homology has the advantage of
being computationally tractable since it can be used when a topological space can be triangulated.
Indeed, we will define it in terms of Δ-complexes which will serve as basic building block of our
triangulation.

Definition 4.1.1. Let [𝑣0, 𝑣1, . . . , 𝑣𝑛] be an ordered tuple in R𝑚.
(1) [𝑣0, 𝑣1, . . . , 𝑣𝑛] ⊆ R𝑚 is said to be affinely independent if the set

{𝑣1 − 𝑣0, 𝑣2 − 𝑣0, . . . , 𝑣𝑛 − 𝑣0}

is linearly independent¹.
(2) Given an affinely independent ordered tuple [𝑣0, 𝑣1, . . . , 𝑣𝑛] ⊆ R𝑚, the 𝑛-simplex gener-

ated by [𝑣0, 𝑣1, . . . , 𝑣𝑛] is the convex span in R𝑚 of the 𝑛 + 1 points 𝑣0, . . . , 𝑣𝑛:

conv[𝑣0, 𝑣1, . . . , 𝑣𝑛] =
{
𝑥 =

𝑛∑
𝑖=0

𝑡𝑖𝑣𝑖 ∈ R𝑚 | 𝑡𝑖 ≥ 0,
∑
𝑖

𝑡𝑖 = 1
}
,

We call the points 𝑣𝑖 the vertices of the 𝑛-simplex [𝑣0, 𝑣1, . . . , 𝑣𝑛].
(3) Given an 𝑛-simplex conv[𝑣0, 𝑣1, . . . , 𝑣𝑛], the face opposite to 𝑣𝑖 is the (𝑛 − 1)-simplex:

conv[𝑣0, . . . , �̂�𝑖 , . . . , 𝑣𝑛] := {𝑥 ∈ conv[𝑣0, 𝑣1, . . . , 𝑣𝑛] | 𝑡𝑖 = 0}.

The boundary of an 𝑛-simplex is the union of its faces.

Geometrically, one can think of an 𝑛-simplex as the smallest convex subset containing 𝑣0, . . . , 𝑣𝑛
such that the points do not lie in a hyperplane of dimension less than 𝑛. As an example consider the
standard 𝑛-simplex:

¹Thus necessarily 𝑛 ≤ 𝑚
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Definition 4.1.2. The standard simplex, Δ𝑛 ⊆ R𝑛+1, is

Δ𝑛 =

{
(𝑡0, . . . , 𝑡𝑛) ∈ R𝑛+1 | 𝑡𝑖 ≥ 0,

∑
𝑖

𝑡𝑖 = 1
}
.

Remark 4.1.3. The standard simplex allows one to induce coordinates on all 𝑛-simplices by sending
𝑒𝑖 ↦→ 𝑣𝑖 inducing a map of simplicies:

(𝑡0, . . . , 𝑡𝑛) ↦→
𝑛∑
𝑖=0

𝑡𝑖𝑣𝑖

(𝑡0, . . . , 𝑡𝑛) are are called barycentric coordinates.

Definition 4.1.4. A Δ-complex structure on a topological space 𝑋 is a collection of maps {𝜎𝑛𝑗 :
Δ𝑛 → 𝑋} 𝑗∈𝐽𝑛𝑛≥0 such that:

(1) The restriction 𝜎𝑛𝑗 |Int(Δ𝑛 ) is injective, and each point of 𝑋 is in the image of exactly one
such 𝜎𝑛𝑗 |Int(Δ𝑛 ) .

(2) Restriction of each 𝜎𝑛𝑗 to a face of Δ𝑛 is one of the maps 𝜎𝑛−1
𝑘 : Δ𝑛−1 → 𝑋 .

(3) A set 𝐴 ⊆ 𝑋 is open if and only if (𝜎𝑛𝑗 )−1(𝐴) is open in 𝑋 for each 𝜎𝑛𝑗 .

Remark 4.1.5. In what follows, we shall identify a 𝜎𝑛𝑗 : Δ𝑛 → 𝑋 with a 𝑛-simplex [𝑣0, · · · , 𝑣𝑛].

Our goal is to define the simplicial homology groups of a Δ-complex structure on a topological
space, 𝑋 . Let Δ𝑛 (𝑋) be the free abelian group with basis the open 𝑛-simplices of 𝑋 . Elements of
Δ𝑛 (𝑋) are called 𝑛-chains. These can be written as finite formal sums∑

𝑗∈𝐽𝑛
𝑛 𝑗𝜎

𝑛
𝑗 𝑛 𝑗 ∈ Z

Definition 4.1.6. Let 𝑋 be a topological space with a Δ-complex structure. The boundary operator

𝜕Δ𝑛 : Δ𝑛 (𝑋) → Δ𝑛−1(𝑋)
is defined on each basis element of Δ𝑛 (𝑋) as:

𝜕Δ𝑛 [𝑣0, . . . , 𝑣𝑛] =
𝑛∑
𝑖=0
(−1)𝑖 [𝑣0, . . . , �̂�𝑖 , . . . , 𝑣𝑛]

We say that
𝜕Δ𝑛

( ∑
𝑗∈𝐽𝑛

𝑛 𝑗𝜎
𝑛
𝑗

)
∈ Δ𝑛−1(𝑋)

is the boundary of
∑
𝑗∈𝐽𝑛 𝑛𝑖𝜎

𝑛
𝑗 in 𝑋 .

Remark 4.1.7. Note that the boundary of an 𝑛-simplex in 𝑋 is a Z-linear combination (with co-
efficients ±1) of 𝑛 − 1-simplices. This provides one motivation as to why we consider Z-linear
combinations of 𝑛-simplices. Moreover, heuristically the signs are inserted to take orientations into
account, so that all the faces of a simplex are coherently oriented. See Example 4.1.8.

Example 4.1.8. The following are examples of boundaries some standard simplexes.
(1) Consider 𝑋 = Δ1. Then 𝜕Δ1 [𝑣0, 𝑣1] = [𝑣1] − [𝑣0]

𝑣0 𝑣1
𝑒1
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(2) Consider 𝑋 = Δ2. Then 𝜕Δ2 [𝑣0, 𝑣1, 𝑣2] = [𝑣1, 𝑣2] − [𝑣0, 𝑣2] + [𝑣0, 𝑣1]

𝑣0 𝑣1

𝑣2

𝑒1

𝑒2𝑒3

Lemma 4.1.9. Let 𝑋 be a topological space with a Δ-complex structure. The map,

𝜕Δ𝑛−1 ◦ 𝜕Δ𝑛 : Δ𝑛 (𝑋)
𝜕Δ𝑛−−→ Δ𝑛−1(𝑋)

𝜕Δ𝑛−1−−−−→ Δ𝑛−2(𝑋)
is zero for each 𝑛 ≥ 0.

PROOF. Note that:∑
0≤ 𝑗<𝑖≤𝑛

(−1)𝑖 (−1) 𝑗 [𝑣0, · · · , 𝑣 𝑗 , · · · , 𝑣𝑖 , · · · , 𝑣𝑛] +
∑

0≤𝑖< 𝑗≤𝑛
(−1)𝑖 (−1) 𝑗−1 [𝑣0, · · · , 𝑣𝑖 , · · · , 𝑣 𝑗 , · · · , 𝑣𝑛] = 0

The latter two summations cancel since after switching 𝑖 and 𝑗 in the second sum, it becomes the
negative of the first. □

Remark 4.1.10. Note that Δ1 ∈ ker 𝜕Δ1 if and only if 𝑣0 = 𝑣1. In this case, Δ1 can be thought of
as a circle or a 1-loop. Indeed, this observation motivates the the observation that 𝑛-loops in 𝑋
correspond to elements of ker 𝜕Δ𝑛 for each 𝑛 ≥ 1. Moreover, the condition 𝜕Δ𝑛 ◦ 𝜕Δ𝑛+1 = 0 is the
observation that the boundary of a Z-linear combination of (𝑛 + 1)-simplicies is a 𝑛-loop.

Let 𝐶Δ
𝑛 (𝑋) = Δ𝑛 (𝑋) for each 𝑛 ≥ 0. Purely algebraically, we have a sequence of homomor-

phisms of abelian groups:

· · ·
𝜕Δ𝑛+1−−−→ 𝐶Δ

𝑛 (𝑋)
𝜕Δ𝑛−−→ 𝐶Δ

𝑛−1(𝑋)
𝜕Δ𝑛−1−−−−→ 𝐶Δ

𝑛−2(𝑋)
𝜕Δ𝑛−2−−−−→ · · ·

The boundary map 𝜕Δ𝑛 : 𝐶Δ
𝑛 (𝑋) −→ 𝐶Δ

𝑛−1(𝑋) is such that

𝜕Δ𝑛−1 ◦ 𝜕Δ𝑛 = 0
That is,

im(𝜕Δ𝑛+1) ⊆ ker(𝜕Δ𝑛 )
Elements of ker(𝜕Δ𝑛 ) are called 𝑛-cycles (or 𝑛-loops) and elements of im(𝜕Δ𝑛+1) are called 𝑛-boundaries.
Definition 4.1.11. Let 𝑋 be a topological space with a Δ-complex structure. The 𝑛-th simplicial
homology group of 𝑋 with Z-coefficients of the associated chain complex (𝐶Δ

𝑛 (𝑋), 𝜕Δ𝑛 )𝑛∈N is

𝐻Δ
𝑛 (𝑋;Z) = ker(𝜕Δ𝑛 )

im(𝜕Δ𝑛+1)
𝐻Δ
𝑛 (𝑋;Z) is called the 𝑛-th simplicial homology group of 𝑋 .

Remark 4.1.12. In what follows, we will not explicitly verify Definition 4.1.4(3). For instance, we
will not explicitly verify that the Δ-complex structure on the circle, S1, in Example 4.1.13(1) is com-
patible with the topology on S1. Similarly, Example 4.1.13(2)-(8) we will not explicitly verify that
the Δ-complex structure is compatible with the underlying quotient topology. It should be straight-
forward to do verify these claims, though.

Example 4.1.13. We compute simplicial homology groups of various topological spaces below.
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(1) (Circle) Consider 𝑋 = S1 with a Δ-complex structure with a single 1-simplex and a single
0-simplex.

𝑣 𝑣
𝑎

We have a chain complex of the following form:

· · · −→ 0
𝜕Δ2−−→ Z

𝜕Δ1−−→ Z
𝜕Δ0−−→ 0.

Here 𝜕Δ1 is the zero map. Therefore, we have:

𝐻Δ
𝑛 (S1,Z) =

{
Z if 𝑛 = 0, 1
0 otherwise

(2) (Mobius Band) Consider 𝑋 = 𝑀 , the Mobius band. A Δ-complex structure on 𝑀 is
pictured below.

𝑣 𝑤

𝑣𝑤

𝑏

𝑑

𝑏

𝑎 𝑐

𝑈

𝐿

We have a complex of the following form:

· · · 0
𝜕Δ3−−→ Z⊕2 𝜕Δ2−−→ Z⊕4 𝜕Δ1−−→ Z⊕2 𝜕Δ0−−→ 0.

We have

𝜕Δ1 𝑎 = 𝜕Δ1 𝑏 = 𝜕Δ1 𝑑 = 𝑤 − 𝑣
𝜕Δ1 𝑐 = 0

Hence Im 𝜕Δ1 � Z, implying that 𝐻Δ
0 (𝑋) � Z⊕2/Z � Z. Also

𝜕Δ2𝑈 = 𝑎 − 𝑏 − 𝑐
𝜕Δ2 𝐿 = 𝑏 − 𝑑 − 𝑐

This implies 𝜕Δ2 is injective. Hence 𝐻Δ
2 (𝑋) � 0. A basis for ker 𝜕Δ1 is {𝑥 = 𝑎 − 𝑑, 𝑦 =

𝑏 − 𝑑, 𝑧 = 𝑐}. Hence ker 𝜕Δ1 � Z ⊕ Z ⊕ Z. A basis for Im 𝜕Δ2 is {𝑥 − 𝑦 − 𝑧, 𝑦 − 𝑧}. An
equivalent basis is {𝑥, 𝑦 − 𝑧}. Hence 𝐻Δ

1 (𝑋) � Z.

𝐻Δ
𝑛 (𝑀,Z) �

{
Z for 𝑛 = 0, 1
0 for 𝑛 ≥ 2
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(3) (Torus) Consider the 𝑋 = T, the torus, with the Δ-complex structure is pictured below
having one vertex, three edges 𝑎, 𝑏, and 𝑐, and two 2-simplices𝑈 and 𝐿².

𝑣 𝑣

𝑣𝑣

𝑏

𝑎

𝑏

𝑎 𝑐

𝑈

𝐿

We have a complex of the following form:

· · · 0
𝜕Δ3−−→ Z⊕2 𝜕Δ2−−→ Z⊕3 𝜕Δ1−−→ Z

𝜕Δ0−−→ 0.
As in the previous example, 𝜕Δ1 = 0. Also 𝜕Δ2𝑈 = 𝑎 + 𝑏 − 𝑐 = 𝜕Δ2 𝐿. Since 𝜕

Δ
1 = 0,

𝐻Δ
0 (𝑇) � Z Since {𝑎, 𝑏, 𝑎 + 𝑏− 𝑐} is a valid basis for Z⊕3, it follows that 𝐻Δ

1 (𝑇) � Z2 with
basis the homology classes [𝑎] and [𝑏]. Since there are no 3-simplices, 𝐻Δ

2 (𝑇) is equal to
ker 𝜕Δ2 , which is infinite cyclic generated by𝑈 − 𝐿. Thus,

𝐻Δ
𝑛 (𝑇,Z) �


Z ⊕ Z for 𝑛 = 1
Z for 𝑛 = 0, 2
0 for 𝑛 ≥ 3

(4) (Real Projective Plane) Consider 𝑋 = RP2. The delta complex structure is pictured below.

𝑣 𝑤

𝑣𝑤

𝑏

𝑎

𝑏

𝑎 𝑐

𝑈

𝐿

We have a complex of the following form:

· · · 0
𝜕Δ3−−→ Z⊕2 𝜕Δ2−−→ Z⊕3 𝜕Δ1−−→ Z⊕2 𝜕Δ0−−→ 0.

We have
𝜕Δ1 𝑏 = 𝜕Δ1 𝑎 = 𝑤 − 𝑣 𝜕Δ𝑐 = 0.

Hence Im 𝜕Δ1 � Z, implying that 𝐻Δ
0 (𝑋) = Z⊕2/Z � Z. Also

𝜕Δ2𝑈 = 𝑎 − 𝑏 − 𝑐 𝜕Δ2 𝐿 = 𝑏 − 𝑎 − 𝑐
This implies 𝜕Δ2 is injective. Hence 𝐻Δ

2 (𝑋) � 0. A basis for ker 𝜕Δ1 is {𝑥 = 𝑎 − 𝑏, 𝑦 = 𝑐}.
Hence ker 𝜕Δ1 � Z⊕Z. A basis for Im𝜕Δ2 is {𝑥−𝑦,−𝑥−𝑦}. An equivalent basis is {𝑥−𝑦, 2𝑦}.
Hence 𝐻Δ

1 (𝑋) � Z2.

²We use the notation T is homemorphic to S1 × S1 the donught-shaped surface in ??.
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𝐻Δ
𝑛 (RP2,Z) �


Z for 𝑛 = 0
Z2 for 𝑛 = 1
0 for 𝑛 ≥ 2

(5) (Klein Bottle) Consider 𝑋 = 𝐾 , the Klein bottle, with the Δ-complex structure is pictured
below having one vertex, three edges 𝑎, 𝑏 and 𝑐, and two 2-simplices𝑈 and 𝐿.:

𝑣 𝑣

𝑣𝑣

𝑏

𝑎

𝑏

𝑎 𝑐

𝑈

𝐿

We have a complex of the following form:

· · · 0
𝜕Δ3−−→ Z⊕2 𝜕Δ2−−→ Z⊕3 𝜕Δ1−−→ Z

𝜕Δ0−−→ 0.
Clearly, 𝜕Δ1 = 0. 𝜕Δ2𝑈 = 𝑎+𝑏−𝑐 and 𝜕Δ2 𝐿 = 𝑎−𝑏+𝑐. Since 𝜕Δ1 = 0, 𝐻Δ

0 (𝐾) � Z. We have
Im(𝜕Δ2 ) = span{2𝑎, 𝑎 + 𝑏 − 𝑐}. Since {𝑎, 𝑎 + 𝑏 − 𝑐, 𝑐} is a valid basis for Z⊕3, it follows
that 𝐻Δ

1 (𝐾) � Z ⊕ Z2. Since there are no 3-simplices, 𝐻Δ
2 (𝐾) is equal to ker 𝜕Δ2 , which is

easily seen to be trivial. Thus,

𝐻Δ
𝑛 (𝐾,Z) �


Z ⊕ Z2 for 𝑛 = 1
Z for 𝑛 = 0
0 for 𝑛 ≥ 2

(6) (Triangular Parachute) Let 𝑋 be a triangular parachute obtained from Δ2 by identifying
its three vertices to a single point.

𝑣 𝑣

𝑣

𝑏

𝑎𝑐
𝑋

We have 1 face, 3 edges, and 1 vertex so that Δ2(𝑋), Δ0(𝑋) � Z, Δ1(𝑋) � Z3. Note that

𝜕Δ2 (𝑋) = 𝑏 + 𝑎 − 𝑐
𝜕Δ1 (𝑎) = 𝜕Δ1 (𝑏) = 𝜕Δ1 (𝑐) = 𝜕Δ0 (𝑣) = 0

Hence ker 𝜕Δ2 = 0, ker 𝜕Δ1 = Z3, ker 𝜕Δ0 = Z. On the other hand, Im 𝜕Δ2 = Z as the
subgroup ⟨𝑏 + 𝑎 − 𝑐⟩ is free on one generator. Hence we have,

𝐻Δ
𝑛 (𝑋,Z) �


Z for 𝑛 = 0
Z⊕2 for 𝑛 = 1
0 for 𝑛 ≥ 2
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(7) Let 𝑋 be the topological space obtained obtained from 𝑛 + 1 2-simplices Δ2
0, . . . ,Δ

2
𝑛 by

identifying all three edges of Δ2
0 to a single edge, and for 𝑖 > 0 identifying the edges

[𝑣0, 𝑣1] and [𝑣1, 𝑣2] of Δ2
𝑖 to a single edge and the edge [𝑣0, 𝑣2] to the edge [𝑣0, 𝑣1] of

Δ2
𝑖−1.

𝑣 𝑣

𝑣

𝑒0

𝑒0𝑒0
𝑋0

𝑣 𝑣

𝑣

𝑒1

𝑒1𝑒0
𝑋1

𝑣 𝑣

𝑣

𝑒2

𝑒2𝑒1
𝑋2

· · ·

𝑣 𝑣

𝑣

𝑒𝑛

𝑒𝑛𝑒𝑛−1
𝑋𝑛

We have 1 vertex, 𝑛 + 1 edges, and 𝑛 + 1 faces so that Δ0(𝑋) � Z, Δ1(𝑋),Δ2(𝑋) � Z𝑛+1.
We have a complex of the following form:

· · · 0
𝜕Δ3−−→ Z⊕𝑛+1

𝜕Δ2−−→ Z⊕𝑛+1
𝜕Δ1−−→ Z⊕1 𝜕Δ0−−→ 0.

Clearly, 𝜕Δ0 = 0 and Im 𝜕Δ1 = 0. Hence 𝐻Δ
0 (𝑋) � Z. Let’s compute Im 𝜕2. Note that:

𝜕2𝑋𝑖 =

{
𝑒0 if 𝑖 = 0
2𝑒𝑖 − 𝑒𝑖−1 if 𝑖 > 1

It is clear that a basis for Im 𝜕2 = {𝑒0} ∪ {2𝑒𝑖 − 𝑒𝑖−1 : 1 ≤ 𝑖 ≤ 𝑛}. Note that in 𝐻Δ
1 (𝑋) =

ker 𝜕1/Im 𝜕2, we set 𝑒0 = 0 and 2𝑒𝑖 − 𝑒𝑖−1 = 0 so that 𝑒0 = 0, 2𝑒𝑖 = 𝑒𝑖−1. This implies that

2𝑒1 = 𝑒0 = 0 22𝑒2 = 𝑒0 = 0 · · · 2𝑘𝑒𝑘 = 𝑒0 = 0

so that Therefore:

𝐻Δ
1 (𝑋) � Z𝑛+1/(Z × 2Z × · · · × 2𝑛Z) � Z2 × Z4 × · · · × Z2𝑛

It is easy to see that ker 𝜕Δ2 = 0. Hence 𝐻Δ
2 (𝑋) = 0. Therefore, we have:

𝐻Δ
𝑛 (𝑋,Z) �


Z for 𝑛 = 0
Z2 × Z4 × · · · × Z2𝑛 for 𝑛 = 1
0 for 𝑛 ≥ 2

(8) Let 𝑋𝑛 be obtained from an 𝑛-simplex by identifying all faces of the same dimension. Since
there is only one 𝑘-simplex for each 𝑘 ≤ 𝑛, we see that Δ𝑘 (𝑋𝑛) � Z for 𝑘 ≤ 𝑛. Choose
a generator 𝜎𝑘 for each of these. Note that the restriction of 𝜎𝑘 to a (𝑘 − 1)-dimensional
face will just be 𝜎𝑘−1. Thus,

𝜕Δ𝑘 𝜎𝑘 =
𝑘∑
𝑖=0
(−1)𝑖𝜎𝑘−1 =


0 if 𝑘 = 0,
0 if 𝑘 ≤ 𝑛, and 𝑘 is odd,
𝜎𝑘−1 if 𝑘 ≤ 𝑛, and 𝑘 is even,
0 if 𝑘 > 𝑛.
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Therefore:

ker(𝜕Δ𝑘 ) =


Z if 𝑘 = 0,
Z if 𝑘 ≤ 𝑛, and 𝑘 is odd,
0 if 𝑘 ≤ 𝑛, and 𝑘 is even,
0 if 𝑘 > 𝑛.

Im(𝜕𝑘) =


0 if 𝑘 = 0,
0 if 𝑘 ≤ 𝑛, and 𝑘 is odd,
Z if 𝑘 ≤ 𝑛, and 𝑘 is even,
0 if 𝑘 > 𝑛.

Hence:

𝐻Δ
𝑘 (𝑋𝑛,Z) =


Z if 𝑘 = 0,
Z if 𝑘 = 𝑛, and 𝑛 is odd,
0 else.

4.2. (Co)-Chain Complexes & (Co)homology
We now turn to the formal study of homological algebra. We will discuss (co)chain complexes

and their associated (co)homology theories. These algebraic structures provide a systematic frame-
work for studying topological and algebraic invariants. Our goal is to develop the foundational tools
that will be essential for algebraic topology.

4.2.1. Exact Sequences. Before defining (co)-Chain Complexes & (co)homology, we first need
to discuss exact sequences. Exact sequences are a central tool in homological algebra. They encode
how one algebraic object maps into another and help detect kernels and images of homomorphisms,
which are essential for defining and computing homology and cohomology.

Definition 4.2.1. A sequence

𝐴
𝑓−→ 𝐵

𝑔−→ 𝐶

of two homomorphisms of 𝑅-modules is said to be exact at 𝐵 if im 𝑓 = ker 𝑔. More generally, a
sequence

. . . −→ 𝐴𝑛+1
𝑓𝑛+1−−−→ 𝐴𝑛

𝑓𝑛−−→ 𝐴𝑛−1 −→ . . .

is said to be exact if it is exact at 𝐴𝑛 for each 𝑛 ∈ Z. Such a sequence is called a long exact sequence
of 𝑅-modules.

The following is an important special case:

Definition 4.2.2. A short exact sequence of 𝑅-modules is an exact sequence of the form

0 −→ 𝐴
𝑓−→ 𝐵

𝑔−→ 𝐶 −→ 0.

that is exact in each degree.

Example 4.2.3. Using the notion of exactness, we can rephrase familiar definitions from basic al-
gebra. Suppose 𝑓 : 𝐴→ 𝐵 is a homomorphism of 𝑅-modules.

(1) 𝑓 is injective if and only if 0→ 𝐴
𝑓−→ 𝐵 is exact. Indeed, the sequence is exact at 𝐴 if and

only if ker 𝑓 = 0 if and only if 𝑓 is injective.
(2) 𝑓 is surjective if and only if 𝐴

𝑓−→ 𝐵→ 0 is exact. Indeed, the sequence is exact at 𝐵 if and
only if im 𝑓 = 𝐵 if and only if 𝑓 is surjective.

(3) 𝑓 is an isomorphism if and only if 0 → 𝐴
𝑓−→ 𝐵 → 0 is exact. This follows from the two

statements above.
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Remark 4.2.4. Functors in Mod𝑅 (or in any abelian category) can preserve algebraic structure in
different ways. A functorℱ is said to be left exact if it sends exact sequences of the form

0→ 𝐴→ 𝐵→ 𝐶

to exact sequences
0→ ℱ(𝐴) → ℱ(𝐵) → ℱ(𝐶).

Similarly, a functor is said to be right exact if it sends exact sequences of the form
𝐴→ 𝐵→ 𝐶 → 0

to exact sequences
ℱ(𝐴) → ℱ(𝐵) → ℱ(𝐶) → 0.

A functor is called exact if it is both left exact and right exact. The notion of exact functors is used
in the appendix (Chapter 15) and later on.

4.2.2. Co-(chain)Complexes. Wenowdefine the notions of (co)-chain complexes and (co)homology
of (co)-chain complexes. (Co)-chain complexes provide the algebraic framework for computing
(co)homology, encoding sequences of 𝑅-modules groups connected by boundary maps.

Definition 4.2.5. A chain complex is a sequence of 𝑅-modules and homomorphisms

· · · 𝜕𝑛+2−−−→ 𝐶𝑛+1
𝜕𝑛+1−−−→ 𝐶𝑛

𝜕𝑛−−→ 𝐶𝑛−1
𝜕𝑛−1−−−−→ · · ·

for 𝑛 ∈ Z which satisfies 𝜕𝑛 ◦ 𝜕𝑛+1 = 0, for each 𝑛 ∈ Z. That is,
im 𝜕𝑛+1 ⊆ ker 𝜕𝑛 ⇐⇒ 𝜕𝑛 ◦ 𝜕𝑛+1 = 0

We refer to the entire complex as (𝐶•, 𝜕•) or sometimes just𝐶•. The maps 𝜕𝑛 are called the boundary
operators of the chain complex. Elements of ker 𝜕𝑛 are called 𝑛-chains and elements of im 𝜕𝑛+1 are
called 𝑛-boundaries.

Example 4.2.6. Let 𝑋 be a topological space. The chain complex
(𝐶Δ
𝑛 (𝑋), 𝜕Δ𝑛 )𝑛∈N

encountered in Section 4.1 is a chain complex of Z-modules (abelian groups). We call this the
simplicial chain complex. Note that in this example the abelian groups are all zero for negative
subscripts; this, however, is not part of the definition in general.

Remark 4.2.7. There is a dual notion called a cochain complex, which is defined as follows. A
co-chain complex is a sequence of 𝑅-modules and homomorphisms

· · · 𝜕
𝑛−1
−−−−→ 𝐶𝑛

𝜕𝑛−−→ 𝐶𝑛+1
𝜕𝑛+1−−−→ 𝐶𝑛+2

𝜕𝑛+2−−−→ · · ·
for 𝑛 ∈ Z, satisfying the condition

𝜕𝑛+1 ◦ 𝜕𝑛 = 0, for each 𝑛 ∈ Z.
Equivalently,

im 𝜕𝑛 ⊆ ker 𝜕𝑛+1.
We denote the co-chain complex by (𝐶•, 𝜕•) or simply 𝐶•, and the maps 𝜕𝑛 are called the cobound-
ary operators. Elements of ker 𝜕𝑛 are called 𝑛 co-chains and elements of im 𝜕𝑛+1 are called 𝑛-co-
boundaries.

The distinction between chain and co-chain complexes is purely formal. We will invoke either
notion as needed throughout the text, depending on context and convenience. We now define the
notion of a chain map between chain complexes.
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Definition 4.2.8. Let (𝐶•, 𝜕•) and (𝐶′•, 𝜕′•) be chain complexes of 𝑅-modules. A chain map between
(𝐶•, 𝜕•) and (𝐶′•, 𝜕′•) is a sequence of 𝑅-modules homomorphisms 𝑓𝑛 : 𝐶𝑛 → 𝐶′𝑛 for 𝑛 ∈ Z such
that the diagram commutes:

· · · 𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1 · · ·

· · · 𝐶′𝑛+1 𝐶′𝑛 𝐶′𝑛−1 · · ·

𝜕𝑛+1

𝑓𝑛+1

𝜕𝑛

𝑓𝑛 𝑓𝑛−1

𝜕
′
𝑛+1 𝜕

′
𝑛

Remark 4.2.9. The definition of a co-chain map between co-chain complexes is similar.

Proposition 4.2.10. Chain complexes of 𝑅-modules form a category, denoted as ChainMod𝑅 . Sim-
ilarly, co-hain complexes of 𝑅-modules form a category, denoted as CoChainMod𝑅 .

PROOF. It suffices to prove the first claim. Objects in ChainMod𝑅 are chain complexes of 𝑅-modules
and a morphism between chain complexes of 𝑅-modules is a chain map. If (𝐶•, 𝜕•), (𝐶′•, 𝜕′•) and
(𝐶′′• , 𝜕′′• ) are chain complexes such that 𝑓• : 𝐶• → 𝐶′• and 𝑔• : 𝐶′• → 𝐶′′• are two chain maps. Then

(𝑔 ◦ 𝑓 )• : 𝐶• → 𝐶′′•

is the chain map given by (𝑔 ◦ 𝑓 )𝑛 = 𝑔𝑛 ◦ 𝑓𝑛. This is indeed a valid chain map as the diagram

· · · 𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1 · · ·

· · · 𝐶′𝑛+1 𝐶′𝑛 𝐶′𝑛−1 · · ·

· · · 𝐶′′𝑛+1 𝐶′′𝑛 𝐶′′𝑛−1 · · ·

𝜕𝑛+1

𝑓𝑛+1

𝜕𝑛

𝑓𝑛 𝑓𝑛−1

𝜕
′
𝑛+1

𝑔𝑛+1

𝜕
′
𝑛

𝑔𝑛 𝑔𝑛−1

𝜕
′′
𝑛+1 𝜕

′′
𝑛+1 𝜕

′′
𝑛+1

commutes essentially by construction as can be easily checked. This defines the composition of two
chain maps. Moreover, the identity chain map

Id : 𝐶• → 𝐶•

is the chain map given by Id𝑛 = Id𝐶𝑛 where Id𝐶𝑛 is the identity homomorphism from 𝐶𝑛 to 𝐶𝑛.

· · · 𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1 · · ·

· · · 𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1 · · ·

𝜕𝑛+1

Id𝑛+1

𝜕𝑛

Id𝑛 Id𝑛−1

𝜕
′
𝑛+1 𝜕

′
𝑛

All that is required is check that composition of chain maps satisfies the associativity property and
the composition of a chain map with the identity chain map yields the original chain map. All these
are routine checks. □

Remark 4.2.11. We can also define the category of short exact sequence of chain complexes,ChainExact
Mod𝑅 .

Objects in ChainExact
Mod𝑅 are short exact sequences of chain complexes. A morphism between short
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exact sequence of chain complexes is a diagram

0• 𝐴• 𝐵• 𝐶• 0•

0• 𝐴′• 𝐵′• 𝐶′• 0•

𝑖•

𝑓•

𝑗•

𝑔• ℎ•
𝑖′• 𝑗′•

such that 𝑓•, 𝑔•, ℎ• are chain maps. We will not go through the pain of writing the diagram out
explicitly. The category CoChainExact

Mod𝑅 is defined similarly.

4.2.3. Co(homology). Given a chain complex (𝐶•, 𝜕•), where each 𝐶𝑛 is a 𝑅-module and 𝜕𝑛 :
𝐶𝑛 → 𝐶𝑛−1 is a boundary map, the defining condition of a chain complex is that the composition of
consecutive boundary maps is zero; that is, 𝜕𝑛 ◦ 𝜕𝑛+1 = 0 for all 𝑛 ∈ Z. This condition ensures that

im 𝜕𝑛+1 ⊆ ker 𝜕𝑛.

This containment motivates the introduction of homology which serves to measure the failure of this
inclusion to be an equality.

Definition 4.2.12. Let (𝐶•, 𝜕•) be a chain complex. The 𝑛-th homology group is defined as

𝐻𝑛 (𝐶•) := ker 𝜕𝑛
im 𝜕𝑛+1

.

Remark 4.2.13. There is a dual notion of cohomology of co-chain complexes. Given a co-chain
complex (𝐶•, 𝑑•), where each 𝐶𝑛 is an 𝑅-module and 𝜕𝑛 : 𝐶𝑛 → 𝐶𝑛+1 is a co-boundary map
satisfying 𝜕𝑛+1 ◦ 𝜕𝑛 = 0, we define cohomology to measure the failure of exactness:

𝐻𝑛 (𝐶•) := ker 𝜕𝑛

im 𝜕𝑛−1 .

Once again, the distinction between homology and cohomology is purely formal. We will invoke
either notion as needed throughout the text, depending on context and convenience.

Example 4.2.14. Let’s compute the homology of some simple chain complexes:
(1) Consider the chain complex

𝐶• : · · · → 0→ Z ⊕ Z 𝜕2−−→ Z 𝜕1−−→ 0→ · · · ,

where the chain groups are given by

𝐶1 = Z,

𝐶2 = Z ⊕ Z,
𝐶𝑛 = 0 for 𝑛 ≠ 1, 2.

The homomorphism 𝜕2 is defined by 𝜕2(𝑥, 𝑦) = 3𝑥 + 3𝑦. Note that we have the following

ker 𝜕𝑛 �
{
Z, if 𝑛 = 1 or 𝑛 = 2,
0, if 𝑛 ≠ 1, 2.

Similarly, we have

im 𝜕𝑛 �

{
3Z, if 𝑛 = 2,
0, if 𝑛 ≠ 2.
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Therefore, the homology of the chain complex is given as:

𝐻𝑛 (𝐶•) �

Z3, if 𝑛 = 1,
Z, if 𝑛 = 2,
0, if 𝑛 ≠ 1, 2.

(2) Consider the chain complex:

· · · 𝜕−→ Z/8Z 𝜕−→ Z/8Z 𝜕−→ Z/8Z 𝜕−→ Z/8Z→ 0→ 0→ · · ·
where 𝐶𝑛 = Z/8Z for 𝑛 ≤ 0 and 𝐶𝑛 = 0 for 𝑛 > 0 and the map 𝜕 is given by 𝑥 mod 8 ↦→
4𝑥 mod 8. It is easy to see that

ker 𝜕 = {0, 2, 4, 6} � Z/4Z
im 𝜕 = {0, 4} � Z/2Z

for 𝑛 < 0. Hence,
𝐻𝑛 (𝐶•) �

Z/4Z
Z/2Z � Z/2Z

Trivially, 𝐻𝑛 (𝐶•) � 0 for 𝑛 > 0 and 𝐻0(𝐶•) � Z/4Z.
We now discuss an important observation that (co)homology defines a functor from the cate-

gory of (co)-chain complexes to the category of 𝑅-modules. This is formalized in the following
proposition.

Proposition 4.2.15. For each 𝑛 ∈ Z, there is a functor
𝐻𝑛 : ChainMod𝑅 →Mod𝑅

that associates to a chain complex over 𝑅-modules its 𝑛-th homology 𝑅-module Similarly, for each
𝑛 ∈ Z there is a functor

𝐻𝑛 : CoChainMod𝑅 →Mod𝑅
that associates to a co-chain complex over 𝑅-modules is 𝑛-th cohomology 𝑅-module.

PROOF. It suffices to prove the first claim. Consider a chain map between chain complexes given by
the following diagram:

· · · 𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1 · · ·

· · · 𝐶′𝑛+1 𝐶′𝑛 𝐶′𝑛−1 · · ·

𝜕𝑛+1

𝑓𝑛+1

𝜕𝑛

𝑓𝑛 𝑓𝑛−1

𝜕
′
𝑛+1 𝜕

′
𝑛

The relation 𝑓𝑛𝜕𝑛+1 = 𝜕
′
𝑛+1 𝑓𝑛+1 implies that 𝑓𝑛 takes 𝑛-cycles to takes 𝑛-cycles for each 𝑛 ∈ N. This

is because if 𝜕𝑛𝑐 = 0, then
𝜕
′
𝑛 ( 𝑓𝑛 (𝑐)) = 𝑓𝑛−1(𝜕𝑛𝑐) = 0

Also, 𝑓𝑛 takes 𝑛 boundaries to 𝑛-boundaries since
𝑓𝑛 (𝜕𝑛+1𝑐) = 𝜕

′
𝑛+1( 𝑓𝑛+1𝑐)

Hence 𝑓𝑛 descends to a homomorphism
𝐻𝑛 ( 𝑓 ) : 𝐻𝑛 (𝐶•) → 𝐻𝑛 (𝐶′•)

It remains to check that 𝐻𝑛 (𝑔 ◦ 𝑓 ) = 𝐻𝑛 (𝑔) ◦𝐻𝑛 ( 𝑓 ) and that 𝐻𝑛 (Id𝑋) = Id𝐻𝑛 (𝑋) . Both of these are
immediate from the definitions. □
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4.2.4. (Co)-chain homotopy. We conclude this section by introducing the notion of a chain
homotopy between chain complexes. Chain homotopy allows us to compare chain maps up to a
‘deformation,’ playing a crucial role in establishing when two chain complexes have the same ho-
mological properties. As expected, there exists an analogous notion of a co-chain homotopy between
co-chain complexes. We will not repeat the definitions in this case.

Definition 4.2.16. Suppose (𝐶•, 𝜕) and (𝐶′•, 𝜕′) are two chain complexes with chain maps 𝑓•, 𝑔•. A
chain homotopy between 𝑓•, 𝑔• is a series of maps 𝑇𝑛 : 𝐶𝑛 and 𝐶𝑛+1 such that

𝑓𝑛 − 𝑔𝑛 = 𝜕′𝑛+1𝑇𝑛 + 𝑇𝑛−1𝜕𝑛 𝑛 ≥ 1
𝑇0 ◦ 𝜕1 = 𝑓0 − 𝑔0 𝑛 = 0

That is, the following diagram commutes

· · · 𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1 · · ·

· · · 𝐶′𝑛+1 𝐶′𝑛 𝐶′𝑛−1 · · ·

𝑇𝑛+1

𝜕𝑛+1

𝑓𝑛+1 𝑔𝑛+1
𝑇𝑛

𝜕𝑛

𝑓𝑛 𝑔𝑛
𝑇𝑛−1

𝑓𝑛−1 𝑔𝑛−1
𝑇𝑛−2

𝜕′𝑛+1 𝜕′𝑛

Remark 4.2.17. It can be verified that (co)chain homotopy is an equivalence relation. Consequently,
Definition 4.2.16 defines a new category, hChainMod𝑅 , whose objects are chain complexes over 𝑅-
modules and whose morphisms are chain maps modulo the chain homotopy equivalence relation.
The category hCoChainMod𝑅 is defined analogously, with cochain complexes and cochain maps
modulo cochain homotopy.

Remark 4.2.18. We will provide a geometric intuition behind the definition of a chain homotopy in
Section 5.2.

Proposition 4.2.19. Let (𝐶, 𝜕•), (𝐶′, 𝜕′•) be chain complexes and let 𝑓•, 𝑔• be chain maps between
the chain complexes. If there is a chain homotopy 𝑓• and 𝑔•, then the induced maps in homology are
equal, i.e., we have:

𝐻𝑛 ( 𝑓 ) = 𝐻𝑛 (𝑔) : 𝐻𝑛 (𝐶•) → 𝐻𝑛 (𝐶′•)

PROOF. Let (𝑇𝑛)𝑛≥1 be the sequence of maps defining a chain homotopy. Let [𝑐] ∈ 𝐻𝑛 (𝐶). If 𝑛 = 0,
we have

𝐻0( 𝑓 ) ( [𝑐]) = [ 𝑓0(𝑐)] = [𝑔0(𝑐) + 𝜕1𝑇0(𝑐)] = [𝑔0(𝑐)] = 𝐻0(𝑔)( [𝑐])

For 𝑛 ≥ 1, we have:

𝐻𝑛 ( 𝑓 )( [𝑐]) = [ 𝑓𝑛 (𝑐)]
= [𝑔𝑛 (𝑐) + 𝜕′𝑛+1𝑇𝑛 (𝑐) + 𝑇𝑛−1𝜕𝑛 (𝑐)]
= [𝑔𝑛 (𝑐)]
= 𝐻𝑛 (𝑔) ( [𝑐])

The third equality uses that 𝑐 is a 𝑛-cycle and that a homology class is not changed if we add a
𝑛-boundary. The claim follows. □
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Proposition 4.2.19 shows that for each 𝑛 ≥ 0, the homology functor defined in Proposition 4.2.15
factors through the homotopy category hChainMod𝑅 .

ChainMod𝑅 hChainMod𝑅

Ab
𝐻𝑛

𝛾

𝐻𝑛

Of course, a similar statement holds for the cohomology functors and the category hCoChainMod𝑅 .

4.3. Motivation for Spectral Sequences
In algebra, we are often interested in computing a graded object, 𝑀∗, which could, for example,

be any of the following:
(1) Graded 𝑅-module for a ring 𝑅,
(2) Graded K-vector space for a field K,
(3) Graded K-algebra for a field K.

The computation of 𝑀∗ is frequently nontrivial. Meaningful progress can often be achieved through
an approximation argument, particularly when 𝑀∗ carries additional structure that facilitates such
an approach. A common scenario arises when 𝑀∗ is endowed with a filtration by a (possibly un-
bounded) descending sequence of subobjects:

· · · ⊇ 𝑀𝑛 ⊇ 𝑀𝑛+1 ⊇ · · · (1)
such that

∞⋃
𝑛=0

𝑀𝑛 = 𝑀
∗,

∞⋂
𝑛=0

𝑀𝑛 = 0

Wemay also consider a filtration given by a possibly unbounded increasing sequence of sub-objects.
In general, such sequences may be unbounded. Let’s consider an example:

Example 4.3.1. Let 𝑀∗ be a possibly infinite-dimensional K-vector space. For instance, consider
𝑀∗ = K∞, the countably infinite-dimensional K-vector space with basis {𝑒0, 𝑒1, . . . }. Define

𝑀𝑛 := span{𝑒𝑝 | 𝑝 ≥ 𝑛}
Then {𝑀𝑛}𝑛∈N defines a filtration as described in Equation (1).

In fact, Example 4.3.1 possesses additional structure, in the sense thatK∞ can be recovered from
its filtration as follows. The filtration of K∞ gives rise to a new graded K-vector space known as the
associated graded K-vector space defined by 𝑀𝑛/𝑀𝑛+1. One can recover K∞ up to isomorphism
from its associated K-vector space by taking direct sums:

K∞ �
∞⊕
𝑛=0

𝑀𝑛/𝑀𝑛+1 �
∞⊕
𝑛=0

span{𝑒𝑝 | 𝑝 ≥ 𝑛}
span{𝑒𝑝 | 𝑝 ≥ 𝑛 + 1} �

∞⊕
𝑛=0

span{𝑒𝑛}

Generally, it might not be possible to compute an arbitrary graded object, 𝑀∗, in this manner.
For instance, if 𝑀∗ is an arbitrary graded 𝑅-module, there may be extension problems that prevent
the reconstruction of 𝑀∗ from the associated graded 𝑅-module. However, we can take the associated
graded 𝑅-module of a filtration of 𝑀∗ as the first approximation to 𝑀∗ and hope that 𝑀∗ this first
approximation can be refined through a limiting argument. This is the underlying philosophy behind
spectral sequences:

A spectral sequence is an algorithm for computing a graded object by taking successive
approximations.
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Spectral sequences emerge as a natural computational and conceptual framework when study-
ing filtered complexes in homological algebra and algebraic topology. These tools are particularly
useful in situations where a direct computation of homology is infeasible, but a filtration imposes a
manageable structure on the problem. Let us examine this case informally in action, and we will see
how it naturally motivates the definition of a spectral sequence.

Example 4.3.2. (Filtered Co-Chain Complexes) Let 𝐶• be a co-chain complex equipped with a
decreasing filtration³ by sub-complexes:

· · · ⊇ 𝐹𝑝𝐶• ⊇ 𝐹𝑝+1𝐶• ⊇ · · ·

Such a filtration provides a decomposition of the complex into progressively more refined compo-
nents. The central question is how the cohomology of 𝐶• can be reconstructed from the data of the
filtration. A natural first step is to consider the associated graded complex:

G𝑝 𝐶
• := 𝐹𝑝𝐶•/𝐹𝑝+1𝐶•. (2)

For each 𝑝 ∈ Z, one may compute the cohomology of G𝑝 𝐶
•, yielding an approximation to the coho-

mology of the co-chain complex. However, this information may be insufficient to fully determine
the cohomology of 𝐶•. To overcome this limitation, one introduces a spectral sequence: for 𝑟 ∈ N,
a sequence of pages {𝐸 𝑝,𝑞𝑟 } (𝑝,𝑞) ∈Z2 such that 𝐸 𝑝,𝑞𝑟 is a bi-graded group. The first page is derived
from the cohomology of the associated graded complex in Equation (2). Subsequent pages refine
this approximation as each subsequent page is defined as the cohomology of the preceding page.

Remark 4.3.3. Under appropriate convergence conditions, the spectral sequence is expected to
stabilize at a terminal page which captures the associated graded components of the homology of
the co-chain complex. We will see how the exact definition of convergence of a spectral sequence
naturally arises in explicit constructions.

4.4. Definition of a Spectral Sequence
Based on the discussion in ??, we introduce the definition of a spectral sequence in this section

and comment on some details surrounding the definition.

Definition 4.4.1. Let 𝑟0 ∈ N. A homological spectral sequence, 𝐸 , of 𝑅-modules consists of the
following data:

(1) A collection of 𝑅-modules, 𝐸𝑟𝑝,𝑞 , with integers 𝑝, 𝑞 ≥ 0 and 𝑟 ≥ 𝑟0,
(2) A collection of differentials

𝑑𝑟𝑝,𝑞 : 𝐸𝑟𝑝,𝑞 → 𝐸𝑟𝑝−𝑟 ,𝑞+𝑟−1

such that 𝑑𝑟𝑝−𝑟 ,𝑞+𝑟−1 ◦ 𝑑𝑟𝑝,𝑞 = 0 and 𝐸𝑟+1𝑝,𝑞 is the homology at 𝐸𝑟𝑝,𝑞 , i.e.

𝐸𝑟+1𝑝,𝑞 �
ker 𝑑𝑟𝑝,𝑞

im 𝑑𝑟𝑝+𝑟 ,𝑞−𝑟+1

The collection 𝐸𝑟 = {(𝐸𝑟𝑝,𝑞 , 𝑑𝑟𝑝,𝑞) : 𝑝, 𝑞 ∈ Z} for a fixed 𝑟 is called the 𝑟-th page.

³We could also consider an increasing filtration; however, to remain consistent with the filtration introduced earlier in
Equation (1), we choose to work with a decreasing filtration. Later on, we will work with both decreasing and increasing
filtrations.
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𝐸0
−1,1 𝐸0

0,1 𝐸0
1,1

𝐸0
−1,0 𝐸0

0,0 𝐸0
1,0

𝐸0
−1,−1 𝐸0

0,−1 𝐸0
1,−1

(A) Zeroth page

𝐸0
−1,1 𝐸0

0,1 𝐸0
1,1

𝐸0
−1,0 𝐸0

0,0 𝐸0
1,0

𝐸0
−1,−1 𝐸0

0,−1 𝐸0
1,−1

(B) First page

𝐸0
−1,1 𝐸0

0,1 𝐸0
1,1

𝐸0
−1,0 𝐸0

0,0 𝐸0
1,0

𝐸0
−1,−1 𝐸0

0,−1 𝐸0
1,−1

(C) Second page

Snapshots of first three pages of a homological spectral sequence

Remark 4.4.2. One way to look at a homological spectral sequence is to imagine an infinite book,
where each page is a Cartesian plane with the integral lattice points (𝑝, 𝑞) consisting of objects
in the category of 𝑅-modules and differentials between the objects forming a chain complex. The
homology 𝑅-modules of these chain complexes are precisely the groups which appear on the next
page. The customary picture is shown in Figure 1.

What is the intuition behind the definition of the differential maps? Since the differential maps
𝑑𝑟𝑝,𝑞 compute homology, we expect the total degree of the map to decrease by 1. So if the domain is
𝐸𝑟𝑝,𝑞 , it makes sense for the co-domain of 𝑑𝑟𝑝,𝑞 to be 𝐸𝑟𝑝−𝑟 ,𝑞+𝑟−1. The choice of the shifts by 𝑟 will
be motivated later, when we construct spectral sequences explicitly. We also have the definition of a
cohomological spectral sequence:

Definition 4.4.3. Let 𝑟0 ∈ N. A cohomological spectral sequence, 𝐸 , of 𝑅-modules consists of the
following data:

(1) A collection of 𝑅-modules, 𝐸 𝑝,𝑞𝑟 , with integers 𝑝, 𝑞 ≥ 0 and 𝑟 ≥ 𝑟0,
(2) A collection of differentials

𝑑 𝑝,𝑞𝑟 : 𝐸 𝑝,𝑞𝑟 → 𝐸 𝑝+𝑟 ,𝑞−𝑟+1𝑟

such that 𝑑 𝑝+𝑟 ,𝑞−𝑟+1𝑟 ◦ 𝑑 𝑝,𝑞𝑟 = 0 and 𝐸 𝑝,𝑞𝑟+1 is the homology at 𝐸 𝑝,𝑞𝑟 , i.e.

𝐸 𝑝,𝑞𝑟+1 �
ker 𝑑 𝑝,𝑞𝑟

im 𝑑 𝑝−𝑟 ,𝑞+𝑟−1
𝑟

The collection 𝐸𝑟 = {(𝐸 𝑝,𝑞𝑟 , 𝑑 𝑝,𝑞𝑟 ) : 𝑝, 𝑞 ≥ 0} for a fixed 𝑟 is called the 𝑟-th page.

𝐸−1,1
0 𝐸0,1

0 𝐸1,1
0

𝐸−1,0
0 𝐸0,0

0 𝐸1,0
0

𝐸−1,−1
0 𝐸0,−1

0 𝐸1,−1
0

(A) Zeroth page

𝐸−1,1
1 𝐸0,1

1 𝐸1,1
1

𝐸−1,0
1 𝐸0,0

1 𝐸1,0
1

𝐸−1,−1
1 𝐸0,−1

1 𝐸1,−1
1

(B) First page

𝐸−1,1
2 𝐸0,1

2 𝐸1,1
2

𝐸−1,0
2 𝐸0,0

2 𝐸1,0
2

𝐸−1,−1
2 𝐸0,−1

2 𝐸1,−1
2

(C) Second page

Snapshots of first three pages of a cohomological spectral sequence
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Remark 4.4.4. Spectral sequences refine the process of calculating homology in the sense that the
computation of homology at the 𝑟-th page not only yields the homology at the (𝑟 + 1)-st page, but
also determines the differential maps between the homology on the (𝑟 +1)-st page. Hence, a spectral
sequence encodes a significant amount of additional information. However, the differentials can
be difficult to compute explicitly. In practice, educated guesswork and ad-hoc techniques are often
required to determine the differential maps.

Since homology is defined as a sub-quotient (i.e., the quotient of a 𝑅-sub-module), we expect
the modules appearing on the (𝑟 + 1)-th page to be, in some sense, “smaller” or more refined than
those on the 𝑟-th page. Fixing a position (𝑝, 𝑞) ∈ Z2, we consider the sequence of 𝑅-modules 𝐸𝑟𝑝,𝑞
as 𝑟 → ∞. This motivates the definition of the limiting page of the spectral sequence, referred to
as the 𝐸∞ page, as well as the notion of convergence of spectral sequences. The definition will be
provided in a later section. The best way to understand how this definition arises is by examining a
concrete construction where we can explicitly determine the ingredients that determine the definition
of convergence of a spectral sequence. For the time being, we consider a formal construction inwhich
issues of convergence do not arise.

Example 4.4.5. (FirstQuadrant Spectral Sequence) First-quadrant homological spectral sequences
are significantly more tractable than general homological spectral sequences, both computationally
and conceptually. A homological spectral sequence is a first quadrant homological spectral sequence
if 𝐸𝑟𝑝,𝑞 = 0 for 𝑝 < 0 or 𝑞 < 0. Fix (𝑝, 𝑞) ∈ (N ∪ {0})2. In a first quadrant homological spec-
tral sequence, for 𝑟 (as a function of (𝑝, 𝑞)) large enough, the differential with co-domain 𝐸𝑟𝑝,𝑞 has
domain 0 and the differential with domain 𝐸𝑟𝑝,𝑞 has co-domain 0. Therefore, we get

𝐸𝑟+1𝑝,𝑞 �
ker 𝑑𝑟𝑝,𝑞

im 𝑑𝑟𝑝+𝑟 ,𝑞−𝑟+1
�
𝐸𝑟𝑝,𝑞

0
� 𝐸𝑟𝑝,𝑞 .

The stable value 𝐸𝑟𝑝,𝑞 = 𝐸 𝑘𝑝,𝑞 for 𝑘 ≥ 𝑟 (𝑝, 𝑞) is named 𝐸∞𝑝,𝑞 . In this case, we can determine
the entries on the 𝐸∞ page in a finite number of steps, and there are no issues of convergence. A
first-quadrant cohomological spectral sequence is defined similarly.

Remark 4.4.6. The distinction between homological and cohomological indexing is purely a matter
of convention. We will use both notations as appropriate and convenient in the discussions that
follow.

4.5. Spectral Sequence of a Filtered Complex
Avery common and important type of spectral sequence arises from filtered complexes. Spectral

sequences associated to filtered complexes provide a powerful tool for analyzing the (co)homology
by examining the simpler associated graded pieces. This approach often allows complicated com-
putations to be broken into more manageable stages, each reflecting a piece of the overall structure.

Remark 4.5.1. In this section, we work with cohomological spectral sequences. The constructions
are largely formal and have analogous counterparts for homological spectral sequences, which we
will freely use later on.

Definition 4.5.2. Let𝐶• = {𝐶𝑛, 𝜕𝑛}𝑛∈Z be a co-chain complex of 𝑅-modules. A decreasing filtration
of 𝐶• is a sequence

· · · ⊇ 𝐹𝑝𝐶• ⊇ 𝐹𝑝+1𝐶• ⊇ · · ·
such that each 𝐹𝑝𝐶• is a sub-complex of 𝐶• and the differential 𝜕𝑛 restricts to a map

𝐹𝑝𝐶
𝑛 → 𝐹𝑝𝐶

𝑛+1
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for all 𝑛 ∈ Z that is compatible with the filtration.

Remark 4.5.3. Increasing filtrations for chain complexes are defined similarly.

Remark 4.5.4. We write the 𝑗-th entry of 𝐹𝑖𝐶• as 𝐶 𝑗𝑖 for 𝑖, 𝑗 ∈ Z. Note that we have 𝜕
𝑗
𝑖 (𝐶

𝑗
𝑖 ) ⊆ 𝐶

𝑗+1
𝑖

for each 𝑖, 𝑗 ∈ Z. We can visualize the filtered co-chain complex as follows:

...
...

...

· · · 𝐶−1
−1 𝐶0

−1 𝐶1
−1 · · ·

· · · 𝐶−1
0 𝐶0

0 𝐶1
0 · · ·

· · · 𝐶−1
1 𝐶0

1 𝐶1
1 · · ·

...
...

...

⊆

𝜕−1
−1

⊆

𝜕0
−1

⊆

𝜕−1
0

⊆ ⊆

𝜕0
0

⊆

𝜕−1
1

⊆ ⊆

𝜕0
1

⊆

⊆ ⊆ ⊆
We say that the filtration is exhaustive and separated if for each 𝑗 ∈ Z, we have⋂

𝑖∈Z
𝐶
𝑗
𝑖 = 0 and

⋃
𝑖∈Z

𝐶
𝑗
𝑖 = 𝐶 𝑗 .

The first condition is the exhaustive condition, and the second condition is the separated condition.
In other words, the filtration must eventually become arbitrarily small and arbitrarily large at each
degree.

From the data of a filtration on a co-chain complex, one constructs a spectral sequence that
approximates the cohomology of 𝐶• through successive approximations. Let’s first discussion the
motivation behind the construction. We let the 𝐸0 page of the spectral sequence be the associated
graded co-chain complex. That is⁴,

𝐸 𝑝,𝑞0 � 𝐺 𝑝𝐶
𝑝+𝑞 � 𝐹𝑝𝐶 𝑝+𝑞/𝐹𝑝+1𝐶 𝑝+𝑞

with induced differential

𝑑 𝑝,𝑞0 :
𝐹𝑝𝐶

𝑝+𝑞

𝐹𝑝+1𝐶 𝑝+𝑞
� 𝐸 𝑝,𝑞0 → 𝐸 𝑝,𝑞+10 �

𝐹𝑝𝐶
𝑝+𝑞+1

𝐹𝑝+1𝐶 𝑝+𝑞+1

induced by themap 𝜕 𝑝+𝑞𝑝 : 𝐹𝑝𝐶 𝑝+𝑞 → 𝐹𝑝𝐶
𝑝+𝑞+1. Themap iswell-defined because 𝜕 𝑝+𝑞𝑝 (𝐹𝑝+1𝐶 𝑝+𝑞) ⊆

𝐹𝑝+1𝐶 𝑝+𝑞+1. It is clear that these maps compose to zero. We then let the 𝐸1 page denote the coho-
mology of the associated graded co-chain complex. That is,

𝐸 𝑝,𝑞1 � 𝐻 𝑝+𝑞 (𝐺 𝑝𝐶
•)

=
ker

(
𝑑 𝑝,𝑞0 : 𝐸 𝑝,𝑞0 → 𝐸 𝑝,𝑞+10

)
im

(
𝑑 𝑝,𝑞−1

0 : 𝐸 𝑝,𝑞−1
0 → 𝐸 𝑝,𝑞0

) =
ker

(
𝑑 𝑝,𝑞0 : 𝐺 𝑝𝐶

𝑝+𝑞 → 𝐺 𝑝𝐶
𝑝+𝑞+1)

im
(
𝑑 𝑝,𝑞−1

0 : 𝐺 𝑝𝐶 𝑝+𝑞−1 → 𝐺 𝑝𝐶 𝑝+𝑞
) .

⁴Although the choice of 𝐶 𝑝+𝑞 instead of 𝐶𝑞 may initially appear unusual, for fixed 𝑝 the index 𝑝 + 𝑞 is merely a shift of 𝑞
by a constant, and thus poses no problem. The necessity of this choice will become apparent when the spectral sequence
is constructed in detail.
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We think of 𝐸 𝑝,𝑞1 as a ‘first-order approximation’ to𝐻 𝑝+𝑞 (𝐶•). The question now is how to construct
the differential 𝑑 𝑝,𝑞1 ? Let’s construct 𝑑 𝑝,𝑞1 . Note that a cohomology class [𝛼] ∈ 𝐸 𝑝,𝑞1 represents a
chain 𝑐 ∈ 𝐹𝑝𝐶 𝑝+𝑞 with differential 𝜕 𝑝+𝑞𝑝 𝑐 ∈ 𝐹𝑝+1𝐶 𝑝+𝑞+1. With this in mind, we define

𝑑 𝑝,𝑞1 : 𝐸 𝑝,𝑞1 → 𝐸 𝑝+1,𝑞1

[𝛼] ↦→ [𝜕 𝑝+𝑞𝑝 𝑐] .

One easily sees that 𝑑 𝑝+1,𝑞1 ◦ 𝑑 𝑝,𝑞1 = 0. So we are justified in defining

𝐸 𝑝,𝑞2 :=
ker(𝑑 𝑝,𝑞1 : 𝐸 𝑝,𝑞1 → 𝐸 𝑝+1,𝑞1 )

im(𝑑 𝑝−1,𝑞
1 : 𝐸 𝑝−1,𝑞

1 → 𝐸 𝑝,𝑞1 )
.

We can continue to construct higher-order approximations. Note that a cohomology class [𝛼] ∈ 𝐸 𝑝,𝑞2
can be represented by some [𝑥] ∈ 𝐸 𝑝,𝑞1 with differential 𝑑 𝑝,𝑞1 [𝑥] = 0 ∈ 𝐸 𝑝+1,𝑞1 . Since 𝑑 𝑝,𝑞1 [𝑥] =
[𝜕 𝑝+𝑞𝑝 𝑐], where 𝑐 ∈ 𝐹𝑝𝐶 𝑝+𝑞 is any chain representing 𝑐, we can choose 𝜕 𝑝+𝑞𝑝 𝑐 to be the zero element
in ker(𝑑 𝑝+1,𝑞0 ), meaning that 𝜕 𝑝+𝑞𝑝 𝑐 ∈ 𝐹𝑝+2𝐶 𝑝+𝑞+1. This suggests that we can define a map

𝑑 𝑝,𝑞2 : 𝐸 𝑝,𝑞2 → 𝐸 𝑝+2,𝑞−1
2 .

Based on what we’ve seen so far, it seems that elements of an 𝑟th-order approximation 𝐸 𝑝,𝑞𝑟 should
ultimately be represented by co-cycles 𝑥 ∈ 𝐹𝑝𝐶 𝑝+𝑞 such that 𝑑𝑥 ∈ 𝐹𝑝+𝑟𝐶 𝑝+𝑞+1. This turns out to
be exactly the case. For each 𝑛 ∈ Z, we have a filtration

· · · ⊇ 𝐹𝑝−1𝐶
𝑛 ⊇ 𝐹𝑝𝐶𝑛 ⊇ 𝐹𝑝+1𝐶𝑛 ⊇ · · ·

of the object𝐶𝑛. We think of elements of𝐶𝑛 further down the filtration as being “closer to zero.” The
idea of a cohomological spectral sequence of a filtered co-chain complex is to asymptotically approx-
imate the cohomology of𝐶• by refining co-cycles and co-boundaries through their 𝑟-approximations.

(1) Specifically, an 𝑟-almost co-cycle is a co-chain whose differential vanishes modulo terms
that are 𝑟 steps lower in the filtration.

(2) An 𝑟-almost co-boundary in filtration degree 𝑝 is a co-cycle that is the differential of a
co-chain which may be up to 𝑟 steps higher in filtration degree.

We now state and prove the desired result.

Proposition 4.5.5. Every decreasing filtration of a co-chain complex𝐶• determines a cohomological
spectral sequence.

Remark 4.5.6. Wewill see in the proof that the zeroth page of the spectral sequence is the associated
graded co-chain complex

𝐺 𝑝𝐶
• = 𝐹𝑝𝐶

•/𝐹𝑝+1𝐶•,
and that the first page is the cohomology of this co-chain complex. Hence, the construction is con-
sistent with the remarks made in ??.

PROOF. Choose the 𝐸0 page of the spectral sequence such that

𝐸 𝑝,𝑞0 = 𝐹𝑝𝐶
𝑝+𝑞/𝐹𝑝+1𝐶 𝑝+𝑞 := 𝐺 𝑝𝐶

𝑝+𝑞

For 𝑟 ≥ 0, we define 𝑟-almost (𝑝, 𝑞)-co-cycles and 𝑟-almost (𝑝, 𝑞)-co-boundaries as the following
𝑅-modules:
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(1) The 𝑅-module of 𝑟-almost (𝑝, 𝑞)-co-cycles is defined as

𝑍 𝑝,𝑞𝑟 =
{
𝑐 ∈ 𝐹𝑝𝐶 𝑝+𝑞 | 𝜕 𝑝+𝑞𝑝 (𝑐) ∈ 𝐹𝑝+𝑟𝐶 𝑝+𝑞+1

}
/𝐹𝑝+1𝐶 𝑝+𝑞

=
𝐹𝑝𝐶

𝑝+𝑞 ∩ (𝜕 𝑝+𝑞𝑝 )−1(𝐹𝑝+𝑟𝐶 𝑝+𝑞+1) + 𝐹𝑝+1𝐶 𝑝+𝑞

𝐹𝑝+1𝐶 𝑝+𝑞
:=
𝐾 𝑝,𝑞𝑟 + 𝐹𝑝+1𝐶 𝑝+𝑞

𝐹𝑝+1𝐶 𝑝+𝑞

In other words, 𝑍 𝑝,𝑞𝑟 consists of co-chains in 𝐹𝑝𝐶 𝑝+𝑞 whose co-boundaries lie in 𝐹𝑝+𝑟𝐶 𝑝+𝑞+1
modulo 𝐹𝑝+1𝐶 𝑝+𝑞.

(2) The 𝑅-module of 𝑟-almost (𝑝, 𝑞)-co-boundaries is defined as

𝐵𝑝,𝑞𝑟 = 𝜕 𝑝+𝑞−1
𝑝−𝑟+1 (𝐹𝑝−𝑟+1𝐶

𝑝+𝑞−1) ∩ 𝐹𝑝𝐶 𝑝+𝑞

=
𝜕 𝑝+𝑞−1
𝑝−𝑟+1 (𝐹𝑝−𝑟+1𝐶 𝑝+𝑞−1) ∩ 𝐹𝑝𝐶 𝑝+𝑞 + 𝐹𝑝+1𝐶 𝑝+𝑞

𝐹𝑝+1𝐶 𝑝+𝑞

=
𝜕 𝑝+𝑞−1
𝑝−𝑟+1 (𝐾

𝑝−𝑟+1,1+𝑟−2
𝑟−1 ) + 𝐹𝑝+1𝐶 𝑝+𝑞

𝐹𝑝+1𝐶 𝑝+𝑞
:=
𝐼 𝑝,𝑞𝑟 + 𝐹𝑝+1𝐶 𝑝+𝑞

𝐹𝑝+1𝐶 𝑝+𝑞

In other words, 𝐵𝑝,𝑞𝑟 consists of co-chains in 𝐹𝑝𝐶 𝑝+𝑞 that are in the image of 𝐹𝑝−𝑟+1𝐶 𝑝+𝑞−1

modulo 𝐹𝑝+1𝐶 𝑝+𝑞.
Note that the reason we quotient out by 𝐹 𝑝+1𝐶 𝑝+𝑞 in the definitions of 𝑍 𝑝,𝑞𝑟 and 𝐵𝑝,𝑞𝑟 is that we want
to localize our attention to the 𝑝-th graded piece of the filtered complex, and avoid interference from
deeper levels of the filtration. This allows us to consider approximate co-cycles and approximate
co-boundaries in the associated graded co-chain complex. Since the differentials in the co-chain
complex compose to zero, note that we have,

𝐵𝑝,𝑞𝑟 ⊆ 𝑍 𝑝,𝑞𝑟

We can therefore define the 𝑟-almost (𝑝, 𝑞)-cohomology by

𝐸 𝑝,𝑞𝑟 =
𝑍 𝑝,𝑞𝑟

𝐵𝑝,𝑞𝑟
�
𝐾 𝑝,𝑞𝑟 + 𝐹𝑝+1𝐶 𝑝+𝑞

𝐼 𝑝,𝑞𝑟 + 𝐹𝑝+1𝐶 𝑝+𝑞

Note that we have a canonical surjective homomorphism:

𝜂𝑝,𝑞𝑟 : 𝐾 𝑝,𝑞𝑟 −→ 𝐾 𝑝,𝑞𝑟 + 𝐹𝑝+1𝐶 𝑝+𝑞 −→
𝐾 𝑝,𝑞𝑟 + 𝐹𝑝+1𝐶 𝑝+𝑞

𝐼 𝑝,𝑞𝑟 + 𝐹𝑝+1𝐶 𝑝+𝑞
� 𝐸 𝑝,𝑞𝑟 .

mapping 𝑥 ∈ 𝐾 𝑝,𝑞𝑟 to [𝑥+0]. Note that the kernel can be identified with 𝐼 𝑝,𝑞𝑟 ⊆ 𝐾 𝑝,𝑞𝑟 . Moreover, note
that 𝜕 𝑝+𝑞𝑝 restricts to a map from 𝐾 𝑝,𝑞𝑟 to 𝐾 𝑝+𝑟 ,𝑞−𝑟+1𝑟 . Since 𝜕 𝑝+𝑞𝑝 (𝐼 𝑝,𝑞𝑟 ) = 0, we have a commutative
diagram:

𝐾 𝑝,𝑞𝑟 𝐾 𝑝+𝑟 ,𝑞−𝑟+1𝑟

𝐸 𝑝,𝑞𝑟 𝐸 𝑝+𝑟 ,𝑞−𝑟+1𝑟

𝜕
𝑝+𝑞
𝑝

𝜂
𝑝,𝑞
𝑟 𝜂

𝑝+𝑟,𝑞−𝑟+𝑞
𝑟

𝑑
𝑝,𝑞
𝑟

It is clear by construction that 𝑑 𝑝+𝑟 ,𝑞−𝑟+1𝑟 ◦ 𝑑 𝑝,𝑞𝑟 = 0. We now show that

𝐸 𝑝,𝑞𝑟+1 �
ker

(
𝑑 𝑝,𝑞𝑟 : 𝐸 𝑝,𝑞𝑟 → 𝐸 𝑝+𝑟 ,𝑞−𝑟+1𝑟

)
im

(
𝑑 𝑝−𝑟 ,𝑞+𝑟−1
𝑟 : 𝐸 𝑝−𝑟 ,𝑞+𝑟−1

𝑟 → 𝐸 𝑝,𝑞𝑟

) .
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A quick computation shows that

ker(𝑑 𝑝,𝑞𝑟 ) �
𝐾 𝑝,𝑞𝑟+1 + 𝐹 𝑝+1𝐶 𝑝+𝑞

𝐼 𝑝,𝑞𝑟 + 𝐹 𝑝+1𝐶 𝑝+𝑞
,

im(𝑑 𝑝−𝑟 ,𝑞+𝑟−1
𝑟 ) �

𝐼 𝑝,𝑞𝑟+1 + 𝐹 𝑝+1𝐶 𝑝+𝑞

𝐼 𝑝,𝑞𝑟 + 𝐹 𝑝+1𝐶 𝑝+𝑞
.

Therefore, we have
ker(𝑑 𝑝,𝑞𝑟 )

im(𝑑 𝑝−𝑟 ,𝑞+𝑟−1
𝑟 )

�
(𝐾 𝑝,𝑞𝑟+1 + 𝐹 𝑝+1𝐶 𝑝+𝑞)/(𝐼

𝑝,𝑞
𝑟 + 𝐹 𝑝+1𝐶 𝑝+𝑞)

(𝐼 𝑝,𝑞𝑟+1 + 𝐹 𝑝+1𝐶 𝑝+𝑞/(𝐼
𝑝,𝑞
𝑟 + 𝐹 𝑝+1𝐶 𝑝+𝑞)

�
𝐾 𝑝,𝑞𝑟+1 + 𝐹𝑝+1𝐶 𝑝+𝑞

𝐼 𝑝,𝑞𝑟+1 + 𝐹𝑝+1𝐶 𝑝+𝑞
� 𝐸 𝑝,𝑞𝑟+1

It is clear from the definitions that

𝑍 𝑝,𝑞1 = ker
(
𝐺 𝑝𝐶

𝑝+𝑞 → 𝐺 𝑝𝐶
𝑝+𝑞+1

)
,

𝐵𝑝,𝑞1 = im
(
𝐺 𝑝𝐶

𝑝+𝑞−1 → 𝐺 𝑝𝐶
𝑝+𝑞

)
.

Hence, 𝐸 𝑝,𝑞1 = 𝐻 𝑝+𝑞 (𝐺 𝑝𝐶
•). This completes the proof. □

Remark 4.5.7. A homological spectral sequence associated to an increasing filtration of a chain
complex is constructed similarly.

4.5.1. Bounded Convergence. We discuss the notion of convergence of spectral sequences in-
formally in this section, focusing on the special case of bounded filtrations, where convergence issues
do not essentially arise. The idea behind the construction of the spectral sequence is that as 𝑟 be-
comes large, the approximate co-cycles and co-boundaries of degree 𝑟 approach the actual co-cycles
and co-boundaries. Therefore, we expect 𝐸 𝑝,𝑞𝑟 to approach something related to the cohomology of
the co-chain complex. There are subtle issues of convergence involved, but we can attempt to iden-
tify the ‘limiting page’ in the special case where the filtration is bounded. For a bounded, exhaustive
and separated filtration, for each 𝑙 ∈ Z there exist 𝑚(𝑙) > 𝑛(𝑙) ∈ Z such that

𝐹𝑛𝐶
𝑙 = 𝐶𝑙,

𝐹𝑚𝐶
𝑙 = 0.

Fix any 𝑝, 𝑞 ∈ Z, and choose any 𝑟 > max{𝑚(𝑝 + 𝑞 + 1) − 𝑝, 𝑝 − 𝑛(𝑝 + 𝑞 + 1) + 1, 0}. Then,
𝐹𝑝+𝑟𝐶

𝑝+𝑞+1 ⊆ 𝐹𝑚𝐶 𝑝+𝑞+1 = 0,
𝐹𝑝−𝑟+1𝐶

𝑝+𝑞−1 ⊇ 𝐹𝑛𝐶 𝑝+𝑞−1 = 𝐶 𝑝+𝑞−1.

Therefore, we have

𝑍 𝑝,𝑞𝑟 =
𝐹𝑝𝐶

𝑝+𝑞 ∩ ker 𝜕 𝑝+𝑞 + 𝐹𝑝+1𝐶 𝑝+𝑞
𝐹𝑝+1𝐶 𝑝+𝑞

, 𝐵𝑝,𝑞𝑟 =
𝐹𝑝𝐶

𝑝+𝑞 ∩ im 𝜕 𝑝+𝑞−1 + 𝐹𝑝+1𝐶 𝑝+𝑞
𝐹𝑝+1𝐶 𝑝+𝑞

.

With these descriptions stated, we obviously have a surjective map
𝐹𝑝𝐻

𝑝+𝑞 (𝐶•) ↠ 𝐸 𝑝,𝑞𝑟 .

The kernel of this map will be the cohomology classes 𝛼 ∈ 𝐹𝑝𝐻 𝑝+𝑞 (𝐶•) represented by a cycle
𝑥 ∈ 𝐹𝑝+1𝐶 𝑝+𝑞. That is, the kernel is exactly 𝐹𝑝+1𝐶 𝑝+𝑞. Hence, for 𝑟 > max{𝑚(𝑝 + 𝑞 + 1) − 𝑝, 𝑝 −
𝑛(𝑝 + 𝑞 + 1) + 1, 0} we have the isomorphism

𝐺 𝑝𝐻
𝑝+𝑞 (𝐶•) � 𝐸 𝑝,𝑞𝑟 .

Hence, we see that if the filtration is bounded, then for sufficiently large 𝑟 , the 𝑟-almost (𝑝, 𝑞) co-
homology coincides with the associated graded cohomology 𝑅-modules. Hence, for the case of a
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bounded filtration, we say that the “limiting page” of a cohomological spectral sequence, denoted
𝐸 𝑝,𝑞∞ , satisfies

𝐸 𝑝,𝑞∞ � 𝐺 𝑝𝐻
𝑝+𝑞 (𝐶•).

We write 𝐸 𝑝,𝑞𝑟 ⇒ 𝐺 𝑝 (𝐻 𝑝+𝑞) = 𝐸 𝑝,𝑞∞ and say that the spectral sequence converges weakly. The
general case is dealt with by definition through the notion of a convergence of spectral sequences.

Remark 4.5.8. A similar remark regarding convergence applies to homological spectral sequences
associated to an increasing bounded filtration of a chain complex.

4.5.2. Spectral Sequence of a Double Complex. We now discuss the construction of a co-
homological spectral sequence arising from a double complex. Our focus will be on first-quadrant
cohomological double complexes, where convergence issues do not arise. The construction of a
homological spectral sequence arising from a first-quadrant homological double complex is similar.

Definition 4.5.9. A first quadrant cohomological double complex, 𝐶•,•, of 𝑅-modules consists of a
collection of 𝑅-modules {𝐶 𝑝,𝑞} (𝑝,𝑞) ∈N2 arranged in a bi-graded grid, together with two differentials:

𝑑H
𝑝,𝑞 : 𝐶 𝑝,𝑞 → 𝐶 𝑝+1,𝑞 , 𝑑V

𝑝,𝑞 : 𝐶 𝑝,𝑞 → 𝐶 𝑝,𝑞+1

such that the following conditions hold:

𝑑𝐻𝑝+1,𝑞 ◦ 𝑑𝐻𝑝,𝑞 = 0,
𝑑𝑉𝑝,𝑞+1 ◦ 𝑑𝑉𝑝,𝑞 = 0,

𝑑𝐻𝑝,𝑞+1 ◦ 𝑑𝑉𝑝,𝑞 + 𝑑𝑉𝑝+1,𝑞 ◦ 𝑑𝐻𝑝,𝑞 = 0,

for all 𝑝, 𝑞 ∈ N.

A first quadrant cohomological double complex can be visualized as a grid of 𝑅-modules ar-
ranged in the first quadrant, with horizontal and vertical differentials.

...
...

...
...

𝐶0,2 𝐶1,2 𝐶2,2 𝐶3,2 · · ·

𝐶0,1 𝐶1,1 𝐶2,1 𝐶3,1 · · ·

𝐶0,0 𝐶1,0 𝐶2,0 𝐶3,0 · · ·

𝑑𝑉0,2

𝑑𝐻0,2

𝑑𝑉1,2

𝑑𝐻1,2

𝑑𝑉2,2

𝑑𝐻2,2

𝑑𝑉3,2

𝑑𝐻3,2

𝑑𝑉0,1

𝑑𝐻0,1

𝑑𝑉1,1

𝑑𝐻1,1

𝑑𝑉2,1

𝑑𝐻2,1

𝑑𝑉3,1

𝑑𝐻3,1

𝑑𝑉0,0

𝑑𝐻0,0

𝑑𝑉1,0

𝑑𝐻1,0

𝑑𝑉2,0

𝑑𝐻2,0

𝑑𝑉3,0

𝑑𝐻3,0

The total differential 𝑑 = 𝑑𝑉 + 𝑑𝐻 on the associated total complex Tot•(𝐶•,•), defined by
Tot𝑛 (𝐶•) =

⊕
𝑝+𝑞=𝑛 𝐶

𝑝,𝑞 satisfies 𝑑 ◦ 𝑑 = 0, making Tot(𝐶•) a co-chain complex. Each element
in 𝐶 𝑝,𝑞 ⊆ Tot𝑛 (𝐶•) is mapped, via both the horizontal and vertical differentials of the double
complex to the corresponding summands in (Tot𝐶) 𝑝+𝑞+1.

Remark 4.5.10. A first quadrant homological double complex 𝐶•,• of 𝑅-modules can be defined
similarly. It consists of a collection of 𝑅-modules {𝐶𝑝,𝑞} (𝑝,𝑞) ∈N2 arranged in a bi-graded grid,
together with two differentials:

𝑑 𝑝,𝑞H : 𝐶𝑝,𝑞 → 𝐶𝑝−1,𝑞 , 𝑑 𝑝,𝑞V : 𝐶𝑝,𝑞 → 𝐶𝑝,𝑞−1
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satisfying the following conditions for all 𝑝, 𝑞 ∈ N:

𝑑 𝑝−1,𝑞
H ◦ 𝑑 𝑝,𝑞H = 0,

𝑑 𝑝,𝑞−1
V ◦ 𝑑 𝑝,𝑞V = 0,

𝑑 𝑝,𝑞−1
H ◦ 𝑑V

𝑝,𝑞 + 𝑑
𝑝−1,𝑞
V ◦ 𝑑 𝑝,𝑞H = 0.

A first quadrant homological double complex can be visualized as a grid of 𝑅-modules arranged in
the first quadrant, with horizontal and vertical differentials.

...
...

...
...

𝐶0,2 𝐶1,2 𝐶2,2 𝐶3,2 · · ·

𝐶0,1 𝐶1,1 𝐶2,1 𝐶3,1 · · ·

𝐶0,0 𝐶1,0 𝐶2,0 𝐶3,0 · · ·

𝑑0,2
𝑉

𝑑1,2
𝐻

𝑑1,2
𝑉

𝑑2,2
𝐻

𝑑2,2
𝑉

𝑑3,2
𝐻

𝑑3,2
𝑉

𝑑0,1
𝑉

𝑑1,1
𝐻

𝑑1,1
𝑉

𝑑2,1
𝐻

𝑑2,1
𝑉

𝑑3,1
𝐻

𝑑3,1
𝑉

𝑑1,0
𝐻 𝑑2,0

𝐻 𝑑3,0
𝐻

Given a cohomological double complex, we construct a cohomological spectral sequence by
filtering our double complex in two different ways. We first consider the following filtration:

(𝐶𝑖, 𝑗I )𝑝 =

{
0 if 𝑖 < 𝑝,

𝐶𝑖, 𝑗 if 𝑖 ≥ 𝑝.

Note that we have a decreasing filtration by columns. The total complexes of these truncations of
𝐶•,• give rise to a decreasing, exhaustive, seperated and bounded filtration on the total complex of
𝐶•,•.

𝐹𝑝 Tot𝐼𝑛 (𝐶•,•) =
⊕
𝑖≥𝑝

𝐶𝑖,𝑛−𝑖

Using Proposition 4.5.5 and Section 4.5.1, we have the following result:

Proposition 4.5.11. Consider a first quadrant cohomological double complex, 𝐶•,•, of 𝑅-modules.
There exists a cohomological spectral sequence 𝐸 𝑝,𝑞𝑟 for 𝑟 ≥ 0 such that:

(1) The zeroth page is given by the original double complex:

𝐸 𝑝,𝑞0 =
𝐹𝑝 Tot𝐼𝑝+𝑞 (𝐶•,•)
𝐹𝑝+1 Tot𝐼𝑝+𝑞 (𝐶•,•)

= 𝐶 𝑝,𝑞

and the differentials 𝑑 𝑝,𝑞0 : 𝐸 𝑝,𝑞0 → 𝐸 𝑝,𝑞+10 are the vertical differentials 𝑑𝑉 of the double
complex

(2) The first page is given by the cohomology computed from the zeroth page and the differen-
tials 𝑑 𝑝,𝑞1 : 𝐸 𝑝,𝑞1 → 𝐸 𝑝+1,𝑞1 are naturally induced by the horizontal differentials 𝑑𝐻 .

Moreover, for each (𝑝, 𝑞) ∈ N2 there exists a 𝑅(𝑝, 𝑞) such that for 𝑟 > 𝑅(𝑝, 𝑞) we have

𝐸 𝑝,𝑞𝑟 = 𝐸 𝑝,𝑞∞ = 𝐺 𝑝𝐻
𝑝+𝑞 (Tot𝐶•,•).
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We could easily have used the vertical truncations of the double complex.

(𝐶𝑖, 𝑗I )𝑝 =

{
0 if 𝑗 < 𝑝,

𝐶𝑖, 𝑗 if 𝑗 ≥ 𝑝.

Note that we have a decreasing filtration by rows. The total complexes of these truncations of 𝐶•,•
give rise to a decreasing, exhaustive, seperated and bounded filtration on the total complex of 𝐶•,•.

𝐹𝑝 Tot𝐼 𝐼𝑛 (𝐶•,•) =
⊕
𝑗≥𝑝

𝐶𝑛− 𝑗 , 𝑗

Using Proposition 4.5.5 and Section 4.5.1, we have the following result:

Proposition 4.5.12. Consider a first quadrant cohomological double complex, 𝐶•,•, of 𝑅-modules.
There exists a cohomological spectral sequence 𝐸 𝑝,𝑞𝑟 for 𝑟 ≥ 0 such that:

(1) The zeroth page is given by the ‘transposed’ original double complex:

𝐸 𝑝,𝑞0 =
𝐹𝑝 Tot𝐼 𝐼𝑝+𝑞 (𝐶•,•)
𝐹𝑝+1 Tot𝐼 𝐼𝑝+𝑞 (𝐶•,•)

= 𝐶𝑞,𝑝

and the differentials 𝑑 𝑝,𝑞0 : 𝐸 𝑝,𝑞0 → 𝐸 𝑝,𝑞+10 are the induced by the horizontal differentials
𝑑𝐻 of the double complex

(2) The first page is given by the cohomology computed from the zeroth page and the differ-
entials 𝑑 𝑝,𝑞1 : 𝐸 𝑝,𝑞1 → 𝐸 𝑝+1,𝑞1 are naturally induced by the vertical differentials 𝑑𝑉 of the
double complex.

Moreover, for each (𝑝, 𝑞) ∈ N2 there exists a 𝑅(𝑝, 𝑞) such that for 𝑟 > 𝑅(𝑝, 𝑞) we have

𝐸 𝑝,𝑞𝑟 = 𝐸 𝑝,𝑞∞ = 𝐺 𝑝𝐻
𝑝+𝑞 (Tot𝐶•,•).

Remark 4.5.13. Of course, we could have derived a homological spectral sequence associated to
first-quadrant homological double complexes. We obtain two types of spectral sequences, which we
described in words:

(1) The first spectral sequence is obtained by filtering columns. The zeroth page is the double
complex, and the differentials are the vertical (downward facing) maps from the double
complex. The first page is the homology of the first page and the maps are the horizontal
(rightward facing) maps induced from the double complex.

(2) The first spectral sequence is obtained by filtering rows. The zeroth page is the ‘transposed’
double complex, and the differentials induced by the horizontal differentials from the double
complex. The first page is the homology of the first page and the differentials are the vertical
maps induced from the double complex.

We will freely use the analogous results below.

4.6. Applications
Why all the fuss about homological algebra, and in particular spectral sequences? Their signifi-

cance stems from the ability to systematically decompose complex computations into more tractable,
stepwise analyses. Let us now apply the machinery we have developed.
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4.6.1. Diagram Chasing Lemmas. We first establish several diagram-chasing lemmas that
play a foundational role in homological algebra.

Proposition 4.6.1. (Five Lemma) Consider the following diagram of 𝑅-modules:

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴′ 𝐵′ 𝐶′ 𝐷′ 𝐸 ′

𝑓

𝛼 𝛽 𝛾

𝑔

𝛿 𝜖

𝑓 ′ 𝑔′

be a commutative diagram with exact rows of 𝑅-modules. We have the following:
(1) If 𝛼 is a surjective homomorphism and 𝛽, 𝛿 are injective homomorphisms, then 𝛾 is an

injective homomorphism.
(2) If 𝜖 is an injective homomorphism and 𝛽, 𝛿 are surjective homomorphisms, then 𝛾 is a

surjective homomorphism.

Remark 4.6.2. We use the homological spectral sequence associated with a first-quadrant homo-
logical double complex in the argument below.

PROOF. We only prove (1), noting that the proof of (2) proceeds analogously. To construct the desired
double complex, we begin with the given diagram, reflect it appropriately, and adjoin the necessary
kernels and cokernels on the left and right. By assigning zero objects to all remaining entries, we
obtain a first quadrant homological double complex.

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0

coker 𝑔′ 𝐸 𝐷 𝐶 𝐵 𝐴 ker 𝑓 0

coker 𝑔′′ 𝐸 ′ 𝐷′ 𝐶′ 𝐵′ 𝐴′ ker 𝑓 ′ 0

If we consider the homological spectral sequence arising from filtering the double complex by rows,
the 𝐸1-page is computed by taking homology in the horizontal direction. Since the double complex
is exact along rows, it follows that all entries on the 𝐸1-page vanish. Consequently, the spectral se-
quence converges weakly to zero. Similarly, the homological spectral sequence obtained by filtering
the double complex by columns also converges weakly to zero. In this case, the 𝐸1 page is obtained
by taking the the homology of the double complex in the horizontal direction:

∗ ker 𝜀 ker 𝛿 ker 𝛾 ker 𝛽 ker𝛼 ∗

∗ coker 𝜀 coker 𝛿 coker 𝛾 coker 𝛽 coker𝛼 ∗

By assumption ker 𝛿 = ker 𝛽 = coker𝛼 = 0. By taking homology once more, we arrive at the 𝐸2

page:
∗ ∗ ∗ ker 𝛾 ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ 0 ∗
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As the spectral sequence converges weakly to 0, we know that on the 𝐸∞ page, no entry can remain.
But this means that ker 𝛾 must vanish, since otherwise it could never disappear on the subsequent
pages. This proves the claim. □

We now prove the Snake Lemma using homological spectral sequences. The Snake Lemma is
a fundamental result in homological algebra, playing a crucial role in the construction of long exact
sequences that arise naturally from short exact sequences of chain complexes.

Proposition 4.6.3. (Snake Lemma) Consider the following diagram of 𝑅-modules:

𝐴 𝐵 𝐶 0

0 𝐴′ 𝐵′ 𝐶′

𝑓

𝛼

𝑔

𝛽 𝛾

𝑓 ′ 𝑔′

Then there is an exact sequence of 𝑅-modules:

ker𝛼 ker 𝛽 ker 𝛾 coker𝛼 coker 𝛽 coker 𝛾𝛿

The map 𝛿 is called the connecting homomorphism.

PROOF. The proof proceeds analogously to that of Proposition 4.6.1. As in that case, we construct a
first quadrant homological double complex by adjoining kernels and cokernels to the given diagram
and assigning zero objects to the remaining entries.

...
...

...
...

...
...

...

0 0 0 0 0 0 0

0 0 𝐶 𝐵 𝐴 ker 𝑓 0

0 coker 𝑔′ 𝐶′ 𝐵′ 𝐴′ 0 0

If we consider the homological spectral sequence obtained by filtering the double complex by rows,
the 𝐸1-page is computed by taking homology in the horizontal direction. Since the double complex
is exact along rows, all horizontal homology 𝑅-modules should vanish, and thus the 𝐸1-page consists
entirely of zero objects. Consequently, the spectral sequence converges weakly to zero. Similarly,
the homological spectral sequence obtained by filtering by columns also converges weakly to 0. For
this spectral sequence, the 𝐸1 page is obtained by taking the the homology of the double complex in
the horizontal direction:

0 coker 𝑔 ker 𝛾 ker 𝛽 ker𝛼

coker 𝛾 coker 𝛽 coker𝛼 ker 𝑓 ′ 0

𝑔 𝑓

𝑔′ 𝑓 ′

The maps shown above are induced by the morphisms in the original commutative diagram. We
show that we have exactness at ker 𝛽 and coker 𝛽.
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(1) Note that we have ker 𝑔 = ker 𝑔 ∩ ker 𝛽. By exactness of the original diagram, we have
ker 𝑔 = im 𝑓 . Hence, we have

ker 𝑔 ∩ ker 𝛽 = im 𝑓 ∩ ker 𝛽
= 𝑓 ( 𝑓 −1(ker 𝛽))
= 𝑓 (ker(𝛽 ◦ 𝑓 ))
= 𝑓 (ker( 𝑓 ′ ◦ 𝛼))
= 𝑓 (ker𝛼)

The last equality follows since 𝑓 ′ is injective. Hence, we have ker 𝑔 = im 𝑓 .
(2) By exactness of the original diagram, we have ker 𝑔′ = im 𝑓 ′. Note that we have

(𝑔′)−1(im 𝛾)
im 𝛽

=
(𝑔′)−1(im(𝛾 ◦ 𝑔))

im 𝛽

=
(𝑔′)−1(im(𝑔′ ◦ 𝛽))

im 𝛽

=
im 𝛽 + ker 𝑔′

im 𝛽

=
im 𝛽 + im 𝑓 ′

im 𝛽

The first equality follows since 𝑔 is surjective, and the third equality follows from exactness
at 𝐵′. Hence, ker 𝑔′ = im 𝑓 ′.

We take homology once more to examine the 𝐸2 page.

0 coker 𝑔 0 0 0

0 0 0 ker 𝑓 ′ 0

Since all entries must vanish on the 𝐸∞ page, the one remaining map must necessarily be an isomor-
phism. By inverting this isomorphism, we obtain a connecting homomorphism:

ker𝛼 ker 𝛽 ker 𝛾 coker𝛼 coker 𝛽 coker 𝛾

coker 𝑔 ker 𝑓 ′

0 0

𝑓 𝑔

𝜋

𝛿 𝑓 ′ 𝑔′

�

Let’s show exactness at ker 𝛾. Using the commutative square, we have that ker 𝛾 = ker 𝜋. But we
also have that ker 𝜋 = im 𝑔. Hence, ker 𝛾 = im 𝑔. A similar argument shows that the sequence is
exact at coker𝛼. □

We now provide a proof of the Braid Lemma using a diagram chasing argument. While spectral
sequences are powerful tools in homological algebra, I am not aware of a standard proof of the Braid
Lemma that relies on them. As we shall see, the Braid Lemma plays a crucial role in constructing
the long exact sequence associated with triples of topological spaces.
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Proposition 4.6.4. (Braid Lemma) Suppose three long exact sequences and a chain complex we
have a commutative diagram. Then the chain complex is also a long exact sequence

· · · 𝐴 𝐷 𝐺 𝐽

· · · 𝑂 𝐶 𝐹 𝐼 · · ·

· · · 𝐵 𝐸 𝐻 𝐾

𝑔1

𝑓1 𝑔2

ℎ3

ℎ4

𝑗4

𝑔0

𝑗0

ℎ2

𝑓2 𝑔3

𝑗3 𝑓5

ℎ5

𝑗1

ℎ1 𝑗2

𝑓3

𝑓4

𝑔4

PROOF. WLOG, assume that the 𝑓 maps describe the chain complex. By symmetry, it suffices to
show exactness at 𝐶, 𝐸 and 𝐻:

(1) ker( 𝑓2) ⊆ im( 𝑓1): Let 𝑥 ∈ ker( 𝑓2). Then 0 = 𝑓2(𝑥) = 𝑗2 𝑓2(𝑥) = 𝑔2ℎ2(𝑥) by commutativ-
ity. It follows that ℎ2(𝑥) ∈ ker(𝑔2) = im(𝑔1). So ∃𝑥1 ∈ 𝐴 such that 𝑔1(𝑥1) = ℎ2(𝑥). By
commutativity, 𝑔1(𝑥1) = ℎ2 𝑓1(𝑥1). So we have that 0 = 𝑔1(𝑥1) − ℎ2(𝑥) = ℎ2( 𝑓1(𝑥1) − 𝑥).
Let 𝑥2 := 𝑓1(𝑥1) − 𝑥 ∈ ker(ℎ2) = im(ℎ1). Then ∃𝑥3 ∈ 𝐵 such that ℎ1(𝑥3) = 𝑥2. Note that

𝑗1(𝑥3) = 𝑓2ℎ1(𝑥3) = 𝑓2(𝑥2) = 𝑓2( 𝑓1(𝑥1) − 𝑥) = 0,

where the last equality follows from 𝑓2 ◦ 𝑓1 = 0 and 𝑓2(𝑥) = 0. We therefore have that
𝑥3 ∈ ker( 𝑗1) = im( 𝑗0). So there exists 𝑥4 ∈ 𝑂 such that 𝑗0(𝑥4) = 𝑥3. Consider𝑔0(𝑥4). It
satisfies

𝑓1𝑔0(𝑥4) = ℎ1 𝑗0(𝑥4) = ℎ1(𝑥3) = 𝑥2 = 𝑓1(𝑥1) − 𝑥
Therefore, we have 𝑥 = 𝑓1(𝑥1 − 𝑔0(𝑥4)). This shows that 𝑥 ∈ im( 𝑓1).

𝑔0(𝑥4), 𝑥1 ℎ2(𝑥)

𝑥4 𝑥2, 𝑥 0

𝑥3 0

𝑔1

𝑓1 𝑔2𝑔0

𝑗0

ℎ2

𝑓2

𝑗1

ℎ1 𝑗2

(2) ker( 𝑓3) ⊆ im( 𝑓2): Let 𝑥 ∈ 𝐸 be such that 𝑓3(𝑥) = 0. By commutativity, 𝑔3 𝑗2(𝑥) = 0,
so 𝑗2(𝑥) ∈ ker(𝑔3) = im(𝑔2). Then ∃𝑥1 ∈ 𝐷 such that 𝑔2(𝑥1) = 𝑗2(𝑥). It satisfies
ℎ3(𝑥1) = 𝑗3𝑔2(𝑥1) = 𝑗3 𝑗2(𝑥) = 0, as ( 𝑗𝑖) is a chain complex. So 𝑥1 ∈ ker(ℎ3) = im(ℎ2).
Therefore, there exists 𝑥2 ∈ 𝐶 such that ℎ2(𝑥2) = 𝑥1. This element is such that 𝑗2 𝑓2(𝑥2) =
𝑔2ℎ2(𝑥2) = 𝑔2(𝑥1) = 𝑗2(𝑥). We therefore have 𝑗2( 𝑓2(𝑥2) − 𝑥) = 0. Let 𝑥3 := 𝑓2(𝑥2) − 𝑥.
Then 𝑥3 ∈ ker( 𝑗2) = im( 𝑗1). Let 𝑥4 ∈ 𝐵 be such that 𝑗1(𝑥4) = 𝑥3. 𝑥4 is such that
𝑓2ℎ1(𝑥4) = 𝑗1(𝑥4) = 𝑥3 = 𝑓2(𝑥2) − 𝑥. Finally, we see that 𝑥 = 𝑓2(𝑥2 − ℎ1(𝑥4)), so
𝑥 ∈ im( 𝑓2) as required.

𝑥1 0

ℎ1(𝑥4), 𝑥2 0, 𝑗2(𝑥)

𝑥4 𝑥3, 𝑥 0

𝑔2

ℎ3

ℎ2

𝑓2 𝑔3

𝑗3

𝑗1

𝑗2

𝑓3
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(3) ker( 𝑓4) ⊆ im( 𝑓3): Let 𝑥 ∈ 𝐻 be such that 𝑓4(𝑥) = 0. Then 0 = ℎ5 𝑓4(𝑥) = 𝑔4(𝑥). So
𝑥 ∈ ker(𝑔4) = im(𝑔3). Let 𝑥1 ∈ 𝐹 be such that 𝑔3(𝑥1) = 𝑥. Then ℎ4 𝑗3(𝑥1) = 𝑓4𝑔3(𝑥1) =
𝑓4(𝑥) = 0. So 𝑗3(𝑥1) ∈ ker(ℎ4) = im(ℎ3). Let 𝑥2 ∈ 𝐷 be such that ℎ3(𝑥2) = 𝑗3(𝑥1). Then
𝑗3(𝑥1) = 𝑗2𝑔2(𝑥2), such that 𝑥3 := 𝑔2(𝑥2) − 𝑥1 ∈ ker( 𝑗3) = im( 𝑗2). Let 𝑥4 ∈ 𝐸 be such
that 𝑗2(𝑥4) = 𝑥3. Then 𝑓3(𝑥4) = 𝑔3 𝑗2(𝑥4) = 𝑔3(𝑥3) = 𝑔3(𝑔2(𝑥2) − 𝑥1) = −𝑔3(𝑥1) = −𝑥.
Therefore, 𝑥 = 𝑓3(−𝑥4), and 𝑥 ∈ im( 𝑓3) as required.

𝑥2 𝑗3(𝑥1)

𝑥3, 𝑥1 0

𝑥4 −𝑥, 𝑥 0

𝑔2

ℎ3

ℎ4

𝑔3

𝑗3

ℎ5𝑗2

𝑓3

𝑓4

𝑔4

This completes the proof. □

4.6.2. Short Exact Sequence via Spectral Sequences. Spectral sequences often encode awealth
of homological information, organizing it across multiple pages of approximations. Even when the
data appears sparse, the structure of a spectral sequence can be leveraged to extract compact and
meaningful results. We show how they can also be employed to derive short exact sequences that
are both non-trivial and extremely useful in computations.

Proposition 4.6.5. (Two Column Sequence) Let {𝐸 𝑝,𝑞𝑟 }𝑟≥1 be a cohomological spectral sequence
associated to a decreasing, exhaustive and separated filtration. Assume that 𝐸 𝑝,𝑞2 = 0 unless 𝑝 =
0, 1. For each 𝑛 ∈ Z, we have a short exact sequence:

0 −→ 𝐸0,𝑛
2 −→ 𝑀𝑛 −→ 𝐸−1,𝑛+1

2 −→ 0.

PROOF. The 𝐸2 pages looks like the following:

0 0 𝐸0,1
2 𝐸1,1

2 0 0

0 0 𝐸0,0
2 𝐸1,0

2 0 0

0 0 𝐸0,−1
2 𝐸1,−1

2 0 0

Hence, we see that 𝐸 𝑝,𝑞2 = 𝐸 𝑝,𝑞∞ . Assume that the spectral sequence converges weakly to {𝑀𝑛}𝑛∈Z.
Hence, we have

𝐸 𝑝,𝑞2 = 𝐸 𝑝,𝑞∞ �
𝐹𝑝𝑀𝑝+𝑞
𝐹𝑝+1𝑀𝑝+𝑞

If 𝑝 ≠ 0, 1, we get

0 = 𝐸 𝑝,𝑞2 =
𝐹𝑝𝑀𝑝+𝑞
𝐹𝑝+1𝑀𝑝+𝑞

,

which tells us 𝐹𝑝𝐻𝑝+𝑞 = 𝐹𝑝+1𝐻𝑝+𝑞 for all 𝑞 ∈ Z such that 𝑝 ≠ 0, 1. Therefore the filtration looks
like

· · · = 𝐹−2𝑀𝑛 = 𝐹−1𝑀𝑛 ⊇ 𝐹0𝑀𝑛 ⊇ 𝐹1𝑀𝑛 = 𝐹2𝑀𝑛 = · · ·
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Since the filtration is assumed to be exhaustive and separated, we have that

𝐹−1𝑀𝑛 = 𝐹−2𝑀𝑛 = · · · = 𝑀𝑛,
𝐹1𝑀𝑛 = 𝐹2𝑀𝑛 = · · · = 0.

For 𝑝 = 0, we notice that

𝐸0,𝑛
2 = 𝐸0,𝑛

∞ �
𝐹0𝑀𝑛
𝐹1𝑀𝑛

= 𝐹0𝑀𝑛.

For 𝑝 = 1, we get

𝐸−1,𝑛+1
2 = 𝐸1,𝑛−1

∞ �
𝐹−1𝑀𝑛
𝐹0𝐻𝑛

=
𝑀𝑛
𝐹0𝑀𝑛

.

For each 𝑛 ∈ Z, the short exact sequence

0 −→ 𝐹0𝑀𝑛 −→ 𝑀𝑛 −→
𝑀𝑛
𝐹0𝑀𝑛

−→ 0

turns into the short exact sequence

0 −→ 𝐸0,𝑛
2 −→ 𝑀𝑛 −→ 𝐸−1,𝑛+1

2 −→ 0.

□

Remark 4.6.6. If we had a homological spectral sequence, the analogous statement would be that
for each 𝑛 ∈ Z there is a short exact sequence:

0 −→ 𝐸2
0,𝑛 −→ 𝑀𝑛 −→ 𝐸2

1,𝑛−1 −→ 0

4.6.3. Long Exact Sequence in Homology. We now employ an argument analogous to that of
Proposition 4.6.3 to demonstrate that any short exact sequence of chain complexes gives rise to a
long exact sequence in homology. As this reasoning is entirely algebraic in nature, we carry out the
proof in the general algebraic setting.

Proposition 4.6.7. (Long Exact Sequence in Homology)Consider a short exact sequence inChainMod𝑅 :

0• → 𝐴•
𝑖•−→ 𝐵•

𝑗•−→ 𝐶• → 0•
For each 𝑛 ≥ 1, there exist connecting morphisms 𝛿𝑛 : 𝐻𝑛 (𝐶•) → 𝐻𝑛−1(𝐴•) such that there is a
long exact sequence in homology:

· · · 𝐻𝑛+1(𝐵•) 𝐻𝑛+1(𝐶•)

𝐻𝑛 (𝐴•) 𝐻𝑛 (𝐵•) 𝐻𝑛 (𝐶•)

𝐻𝑛−1(𝐴•) 𝐻𝑛−1(𝐵•) · · ·

𝛿𝑛+1

𝛿𝑛

In fact, the above construction defines a functor from ChainExact
Mod𝑅 to ChainLong

Mod𝑅 , the category of
long exact sequences of abelian groups.

PROOF. (Sketch) Note that a short exact sequence of chain complexes naturally gives rise to a first
quadrant homological double complex: the chain complexes are arranged in rows, with horizontal
maps given by the differentials within each complex and vertical maps given by the maps from
the short exact sequence at each degree. The resulting double complex lies in the first quadrant
because the indices of the 𝑅-modules in each chain complex are drawn from the natural numbers.
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The exactness at each degree ensures the resulting diagram satisfies the conditions for forming a
double complex. The short exact sequence of chain complexes can be drawn more explicitly as:

0 0 0

· · · 𝐴𝑛−1 𝐴𝑛 𝐴𝑛+1 · · ·

· · · 𝐵𝑛−1 𝐵𝑛 𝐵𝑛+1 · · ·

· · · 𝐶𝑛−1 𝐶𝑛 𝐶𝑛+1 · · ·

0 0 0

𝑖𝑛+1
𝜕𝑛

𝑖𝑛

𝜕𝑛+1
𝑖𝑛−1

𝑖𝑛+1
𝜕′𝑛

𝑖𝑛

𝜕′𝑛+1
𝑖𝑛−1

𝑖𝑛+1
𝜕′′𝑛

𝑖𝑛

𝜕′′𝑛+1
𝑖𝑛−1

If we consider the homological spectral sequence obtained by filtering the double complex by rows,
the 𝐸1-page is computed by taking homology in the horizontal direction. Since the double complex
is exact along rows, all horizontal homology 𝑅-modules should vanish, and thus the 𝐸1-page consists
entirely of zero objects. Consequently, the spectral sequence converges weakly to zero. Similarly,
the homological spectral sequence obtained by filtering by columns also converges weakly to 0. For
this spectral sequence, the 𝐸1 page is obtained by taking the the homology of the double complex in
the horizontal direction:

0 0 0

· · · 𝐻𝑛−1(𝐴) 𝐻𝑛 (𝐴) 𝐻𝑛+1(𝐴) · · ·

· · · 𝐻𝑛−1(𝐵) 𝐻𝑛 (𝐵) 𝐻𝑛+1(𝐵) · · ·

· · · 𝐻𝑛−1(𝐶) 𝐻𝑛 (𝐶) 𝐻𝑛+1(𝐶) · · ·

0 0 0

𝜕𝑛 𝜕𝑛+1

𝜕′𝑛 𝜕′𝑛+1

𝜕′′𝑛 𝜕′′𝑛+1

Let us focus on the sub-diagram involving only the indices 𝑛 − 1 and 𝑛. Upon rotating the sub-
diagram, the resulting sub-diagram is as follows.

0 𝐻𝑛 (𝐴) 𝐻𝑛 (𝐵) 𝐻𝑛 (𝐶) 0

0 𝐻𝑛−1(𝐴) 𝐻𝑛−1(𝐵) 𝐻𝑛−1(𝐶) 0
𝜕𝑛 𝜕′𝑛 𝜕′′𝑛

By applying Proposition 4.6.3, we obtain the following long exact sequence:

𝐻𝑛 (𝐴) → 𝐻𝑛 (𝐵) → 𝐻𝑛 (𝐶)
𝛿𝑛−−→ 𝐻𝑛−1(𝐴) → 𝐻𝑛−1(𝐵) → 𝐻𝑛−1(𝐶)

By assembling these short exact sequences via the connecting homomorphisms, we obtain the de-
sired long exact sequence in homology. In fact, we can explicitly describe the connecting morphism
𝛿𝑛 in this case, and the construction given below can be shown to be compatible with the abstract
existence of the connecting homomorphism in Proposition 4.6.3. The connecting morphisms 𝛿𝑛 are
constructed as follows: let 𝑐 ∈ 𝐶𝑛 be a cycle representative for [𝛼] ∈ 𝐻𝑛 (𝐶). Then, since 𝑗𝑛 is



4.6. APPLICATIONS 93

surjective, there exists 𝑏 ∈ 𝐵𝑛 such that 𝑐 = 𝑗𝑛 (𝑏). Therefore, we have that 𝜕′𝑛 (𝑏) ∈ 𝐵𝑛−1. By the
commutativity of the diagram, we know that

𝑗𝑛−1(𝜕′′𝑛 (𝑏)) = 𝜕′′𝑛 ( 𝑗𝑛−1(𝑏)) = 𝜕′′𝑛 (𝑐) = 0,

since 𝑐 is a cycle. Therefore, 𝜕′𝑛 (𝑏) ∈ ker 𝑗𝑛−1 = im 𝑖𝑛−1. So, there exists a (unique, since 𝑖𝑛−1 is
injective) 𝑎 ∈ 𝐴𝑛−1 with 𝜕′𝑛 (𝑏) = 𝑖𝑛−1(𝑎). We show that 𝑎 is a cycle. Note that

𝑖𝑛−2(𝜕𝑛−1(𝑎)) = 𝜕′𝑛−1(𝑖𝑛−1(𝑎)) = 𝜕′𝑛−1(𝜕′𝑛 (𝑏)) = 0

Since 𝑖𝑛−2 is injective, this implies that 𝜕𝑛−1(𝑎) = 0. Finally, we define 𝛿𝑛 ( [𝛼]) = [𝑎] ∈ 𝐻𝑛−1(𝐴).
We have to show that this assignment is independent of all choices.

(1) Suppose we choose 𝑏′ ∈ 𝐵𝑛 such that 𝑗𝑛 (𝑏′) = 𝑐. Then, 𝑏′ − 𝑏 ∈ ker 𝑗𝑛 = im 𝑖𝑛. So, there
exists 𝑎′ ∈ 𝐴𝑛 such that 𝑏′ − 𝑏 = 𝑖𝑛 (𝑎′). Therefore,

𝜕′𝑛 (𝑏′) = 𝜕′𝑛 (𝑏) + 𝜕′𝑛 (𝑖𝑛 (𝑎′))
= 𝜕 (𝑏) + 𝑖𝑛−1(𝜕𝑛 (𝑎′))
= 𝑖𝑛−1(𝑎) + 𝑖𝑛−1(𝜕𝑛 (𝑎′))
= 𝑖𝑛−1(𝑎 + 𝜕𝑛 (𝑎′)).

So we see that changing 𝑏 to 𝑏′ amounts to changing 𝑎 by a homologous cycle 𝑎 + 𝜕𝑛 (𝑎′).
(2) If instead of 𝑐 we use 𝑐 + 𝜕′′𝑛+1(𝑐′) for some 𝑐′ ∈ 𝐶𝑛+1. But then, 𝑐′ = 𝑗𝑛+1(𝑏′) for some

𝑏′ ∈ 𝐵𝑛+1. So,
𝑐 + 𝜕′′𝑛+1(𝑐′) = 𝑐 + 𝜕′′𝑛+1( 𝑗𝑛+1(𝑏′))

= 𝑐 + 𝑗𝑛 (𝜕′𝑛+1(𝑏′))
= 𝑗𝑛 (𝑏 + 𝜕′𝑛+1(𝑏′))

Then 𝑏will be replaced by 𝑏+𝜕′𝑛+1(𝑏′), which leaves 𝜕′𝑛 (𝑏) unchanged, hence 𝑎 unchanged.
We now show that the above construction defines a functor from ChainExact

Mod𝑅 to ModLong
𝑅 . Con-

sider the following diagram in ChainExact
Mod𝑅 :

0• 𝐴• 𝐵• 𝐶• 0•

0• 𝐴′• 𝐵′• 𝐶′• 0•

𝑖•

𝑓•

𝑗•

𝑔• ℎ•
𝑖′• 𝑗′•

We show that induces the following commutative diagram.

· · · 𝐻𝑛 (𝐴) 𝐻𝑛 (𝐵) 𝐻𝑛 (𝐶) 𝐻𝑛−1(𝐴) 𝐻𝑛−1(𝐵) · · ·

· · · 𝐻𝑛 (𝐴′) 𝐻𝑛 (𝐵′) 𝐻𝑛 (𝐶′) 𝐻𝑛−1(𝐴′) 𝐻𝑛−1(𝐵′) · · ·

𝐻𝑛 (𝑖)

𝐻𝑛 ( 𝑓𝑛 )

𝐻𝑛 ( 𝑗 )

𝐻𝑛 (𝑔𝑛 )

𝛿𝑛

𝐻𝑛 (ℎ𝑛 )

𝐻𝑛−1 (𝑖𝑛−1 )

𝐻𝑛−1 ( 𝑓𝑛−1 ) 𝐻𝑛−1 (𝑔𝑛−1 )
𝐻𝑛 (𝑖′𝑛 ) 𝐻𝑛 ( 𝑗′𝑛 ) 𝛿′𝑛 𝐻𝑛 (𝑖′𝑛−1 )

The commutativity of the first two squares and the last square is obvious since 𝑛-th homology is a
functor. It suffices to check that the the diagram

𝐻𝑛 (𝐶) 𝐻𝑛−1(𝐴)

𝐻𝑛 (𝐶′) 𝐻𝑛−1(𝐴′)

𝛿𝑛

𝐻𝑛 (ℎ𝑛 ) 𝐻𝑛−1 ( 𝑓𝑛−1 )
𝛿′𝑛
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is commutative. Recall that the map 𝛿𝑛 : 𝐻𝑛 (𝐶) → 𝐻𝑛−1(𝐴) was defined by 𝛿𝑛 [𝑐] = [𝑎] where
𝑐 = 𝑗𝑛 (𝑏) and 𝑖𝑛−1(𝑎) = 𝜕′𝑛𝑏. Consider ℎ𝑛 (𝑐) ∈ 𝐶′𝑛. Note that

ℎ𝑛 (𝑐) = ℎ𝑛 ( 𝑗𝑛 (𝑏)) = 𝑗 ′𝑛 (𝑔𝑛 (𝑏))
𝑖′𝑛−1( 𝑓𝑛−1(𝑎)) = 𝑔𝑛−1(𝑖𝑛−1(𝑎)) = 𝑔𝑛−1(𝜕′𝑛 (𝑏)) = 𝑑′𝑛 (𝑔𝑛 (𝑏)).

Here 𝑑′𝑛 is the map from 𝐵′𝑛 to 𝐵′𝑛−1. Hence,
[𝛿′𝑛ℎ𝑛 (𝑐))] = [ 𝑓𝑛−1(𝑎)] = [ 𝑓𝑛−1𝛿𝑛 (𝑐)]

This shows that the construction defines a functor from the ChainExact
Mod𝑅 to ModLong

𝑅 . □

4.7. Convergence of a Spectral Sequence
We have seen in Section 4.5 that a bounded descending filtration naturally induces a convergent

cohomological spectral sequence, in the sense that the entries 𝐸 𝑝,𝑞𝑟 stabilize for sufficiently large 𝑟 ,
as a function of (𝑝, 𝑞), allowing us to define the limiting page of a spectral sequence. We now turn
to the question of convergence for a general spectral sequence. We first need to define the notion of
the limiting page of a general spectral sequence. If {𝐸 𝑝,𝑞𝑟 , 𝑑 𝑝,𝑞𝑟 }𝑟∈N is a a cohomological spectral
sequence, we have a tower of 𝑅-submodules

𝐵𝑝,𝑞0 ⊆ 𝐵𝑝,𝑞1 ⊆ 𝐵𝑝,𝑞2 ⊆ · · · ⊆ · · · ⊆ 𝑍 𝑝,𝑞2 ⊆ 𝑍 𝑝,𝑞1 ⊆ 𝑍 𝑝,𝑞0 (3)

Here 𝑍 𝑝,𝑞𝑟 , 𝐵𝑝,𝑞𝑟 are defined as in Section 4.5. Define

𝑍 𝑝,𝑞∞ =
∞⋂
𝑟=1

𝑍 𝑝,𝑞𝑟 , 𝐵𝑝,𝑞∞ =
∞⋃
𝑟=1

𝐵𝑝,𝑞𝑟

Note that 𝐵𝑝,𝑞𝑟 ⊆ 𝑍 𝑝,𝑞∞ for each (𝑝, 𝑞) ∈ Z2. Clearly, the construction generalizes to the case where
we have a cohomological spectral sequence starting on the 𝑟0-th page, for some 𝑟0 ∈ N. This allows
us to define a potential candidate for the limit of a cohomological spectral sequence.

Definition 4.7.1. Let 𝑟0 ∈ N, and let {𝐸 𝑝,𝑞𝑟 , 𝑑 𝑝,𝑞𝑟 }𝑟≥𝑟0 be a cohomological spectral sequence of
𝑅-modules. The 𝐸∞ page of {𝐸 𝑝,𝑞𝑟 , 𝑑 𝑝,𝑞𝑟 }𝑟≥𝑟0 is defined such that

𝐸∞𝑝,𝑞 =
𝑍∞𝑝,𝑞
𝐵∞𝑝,𝑞

In the specific instances examined in Section 4.5, the spectral sequence was shown to converge to
the associated graded cohomology of a co-chain complex. This observation motivates the following
definition.

Definition 4.7.2. Let 𝑟0 ∈ N. Let {𝑀𝑛}𝑛∈Z be a family of 𝑅-modules, and let {𝐸 𝑝,𝑞𝑟 , 𝑑 𝑝,𝑞𝑟 }𝑟≥𝑟0 be
a cohomological spectral sequence of 𝑅-modules.

(1) We say that {𝐸 𝑝,𝑞𝑟 , 𝑑 𝑝,𝑞𝑟 }𝑟≥𝑟0 converges weakly to {𝑀𝑛}𝑛∈Z if there exists a decreasing
exhaustive filtration

· · · ⊇ 𝐹𝑝−1𝑀𝑛 ⊇ 𝐹𝑝𝑀𝑛 ⊇ 𝐹𝑝+1𝑀𝑛 ⊇ · · ·
for each 𝑛 ∈ Z and furthermore, there exist isomorphisms

𝐸 𝑝,𝑞∞ � 𝐺 𝑝 (𝑀𝑝+𝑞) :=
𝐹𝑝𝑀𝑝+𝑞
𝐹𝑝+1𝑀𝑝+𝑞

.

We write
𝐸 𝑝,𝑞𝑟 ⇒ 𝐺 𝑝 (𝑀𝑝+𝑞)
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(2) We say that {𝐸 𝑝,𝑞𝑟 , 𝑑 𝑝,𝑞𝑟 }𝑟≥𝑟0 approaches {𝑀𝑛}𝑛∈Z if the filtration in (1) is exhaustive and
separated.

(3) We say that {𝐸 𝑝,𝑞𝑟 , 𝑑 𝑝,𝑞𝑟 }𝑟≥𝑟0 converges strongly to {𝑀𝑛}𝑛∈Z if it approaches {𝑀𝑛}𝑛∈Z and
𝑀𝑛 = lim←−−

𝑝∈Z

(
𝑀𝑛/𝐹𝑝𝑀𝑛

)
.

We have the following result:

Proposition 4.7.3. The cohomological spectral sequence associated to a decreasing, exhaustive and
bounded below filtration of a co-chain complex converges weakly.

PROOF. The proof is skipped. □



CHAPTER 5

Singular Homology

We now discuss singular homology. Singular homology is a powerful tool in algebraic topology
that assigns a sequence of abelian groups to a topological space by studying continuous maps from
standard simplices into the space. It enjoys wide applicability due to its functorial properties and sat-
isfies the Eilenberg–Steenrod axioms, making it a foundational invariant in the subject. Section 5.1
presents the definition of singular homology, Definition 5.2.1 discusses the Eilenberg–Steenrod ax-
ioms, ?? addresses some basic computations, and Section 5.7 proves the equivalence between sim-
plicial and singular homology. References for singular homology include [Hat02; Lee10; May99].

5.1. Definitions
We define singular homology. Singular homology is difficult to compute, but singular homology

has nice theoretical properties which allows us to prove a host of properties about a homology theory.
It can be checked that simplicial homology and singular homology is coincide as we will do later
on. Hence, simplicial homology provides a computational tool to compute homology, and singular
homology provides a theoretical tool to study homology theoretically.

Definition 5.1.1. Let 𝑋 be a topological space. A singular 𝑛-simplex is a continuous map 𝜎 : Δ𝑛 →
𝑋 . The set of all such continuous maps is denoted as Hom(Δ𝑛, 𝑋).

Example 5.1.2. Since Δ0 is a point, a 0-simplex in 𝑋 is simply a point in 𝑋 . Since Δ1 is a closed
interval, a 1-simplex is a path in 𝑋 . Since Δ1 is a solid triangle, 2-simplex is the image of a solid
triangle.

Remark 5.1.3. The phrase ‘singular’ is used here to express the idea that 𝜎 need not be an embed-
ding or a homeomorphism but can have ‘singularities’ where its image does not look at all like a
simplex. All that is required is that 𝜎 be continuous.

We can express our constructions categorically. Consider the category Δ, whose objects are the
finite ordered sets

[𝑛] = {0 < 1 < · · · < 𝑛}

for each integer 𝑛 ≥ 0, and whose morphisms from [𝑛] to [𝑚] are given by strictly increasing
functions. The assignment of the 𝑛-simplex as a topological space defines a functor

Δ• : Δ −→ Top

that sends [𝑛] to Δ𝑛. A morphism 𝛼 : [𝑛] → [𝑚] in Δ is sent to the continuous injection

Δ𝑛 → Δ𝑚

(𝑡0, . . . , 𝑡𝑛) ↦→ (𝑠0, . . . , 𝑠𝑚),

96
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where 𝑠𝛼(𝑖) = 𝑡𝑖 for each 𝑖 = 0, . . . , 𝑛, and the remaining coordinates are set to zero. For example,
the inclusion [𝑛 − 1] → [𝑛] which skips the 𝑖-th entry induces the face inclusion

𝑑𝑛𝑖 : Δ𝑛−1 → Δ𝑛,

(𝑡0, . . . , 𝑡𝑛−1) ↦→ (𝑡0, . . . , 𝑡𝑖−1, 0, 𝑡𝑖 , . . . , 𝑡𝑛−1),
Note that we obtain the sets Hom(Δ𝑛, 𝑋) by considering continuous maps Δ𝑛 → 𝑋 , and we have a
collection of functions

𝑑
𝑛

𝑖 : Hom(Δ𝑛, 𝑋) → Hom(Δ𝑛−1, 𝑋),
𝑓 ↦→ 𝑓 ◦ 𝑑𝑛𝑖 .

The construction of the sets Hom(Δ𝑛, 𝑋) and the maps between them is given by the composition
of functors

Sing•(𝑋) := Hom(Δ•(−), 𝑋) : Δ −→ Top −→ Setsop.

Note that the second functor is a contravariant functor. Such functors are known as simplicial sets.
In words, a semi-simplicial set is a contravariant functor

𝑋• : Δ→ Setop

that consists of a collection of sets {𝑋𝑛}𝑛≥0, where each 𝑋𝑛 is called the set of 𝑛-simplices. Each
strictly order-preserving injection [𝑛] → [𝑚] in Δ induces a function 𝑓𝑛,𝑚 : 𝑋𝑚 → 𝑋𝑛.

Remark 5.1.4. Since every morphism in Δ can be written as a composition of elementary injections
of the form 𝑑𝑛𝑖 : [𝑛 − 1] → [𝑛], it suffices to specify the effect of each such 𝑑𝑛𝑖 . The functor 𝑋•
assigns to each such injection a function 𝑑𝑛𝑖 : 𝑋𝑛 → 𝑋𝑛−1.

The data of a semi-simplicial set can be encoded in a category.

Definition 5.1.5. The category ssSet consists of semi-simplicial sets, whose objects are contravari-
ant functors from 𝑋• : Δ→ Set, and a morphism 𝑓• : 𝑋• → 𝑌• of semi-simplicial sets is a collection
of functions 𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛 for each 𝑛 ≥ 0, such that for all 𝑛 ≥ 1 and 0 ≤ 𝑖 ≤ 𝑛, the following
compatibility condition holds:

𝑑
𝑛

𝑖 ◦ 𝑓𝑛 = 𝑓𝑛−1 ◦ 𝑑𝑛−1
𝑖 .

Our construction can be summarized by noting that there exists a singular semi-simplicial set
functor

Sing• : Top −→ ssSet,
𝑋 ↦→ Sing•(𝑋).

Sing• is defined as a composition of functors:

Top→ Func(Top, Setsop) → Func(Δ, Setsop)
𝑋 ↦→ Hom(−, 𝑋) ↦→ Δ∗• ◦Hom(−, 𝑋)

Here Δ∗• ◦ Hom(−, 𝑋) is the functor that maps 𝑛 to Hom(Δ𝑛, 𝑋). Singular homology studies a
topological space by probing it through Z-linear combination of singular simplices.

Definition 5.1.6. Let 𝑋 be a topological space. The group of 𝑛-chains, 𝐶𝑛 (𝑋), is the free abelian
group with basis the set of singular 𝑛-simplices in 𝑋:

𝐶𝑛 (𝑋) := Z[Hom(Δ𝑛, 𝑋)]
{
𝑛∑
𝑖=0

𝑛𝑖𝜎𝑖 : 𝑛𝑖 ∈ Z, 𝜎𝑖 : Δ𝑛 → 𝑋 continuous

}
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where each formal sum
∑𝑛
𝑖=0 𝑛𝑖𝜎𝑖 is finite, i.e., all but finitely many 𝑛𝑖 are zero. The 𝑛-th boundary

map
𝜕𝑛 : 𝐶𝑛 (𝑋) → 𝐶𝑛−1(𝑋)

is defined on the basis of 𝐶𝑛 (𝑋) by the formula

𝜕𝑛 (𝜎) =
𝑛∑
𝑖=0
(−1)𝑖𝜎 ◦ 𝑑𝑛𝑖

Remark 5.1.7. What is the meaning of the expression 𝜎 ◦ 𝑑𝑛𝑖 ? Note that the image 𝑑𝑖 (Δ𝑛−1) ⊆ Δ𝑛

can be identified with the the 𝑖-th face of Δ𝑛. Hence, if 𝜎 : Δ𝑛 → 𝑋 is a singular 𝑛-simplex in 𝑋 ,
then the composition 𝜎 ◦ 𝑑𝑛𝑖 restricts 𝜎 to its 𝑖-th face. For the most part, however, we shall use the
notation 𝜎 | [𝑣0,...,𝑣𝑖 ,...,𝑣𝑛 ] to refer to the map 𝜎 ◦ 𝑑𝑛𝑖 .

Lemma 5.1.8. Let 𝑋 be a topological space. The composition

𝜕𝑛−1 ◦ 𝜕𝑛 : 𝐶𝑛 (𝑋)
𝜕𝑛−−→ 𝐶𝑛−1(𝑋)

𝜕𝑛−1−−−−→ 𝐶𝑛−2(𝑋)
is the zero map.

PROOF. The crucial observation about the maps 𝑑𝑖’s we need is that for every 𝑛 ≥ 2 and every
0 ≤ 𝑗 < 𝑖 ≤ 𝑛, we have:

𝑑𝑛𝑖 ◦ 𝑑𝑛−1
𝑗 = 𝑑𝑛𝑗 ◦ 𝑑𝑛−1

𝑖−1 : Δ𝑛−2 → Δ𝑛

Indeed, it is easy to verify that both maps are given by

(𝑡0, 𝑡1, . . . , 𝑡𝑛−2) ↦→ (𝑡0, . . . , 𝑡 𝑗−1, 0, 𝑡 𝑗 , . . . , 𝑡𝑖−1, 0, 𝑡𝑖 , . . . , 𝑡𝑛−2)
Note that

𝜕𝑛−1 ◦ 𝜕𝑛 (𝜎) =
𝑛−1∑
𝑗=0

𝑛∑
𝑖=0
(−1)𝑖+ 𝑗𝜎 ◦ 𝑑𝑛𝑖 ◦ 𝑑𝑛−1

𝑗

=
𝑛−1∑
𝑗=0

𝑗∑
𝑖=0
(−1)𝑖+ 𝑗𝑑𝑛𝑖 ◦ 𝑑𝑛−1

𝑗 +
𝑛−1∑
𝑗=0

𝑛∑
𝑖= 𝑗+1
(−1)𝑖+ 𝑗𝑑𝑛𝑖 ◦ 𝑑𝑛−1

𝑗

=
𝑛−1∑
𝑗=0

𝑗∑
𝑖=0
(−1)𝑖+ 𝑗𝑑𝑛𝑖 ◦ 𝑑𝑛−1

𝑗 +
𝑛−1∑
𝑗=0

𝑛∑
𝑖= 𝑗+1
(−1)𝑖+ 𝑗𝑑𝑛𝑗 ◦ 𝑑𝑛−1

𝑖−1

=
𝑛−1∑
𝑗=0

𝑗∑
𝑖=0
(−1)𝑖+ 𝑗𝑑𝑛𝑖 ◦ 𝑑𝑛−1

𝑗 +
𝑛−1∑
𝑗=0

𝑛−1∑
𝑖= 𝑗

(−1)𝑖+ 𝑗+1𝑑𝑛𝑗 ◦ 𝑑𝑛−1
𝑖

=
𝑛−1∑
𝑗=0

𝑗∑
𝑖=0
(−1)𝑖+ 𝑗𝑑𝑛𝑖 ◦ 𝑑𝑛−1

𝑗 −
𝑛−1∑
𝑗=0

𝑛−1∑
𝑖= 𝑗

(−1)𝑖+ 𝑗𝑑𝑛𝑗 ◦ 𝑑𝑛−1
𝑖

The second last equality follows by a shift of the inner summation index in the second nested sum.
If we now interchange the roles of 𝑖 and 𝑗 in the second sum, the two nested sums cancel. □

Remark 5.1.9. In what follows, we shall write the boundary operator as

𝜕𝑛 (𝜎) =
𝑛∑
𝑖=0
(−1)𝑖𝜎 | [𝑣0,...,𝑣𝑖 ,...,𝑣𝑛 ]

Note that:
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∑
𝑗<𝑖

(−1)𝑖 (−1) 𝑗𝜎 | [𝑣0, · · · ,𝑣 𝑗 , · · · ,𝑣𝑖 , · · · ,𝑣𝑛 ] +
∑
𝑗>𝑖

(−1)𝑖 (−1) 𝑗−1𝜎 | [𝑣0, · · · ,𝑣𝑖 , · · · ,𝑣 𝑗 , · · · ,𝑣𝑛 ]= 0.

The latter two summations cancel since after switching 𝑖 and 𝑗 in the second sum, it becomes the
negative of the first.

The discussion above can be summarized as extracting a chain complex 𝐶•(𝑋) from the semi-
simplicial set Sing•(𝑋). Therefore, the procedure described above can be viewed as being defined
as a functor:

Top→ ssSet→ ChainAb.

We will discuss the second functor in more detail in Proposition 5.1.11. Purely algebraically, we
have a sequence of homomorphisms of abelian groups:

· · · 𝐶𝑛 (𝑋) 𝐶𝑛−1(𝑋) 𝐶𝑛−2(𝑋) · · ·𝜕𝑛+1 𝜕𝑛 𝜕𝑛−1 𝜕𝑛−2

The boundary map 𝜕𝑛 : 𝐶𝑛 (𝑋) −→ 𝐶 (𝑋)𝑛−1 is such that
𝜕𝑛 ◦ 𝜕𝑛+1 = 0

That is:
im(𝜕𝑛+1) ⊆ ker(𝜕𝑛)

A sequence (𝐶𝑛 (𝑋), 𝜕𝑛)𝑛∈N satisfying these properties is is called a singular chain complex. Ele-
ments of ker(𝜕𝑛) are called (singular) 𝑛-cycles and elements of im(𝜕𝑛+1) are called (singular) 𝑛-
boundaries.

Definition 5.1.10. Let 𝑋 be a topological space. The 𝑛-th homology of the chain complex (𝐶𝑛 (𝑋), 𝜕𝑛)𝑛∈N
is

𝐻𝑛 (𝑋;Z) = ker(𝜕𝑛)
im(𝜕𝑛+1)

𝐻𝑛 (𝑋) is called the 𝑛-th singular homology group of 𝑋 with Z coefficients.

Why all the fuss about singular homology? Singular homology defines a functor from Top to
Ab. Thus, singular homology yields an invariant that can distinguish spaces. More importantly,
it provides a systematic and general way to study topological spaces using algebraic methods. Un-
like simplicial homology, which require specific decompositions, singular homology applies to all
topological spaces, making it a powerful and flexible theoretical tool in algebraic topology.

Proposition 5.1.11. For each 𝑛 ≥ 0,
𝐻𝑛 : Top→ Ab

is a covariant functor for each 𝑛 ≥ 0.

PROOF. 𝐻𝑛 can be described as the composite functor:

Top ssSet ChainAb Ab

𝐻𝑛

Sing• Z(−) 𝐻𝑛

We already know that Sing• is a covariant functor. The last functor is the homology functor which
computes the 𝑛-th homology of a chain complex of abelian groups. We already know from Propo-
sition 4.2.15 that this functor is covariant. Hence, it suffices to prove that the middle functor is
also covariant. Our construction of the chain complex 𝐶•(𝑋) from Sing•(𝑋) can be understood as
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arising from this middle functor. This functor extends naturally to any semi-simplicial set. Given a
semi-simplicial set 𝑋•, we define

Z(𝑋•)𝑛 := Z[𝑋𝑛],
the free abelian group generated by the set 𝑋𝑛. We equip this graded group with a differential given
in terms of the face maps by the formula

𝑑 : Z[𝑋𝑛] −→ Z[𝑋𝑛−1]
defined on a generator 𝑥 ∈ 𝑋𝑛 by

𝑑 (𝑥) =
𝑛∑
𝑖=0
(−1)𝑖 𝑓 𝑖𝑛−1,𝑛.

Here, 𝑓 𝑖𝑛−1,𝑛 denotes the map 𝑋𝑛 → 𝑋𝑛−1 induced by the standard injection [𝑛 − 1] → [𝑛]. For a
morphism 𝑓• : 𝑋• → 𝑌• of semi-simplicial sets, the induced chain map

Z( 𝑓•)𝑛 : Z[𝑋𝑛] → Z[𝑌𝑛]
is defined on generators by sending 𝑥 ∈ 𝑋𝑛 to 𝑓𝑛 (𝑥) ∈ 𝑌𝑛, extended linearly. This is a chain map as
can be easily verified. It can also be easily verified that Z preserves identities and composition. This
proves that the middle map

Z(−) : ssSet −→ ChainAb,

𝑋• ↦→ Z(𝑋•)
is a functor. This proves the claim. □

Remark 5.1.12. We can collect all the functors in Proposition 5.1.11 to define a single homology
functor

𝐻∗ : Top→ GrAb,
where GrAb is the category of graded abelian groups. This functor takes a topological space 𝑋 and
maps it to the graded abelian group

𝐻∗(𝑋) =
⊕
𝑛≥0

𝐻𝑛 (𝑋).

Calculation with singular homology is difficult because each𝐶𝑛 is generally a free abelian group
on uncountably many generators! Eventually, however, we will show that simplicial homology and
singular homology are isomorphic.

Remark 5.1.13. Wewill also introduce cellular homology which is isomorphic to singular homology
and is amenable to computation.

Here is a trivial computation:

Example 5.1.14. (Singular Homology of a Point) If 𝑋 is a single point, then there is exactly one
map Δ𝑛 → 𝑋 , and it is continuous, so 𝐶𝑛 (𝑋) = Z for all 𝑛. Moreover,

𝜕𝑛 (𝜎𝑛) =
𝑛−1∑
𝑖=0
(−1)𝑖𝜎𝑛−1 =

{
0 for 𝑛 odd
𝜎𝑛−1 for 𝑛 even

We end up with:

· · · �−→ Z 0−→ Z �−→ Z 0−→ Z→ 0
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Thus, we can quotient out to get the homology:

𝐻𝑛 (𝑋;Z) �
{
Z for 𝑛 = 0
0 for 𝑛 ≥ 1

On the other hand, singular homology ismuch nicer theoretically, becausewe don’t have toworry
about choosing a Δ-complex structure, so it provides a convenient tool to prove various properties
about a homology theory. For instance:

Proposition 5.1.15. Let 𝑋 be a topological space.
(1) Let (𝑋𝛼)𝛼∈𝐴 are the path-connected components of 𝑋 . Then,

𝐻𝑛 (𝑋;Z) �
⊕
𝛼∈𝐴

𝐻𝑛 (𝑋𝛼;Z)

(2) (0-th Singular Homology Groups) If 𝑋 is non-empty and path-connected, then𝐻0(𝑋) � Z.
Hence, for any space 𝑋 , 𝐻0(𝑋;Z) is a direct sum of Z’s, one for each path-component of
𝑋 .

PROOF. The proof is given below:
(1) Since Δ𝑛 is path-connected, and an 𝑛-simplex 𝜎 : Δ𝑛 → 𝑋 is a continuous map, we have

that im(𝜎) ⊆ 𝑋𝛼 for some 𝛼. Therefore, we get a decomposition:

𝐶𝑛 (𝑋) �
⊕
𝛼

𝐶𝑛 (𝑋𝛼).

The boundary maps preserve this decomposition, i.e., 𝜕𝑛 (𝐶𝑛 (𝑋𝛼)) ⊆ 𝐶𝑛−1(𝑋𝛼). Hence
ker(𝜕𝑛) and im(𝜕𝑛+1) split similarly as direct sums, and the result follows.

(2) By definition, 𝐻0(𝑋;Z) = 𝐶0(𝑋)/im 𝜕1. Define a homomorphism

𝜀 : 𝐶0(𝑋) → Z
𝑛∑
𝑖=0

𝑛𝑖𝜎𝑖 ↦→
𝑛∑
𝑖=0

𝑛𝑖

This is obviously surjective if 𝑋 is non-empty. We claim that ker 𝜀 = im 𝜕1 if 𝑋 is path-
connected. Observe first that im 𝜕1 ⊆ ker 𝜀 since for a singular 1-simplex 𝜎 : Δ1 → 𝑋 ,
we have

𝜀𝜕1(𝜎) = 𝜀(𝜎
��
[𝑣1 ] − 𝜎

��
[𝑣0 ]) = 1 − 1 = 0

For the reverse inclusion, ker 𝜀 ⊆ im 𝜕1, suppose 𝜀
(∑𝑛

𝑖=0 𝑛𝑖𝜎𝑖
)
= 0, so

∑𝑛
𝑖=0 𝑛𝑖 = 0. The

𝜎𝑖’s are singular 0-simplices, which are simply points of 𝑋 . Choose a path 𝜏𝑖 : 𝐼 → 𝑋
from a basepoint, 𝑥0, to 𝜎𝑖 (𝑣0), and let 𝜎0 be the singular 0-simplex with image 𝑥0. We can
view 𝜏𝑖 as a singular 1-simplex, a map 𝜏𝑖 : [𝑣0, 𝑣1] → 𝑋 , and then we have 𝜕𝜏𝑖 = 𝜎𝑖 − 𝜎0.
Hence,

𝜕

(
𝑛∑
𝑖=0

𝑛𝑖𝜏𝑖

)
=

𝑛∑
𝑖=0

𝑛𝑖𝜎𝑖 −
𝑛∑
𝑖=0

𝑛𝑖𝜎0 =
𝑛∑
𝑖=0

𝑛𝑖𝜎𝑖 ,

since
∑𝑛
𝑖=0 𝑛𝑖 = 0. Thus,

∑𝑛
𝑖=0 𝑛𝑖𝜎𝑖 is a boundary, which shows that ker 𝜀 ⊆ im 𝜕1. Hence,

𝜀 induces an isomorphism 𝐻0(𝑋;Z) � Z.
This completes the proof. □
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It is often very convenient to have a slightly modified version of homology for which a point
has trivial homology groups in all dimensions, including zero. This is done by defining the reduced
homology groups, 𝐻𝑛 (𝑋). Let {∗} ∈ 𝑋 be a one-point space. There is a unique map 𝑋 → {∗}.
Moreover, a map {∗} → 𝑋 assigns a basepoint, 𝑥0, to 𝑋 . Since the composition

{∗} 𝑥0−−→ 𝑋 −→ {∗}
is the identity, for each 𝑛 ≥ 0 the induced maps on homology satisfy

𝐻𝑛 ({∗}) 𝐻𝑛 (𝑋) 𝐻𝑛 ({∗})
𝐻𝑛 (𝑥0 )

also compose to the identity. Hence, 𝐻𝑛 ({∗}) is an abelian subgroup of 𝐻𝑛 (𝑋) for each 𝑥0 ∈ 𝑋 . For
each 𝑛 ≥ 0, we define the reduced homology to be

𝐻𝑛 (𝑋) =
𝐻𝑛 (𝑋)
𝐻𝑛 ({∗})

By Example 5.1.14, we have

𝐻𝑛 (𝑋) =
{
𝐻𝑛 (𝑥)/Z 𝑛 = 0
𝐻𝑛 (𝑋) 𝑛 > 0

Note that we have 𝐻0(𝑋) � 𝐻0(𝑋) ⊕ Z because 𝐻0(𝑋) is a free Z-module.

5.2. Eilenberg-Steenrod Axioms
We have met two homology theories: simplicial homology and singular homology. Later on,

we will discuss cellular homology. In fact, there are many other homology theories in mathematics.
Eilenberg and Steenrod united the different homology theories by laying out a set of axioms that all
homology theories satisfy.

Definition 5.2.1. (Eilenberg-Steenrod Axioms) A homology theory with Z coefficients consists of
(1) A family of functors 𝐻𝑛 : Top2 → Ab for 𝑛 ≥ 0, and
(2) A family of natural transformations

𝛿𝑛 : 𝐻𝑛 → 𝐻𝑛−1 ◦ 𝑝
where 𝑝 is the functor sending (𝑋, 𝐴) to (𝐴,∅) and 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) to 𝑓 |𝐴 : (𝐴,∅) →
(𝐵,∅).

such that the following axioms are satisfied:
(a) (Homotopy invariance) If 𝑓 , 𝑔 : (𝑋, 𝐴) → (𝑌, 𝐵) are homotopic maps, then the induced

maps
𝐻𝑛 ( 𝑓 ), 𝐻𝑛 (𝑔) : 𝐻𝑛 (𝑋, 𝐴;Z) → 𝐻𝑛 (𝑌, 𝐵;Z)

are such that 𝐻𝑛 ( 𝑓 ) = 𝐻𝑛 (𝑔) for 𝑛 ≥ 0¹.
(b) (Long exact sequence) The inclusions

(𝐴, ∅) ↩→ (𝑋, ∅) ↩→ (𝑋, 𝐴)
give rise to a long exact sequence

· · · 𝐻𝑛+1(𝑋;Z) 𝐻𝑛+1(𝑋, 𝐴;Z) 𝐻𝑛 (𝐴;Z) 𝐻𝑛 (𝑋;Z) · · ·𝛿𝑛+1

¹In other words, 𝐻𝑛 may be regarded as a functor from hTop to Ab.
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(c) (Excision) If 𝑍 ⊆ 𝐴 ⊆ 𝑋 are topological spaces such that 𝑍 ⊆ Int(𝐴), the inclusion of
pairs (𝑋 \ 𝑍, 𝐴 \ 𝑍) ⊆ (𝑋, 𝐴) induces isomorphisms

𝐻𝑛 (𝑋 \ 𝑍, 𝐴 \ 𝑍;Z) → 𝐻𝑛 (𝑋, 𝐴;Z)
for all 𝑛 ≥ 0.

(d) (Additivity) If 𝑋 =
∐
𝛼 𝑋𝛼 is the disjoint union of a family of topological spaces 𝑋𝛼, then

𝐻𝑛 (𝑋;Z) =
⊕
𝛼

𝐻𝑛 (𝑋𝛼;Z)

for each 𝑛 ∈ N.
Additionally, if a homology theory satisfies the following additional axiom

(e) (Dimension Axiom) For any one-point set 𝑋 = {•},

𝐻𝑛 (𝑋;Z) =
{
Z if 𝑛 = 0
0 otherwise,

the the homology theory is called an ordinary homology theory with Z coefficients.

5.2.1. Relative Homology. We introduce the notion of relative homology functors to make
sense of the family of functors in Definition 5.2.1:

𝐻𝑛 : Top2 → Ab
Given (𝑋, 𝐴) ∈ Top2, we have 𝐶𝑛 (𝐴) ⊆ 𝐶𝑛 (𝑋) such that 𝜕𝑛 restricts to a map from 𝐶𝑛 (𝐴) to
𝐶𝑛−1(𝐴). Therefore, we can consider a chain complex (𝐶•(𝐴), 𝜕• |𝐴) which is a sub-complex ² of
the chain complex (𝐶•, 𝜕•) The chain complex (𝐶•(𝐴), 𝜕• |𝐴) is usually drawn as:

· · · 𝐶2(𝐴) 𝐶1(𝐴) 𝐶0(𝐴)
𝜕2 |𝐴 𝜕1 |𝐴

Note that 𝐶𝑛 (𝐴) is an abelian subgroup of 𝐶𝑛 (𝑋). Hence, we e can consider quotient group

𝐶𝑛 (𝑋, 𝐴) =
𝐶𝑛 (𝑋)
𝐶𝑛 (𝐴)

Since the boundary map
𝜕𝑛 : 𝐶𝑛 (𝑋) → 𝐶𝑛−1(𝑋)

takes 𝐶𝑛 (𝐴) to 𝐶𝑛−1(𝐴), it induces a quotient boundary map

𝜕𝑛 : 𝐶𝑛 (𝑋, 𝐴) → 𝐶𝑛−1(𝑋, 𝐴)
Since 𝜕𝑛+1 ◦ 𝜕𝑛 = 0 on 𝐶𝑛 (𝑋), we have that 𝜕𝑛+1 ◦ 𝜕𝑛 = 0 on 𝐶𝑛 (𝑋, 𝐴). Therefore, we get a chain
complex (𝐶•(𝑋, 𝐴), 𝜕•) The chain complex is usually drawn as:

· · · 𝐶2(𝑋, 𝐴) 𝐶1(𝑋, 𝐴) 𝐶0(𝑋, 𝐴)
𝜕2 𝜕1

The above discussion implies that the construction of relative singular chain complexes defines a
functor from Top2 to ChainAb.

Definition 5.2.2. Let (𝑋, 𝐴) ∈ Top2. The 𝑛-th relative homology groupwithZ coefficients,𝐻𝑛 (𝑋, 𝐴),
is the 𝑛-th homology group of the chain complex (𝐶•(𝑋, 𝐴), 𝜕•). That is:

𝐻𝑛 (𝑋, 𝐴;Z) = Ker 𝜕𝑛
Im 𝜕𝑛+1

²Given a chain complex (𝐶•, 𝜕•), a subcomplex of (𝐶•, 𝜕•) is given by a family of subgroups 𝐶′𝑛 ⊆ 𝐶𝑛 such that the
boundary operator 𝜕′𝑛 : 𝐶𝑛 → 𝐶𝑛−1 restricts to a homomorphism 𝐶′𝑛 → 𝐶′𝑛−1 for all 𝑛.
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Remark 5.2.3. It is clear that the 𝑛-th relative homology group with Z coefficients defines a functor
from Top2 to Ab.

Remark 5.2.4. Since the homology of the empty set is trivial for all 𝑛 ≥ 0, we have:
𝐻𝑛 (𝑋, ∅;Z) = 𝐻𝑛 (𝑋;Z)

for each 𝑛 ≥ 0. Similarly, we have
𝐻𝑛 (𝑋, 𝑋;Z) = 0

for each 𝑛 ≥ 0.

By considering the definition of the relative boundary map we see that:
(1) Elements of 𝐻𝑛 (𝑋, 𝐴;Z) are represented by relative 𝑛-cycles: 𝑛-chains 𝛼 ∈ 𝐶𝑛 (𝑋) such

that 𝜕𝑛 (𝛼) ∈ 𝐶𝑛−1(𝐴).
(2) A relative 𝑛-cycle, 𝛼, is trivial in𝐻𝑛 (𝑋, 𝐴;Z) iff it is a relative 𝑛-boundary: 𝛼 = 𝜕𝑛+1(𝛽)+𝛾

for some 𝛽 ∈ 𝐶𝑛+1(𝑋) and 𝛾 ∈ 𝐶𝑛 (𝐴).
5.2.2. Long Exact Sequence in Singular Homology. We now prove that singular homology

satisfies the long exact sequence axiom. The importance of the long exact sequence axiom is that is
allows us to compute homology groups of various spaces in using an ‘inductive’ and/or ‘bottom-up’
approach, as we shall see in various examples later on. We have a short exact sequence of chain
complexes:

0• −→ (𝐶•(𝐴), 𝜕• |𝐴)
𝑖•−→ (𝐶•, 𝜕•)

𝑗•−→ (𝐶•(𝑋, 𝐴), 𝜕•) −→ 0•
By Proposition 4.6.7, we have the following long exact sequence is homology associated to the pair
of spaces (𝑋, 𝐴):

· · · 𝐻𝑛+1(𝑋;Z) 𝐻𝑛+1(𝑋, 𝐴;Z) 𝐻𝑛 (𝐴) 𝐻𝑛 (𝑋;Z) · · ·𝛿𝑛+1

By Proposition 4.6.7, the boundary map 𝛿𝑛 : 𝐻𝑛 (𝑋, 𝐴;Z) → 𝐻𝑛−1(𝐴;Z) has a very simple
description: if a class [𝛼] ∈ 𝐻𝑛 (𝑋, 𝐴;Z) is represented by a relative cycle 𝛼, then 𝛿𝑛 [𝛼] is the class
of the cycle 𝛿𝑛𝛼 in 𝐻𝑛−1(𝐴;Z).
Remark 5.2.5. An easy generalization of the long exact sequence of a pair (𝑋, 𝐴) is the long exact
sequence of a triple (𝑋, 𝐴, 𝐵) ∈ Top3. Indeed, we have (𝑋, 𝐴), (𝑋, 𝐵), (𝐴, 𝐵) ∈ Top2. The three
long exact sequences assemble in the following diagram:

𝐻𝑛+2(𝑋;Z) 𝐻𝑛+2(𝑋, 𝐴;Z) 𝐻𝑛+1(𝐴, 𝐵;Z) 𝐻𝑛 (𝐵;Z)

𝐻𝑛+2(𝑋, 𝐵;Z) 𝐻𝑛+1(𝐴;Z) 𝐻𝑛+1(𝑋, 𝐵;Z)

𝐻𝑛+2(𝐴, 𝐵;Z) 𝐻𝑛+1(𝐵;Z) 𝐻𝑛+1(𝑋;Z) 𝐻𝑛+1(𝑋, 𝐴;Z)

𝑔1

𝑓1 𝑔2

𝑗4

𝑓2 𝑔3

𝑗3 𝑓5

𝑗1

𝑗2

𝑓3

𝑓4

𝑔4

The braid lemma (Proposition 4.6.4) implies that the chain complex labeled with ⇒ arrows is a
chain complex. This is the desired long exact sequence in homology generated by (𝑋, 𝐴, 𝐵).

We have demonstrated the existence of homology functors and the long exact sequence in ho-
mology within this section. In Example 5.1.14, we have already verified that singular homology
with coefficients in Z satisfies the dimension axiom. Furthermore, an argument analogous to that in
Proposition 5.1.15(a) establishes that singular homology also satisfies the additivity axiom. The goal
of the remainder of this section is to prove that singular homology satisfies the homotopy invariance
and excision axioms. Consequently, singular homology defines an ordinary homology theory.
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The image is taken from [Alu21].

5.3. Homotopy Invariance of Singular Homology
We establish that singular homology groups satisfy the homotopy invariance axiom. To this end,

we begin with the non-relative case. Recall from Proposition 5.1.11 that for each 𝑛 ≥ 0, the singular
homology group 𝐻𝑛 defines a functor from the category Top of topological spaces to the category
Ab of abelian groups. The homotopy invariance axioms amounts to the claim that 𝐻𝑛 factors as
follows:

Top hTop

Ab
𝐻𝑛

𝛾

𝐻𝑛

Here, 𝛾 : Top → hTop is the canonical projection functor that identifies homotopic maps. We we
will make use of the notion of a chain homotopy between chain complexes as introduced in ??.
Remark 5.3.1. What is the geometric interpretation of a chain homotopy? Let ℎ : 𝑋 × 𝐼 → 𝑌 be
a homotopy between two continuous maps 𝑓 , 𝑔 : 𝑋 → 𝑌 . Consider a 1-chain 𝑎 ∈ 𝐶1(𝑋). Then
𝑓∗(𝑎) and 𝑔∗(𝑎) are 1-chains in 𝑌 . The homotopy ℎ interpolates between 𝑓 and 𝑔, and thus maps
the endpoints of 𝑓∗(𝑎) to those of 𝑔∗(𝑎). To understand this, consider the boundary of the image of
𝑎 under ℎ, as depicted in Figure 1. Traversing the boundary of ℎ∗(𝑎) counterclockwise starting at
the bottom right, we observe:

𝜕2ℎ∗(𝑎) = 𝑔∗(𝑎) − 𝛿+ − 𝑓∗(𝑎) + 𝛿−,
where 𝛿+ and 𝛿− correspond to the images under ℎ of the endpoints of 𝑎. The difference 𝛿+ − 𝛿−
precisely equals ℎ∗(𝜕1𝑎). Therefore, we obtain:

𝜕2ℎ∗(𝑎) = 𝑔∗(𝑎) − 𝑓∗(𝑎) − ℎ∗(𝜕1𝑎).
This expression illustrates that a chain homotopy mirrors the notion of a homotopy between maps at
the level of chain complexes.

For each 𝑛 ≥ 0, recall that the functor 𝐻𝑛 is given as the composite functor:

Top ssSet ChainAb Ab

𝐻𝑛

𝑆•

Sing• Z(−)
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It suffices to show that the functor 𝑆• is homotopy invariant, since we already know from ?? that the
functor ChainAb → Ab descends to a well-defined functor

hChainAb → Ab.
In other words, it suffices to show that if 𝑓 , 𝑔 : 𝑋 → 𝑌 are homotopic continuous maps, then the
induced chain maps 𝑓∗, 𝑔∗ : 𝐶•(𝑋) → 𝐶•(𝑌 ) are chain homotopic; that is, there exists a chain homo-
topy between them. A homotopy 𝐻 : 𝑋 × 𝐼 → 𝑌 between maps 𝑓 , 𝑔 : 𝑋 → 𝑌 determines the data
given in the following diagram:

𝑋 × {0}

𝑋 × 𝐼 𝑌

𝑋 × {1}

𝑖0

𝑓

𝐻

𝑖1

𝑔

Since 𝑆• : Top→ ChainAb is a functor, applying it to the diagram yields the following equalities at
the level of chain complexes:

𝑆•( 𝑓 ) = 𝑆•(𝐻) ◦ 𝑆•(𝑖0),
𝑆•(𝑔) = 𝑆•(𝐻) ◦ 𝑆•(𝑖1).

Since composing a chain homotopy with a chain map³ yields a chain homotopy it suffices to prove
that the maps

𝑆•(𝑖0), 𝑆•(𝑖1) : 𝐶•(𝑋) → 𝐶•(𝑋 × 𝐼)
are chain homotopic. Thus, we need to construct a chain homotopy whose components

𝐶𝑛 (𝑋) → 𝐶𝑛+1(𝑋 × 𝐼)
are defined for each 𝑛 ≥ 0. Given a generator 𝜎 : Δ𝑛 → 𝑋 in 𝑆𝑛 (𝑋), it is natural to consider the map

𝜎 × Id : Δ𝑛 × 𝐼 → 𝑋 × 𝐼 .
Although Δ𝑛× 𝐼 is not itself an (𝑛+1)-simplex, we show that it can be expressed as a union of (𝑛+1)-
simplices. This decomposition allows us to define the desired map by assembling it piecewise on
these simplices. Let’s provide an intuition foe the this construction. In Δ𝑛 × 𝐼, let

Δ𝑛 × 0 = [𝑣0, . . . , 𝑣𝑛]
Δ𝑛 × 1 = [𝑤0, . . . , 𝑤𝑛]

where 𝑣𝑖 and 𝑤𝑖 have the same image under the projection Δ𝑛 × 𝐼 → Δ𝑛. We can pass from
[𝑣0, . . . , 𝑣𝑛] to [𝑤0, . . . , 𝑤𝑛] by interpolating a sequence of 𝑛 simplices, each obtained from the
preceding one by moving one vertex 𝑣𝑖 up to 𝑤𝑖 , starting with 𝑣𝑛 and working backwards to 𝑣0. For
instance,

[𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖+1, . . . , 𝑤𝑛]
moves up to

[𝑣0, . . . , 𝑣𝑖−1, 𝑤𝑖 , . . . , 𝑤𝑛]
The region between these two 𝑛 simplices is exactly the (𝑛 + 1) simplex

[𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑛]
Lemma 5.3.2. Δ𝑛 × 𝐼 is the union of 𝑛 + 1 copies of Δ𝑛+1.
³This is clear.
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PROOF. For 𝑖 = −1, 0, . . . , 𝑛 − 1, let 𝑔𝑖 : Δ𝑛 → 𝐼 denote the map

𝑔𝑖 (𝑠0, 𝑠1, . . . , 𝑠𝑛) =
∑
𝑖< 𝑗

𝑠 𝑗 .

Let𝐺𝑖 ⊆ Δ𝑛× 𝐼 denote the graph of 𝑔𝑖 . Then𝐺𝑖 is homeomorphic to Δ𝑛 via the projection Δ𝑛× 𝐼 →
Δ𝑛 surjective the first factor. Let us now label the vertices at the bottom (i.e., Δ𝑛 × {0}) of Δ𝑛 × 𝐼 by
𝑣0, 𝑣1, . . . , 𝑣𝑛 and those at the top (i.e., Δ𝑛 × {1}) by 𝑤0, 𝑤1, . . . , 𝑤𝑛. Then 𝐺𝑖 is the 𝑛-simplex

𝐺𝑖 = [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖+1, . . . , 𝑤𝑛] .

Since 𝐺𝑖 lies below 𝐺𝑖−1 as 𝑔𝑖 ≤ 𝑔𝑖−1, it follows that the region between 𝐺𝑖 and 𝐺𝑖−1 is the (𝑛 + 1)-
simplex [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑛]; this is indeed an (𝑛 + 1)-simplex as 𝑤𝑖 is not in 𝐺𝑖 and hence not
in the 𝑛-simplex [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑛]. Since

0 = 𝑔𝑛 ≤ 𝑔𝑛−1 ≤ . . . ≤ 𝑔0 ≤ 𝑔−1 = 1,

we see that Δ𝑛 × 𝐼 is the union of the regions between the 𝐺𝑖 , and hence the union of 𝑛 + 1 different
(𝑛 + 1)-simplices [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑛], each intersecting the next in an 𝑛-simplex face. □

We can now prove the desired result.

Proposition 5.3.3. (Homotopy Invariance) For each 𝑛 ≥ 0, the functor 𝐻𝑛 in Proposition 5.1.11
descends to a functor 𝐻𝑛 : hTop→ Ab.

Top hTop

Ab
𝐻𝑛

𝛾

𝐻𝑛

In other words, if 𝑋 and 𝑌 are topological spaces and 𝑓 , 𝑔 : 𝑋 → 𝑌 are homotopic maps, then

𝐻𝑛 ( 𝑓 ) = 𝐻𝑛 (𝑔) : 𝐻𝑛 (𝑋;Z) → 𝐻𝑛 (𝑌 ;Z)

for each 𝑛 ≥ 0.

PROOF. As noted above, it suffices to prove that

𝑆•(𝑖0), 𝑆•(𝑖1) : 𝐶•(𝑋) → 𝐶•(𝑋 × 𝐼)

are chain homotopic. Given a 𝜎 : Δ𝑛 → 𝑋 in 𝐶𝑛 (𝑋), we can consider the map:

𝜎 × Id : Δ𝑛 × 𝐼 → 𝑋 × 𝐼 → 𝑌

We can define prism operators 𝑃𝑛 : 𝐶𝑛 (𝑋) → 𝐶𝑛+1(𝑋 × 𝐼) by the following formula:

𝑃𝑛 (𝜎) =
𝑛+1∑
𝑖=0
(−1)𝑖 (𝜎 × Id) | [𝑣0, · · · ,𝑣𝑖 ,𝑤𝑖 , · · · ,𝑤𝑛 ] .

Note that 𝑃𝑛 (𝜎) ∈ 𝐶𝑛+1(𝑋 × 𝐼) since Lemma 5.3.2 shows that [𝑣0, . . . , 𝑣𝑖 , 𝑤𝑖 , . . . , 𝑤𝑛] is an (𝑛 +
1)-simplex contained in Δ𝑛 × 𝐼. The prism operator is our proposed chain homotopy. A simple
computation shows that we have

(𝑖1)𝑛 − (𝑖0)𝑛 = 𝜕′𝑛+1𝑃𝑛 + 𝑃𝑛−1𝜕𝑛
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Indeed:

𝜕′𝑛+1𝑃𝑛 (𝜎) =
∑
𝑗≤𝑖
(−1)𝑖 (−1) 𝑗 (𝜎 × Id) | [𝑣0,...,𝑣 𝑗 ,...,𝑣𝑖 ,𝑤𝑖 ,...,𝑤𝑛 ]

+
∑
𝑗≥𝑖
(−1)𝑖 (−1) 𝑗+1(𝜎 × Id) | [𝑣0,...,𝑣𝑖 ,𝑤𝑖 ,...,𝑤 𝑗 ,...,𝑤𝑛 ]

The terms with 𝑖 = 𝑗 in the two sums cancel except for

𝐹 ◦ (𝜎 × Id)
��
[ �̂�0,𝑤0,...,𝑤𝑛 ] = 𝜎 | [𝑤0,...,𝑤𝑛 ] = (𝑖1)𝑛 (𝜎),

−𝐹 ◦ (𝜎 × Id)
��
[𝑣0,...,𝑣𝑛 ,𝑤𝑛 ] = −𝜎 | [𝑣0,...,𝑣𝑛 ] = −(𝑖0)𝑛 (𝜎)

The terms with 𝑖 ≠ 𝑗 are exactly −𝑃𝑛−1𝜕𝑛 (𝜎). Hence, the maps {𝑃𝑛}𝑛≥0 define the desired chain
homotopy. □

Corollary 5.3.4. If 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence, then 𝐻𝑛 (𝑋;Z) � 𝐻𝑛 (𝑌 ;Z) for each
𝑛 ≥ 0. In particular, if 𝑋 is contractible, then 𝐻𝑛 (𝑋;Z) = 0 for each 𝑛 > 0.

PROOF. Let 𝑔 : 𝑌 → 𝑋 be a homotopy inverse of 𝑓 . Then 𝑔 ◦ 𝑓 ∼ Id𝑋 and 𝑓 ◦ 𝑔 ∼ Id𝑌 . By
Proposition 5.3.3, it follows that

𝐻𝑛 ( 𝑓 ) ◦ 𝐻𝑛 (𝑔) = Id𝐻𝑛 (𝑋;Z) ,

𝐻𝑛 (𝑔) ◦ 𝐻𝑛 ( 𝑓 ) = Id𝐻𝑛 (𝑌 ;Z) .

Hence, we conclude that
𝐻𝑛 (𝑋;Z) � 𝐻𝑛 (𝑌 ;Z).

for each 𝑛 ≥ 0. The second statement follows immediately from the first statement together along
with the fact that 𝐻𝑛 ({∗};Z) = 0 for all 𝑛 ≥ 1. □

Corollary 5.3.5. For each 𝑛 ≥ 0, the functor𝐻𝑛 : Top2 → Ab descends to a functor𝐻𝑛 : hTop2 →
Ab.

Top2 hTop2

Ab
𝐻𝑛

𝛾

𝐻𝑛

In other words, if (𝑋, 𝐴), (𝑌, 𝐵) ∈ Top2, and 𝑓 , 𝑔 : (𝑋, 𝐴) → (𝑌, 𝐵) are homotopic maps, then
𝐻𝑛 ( 𝑓 ) = 𝐻𝑛 (𝑔) : 𝐻𝑛 (𝑋, 𝐴;Z) → 𝐻𝑛 (𝑌, 𝐵;Z)

for each 𝑛 ≥ 0.

PROOF. It suffices to prove that

𝑆•(𝑖0), 𝑆•(𝑖1) : 𝐶•((𝑋, 𝐴)) → 𝐶•((𝑋 × 𝐼, (𝐴 × 𝐼)
are chain homotopic. Consider the chain homotopy constructed in Proposition 5.3.3. The prism
operator 𝑃𝑛 : 𝐶𝑛 (𝑋) → 𝐶𝑛+1(𝑋 × 𝐼) sends 𝐶𝑛 (𝐴) into 𝐶𝑛+1(𝐴 × 𝐼). Consequently, it induces a
chain homotopy between the quotient chain maps

𝐶•(𝑋 × {0})
𝐶•(𝐴 × {0})

→ 𝐶•(𝑋 × 𝐼)
𝐶•(𝐴 × 𝐼)

and
𝑆∗(𝑋 × {1})
𝑆∗(𝐴 × {1})

→ 𝑆∗(𝑋 × 𝐼)
𝑆∗(𝐴 × 𝐼)

.

The claim follows. □
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Remark 5.3.6. The operation defined in Lemma 5.3.2 as a special case of a chain map
× : 𝑆∗(𝑋) ⊗ 𝑆∗(𝑌 ) → 𝑆∗(𝑋 × 𝑌 ),

defined for any two topological spaces 𝑋 and 𝑌 , which is deifned such that

× : 𝑆𝑛 (𝑋) ⊗ 𝑆𝑚(𝑌 ) → 𝑆𝑛+𝑚(𝑋 × 𝑌 ),
for all 𝑛, 𝑚 ≥ 0. This construction will be discussed later and will prove useful for computing the
homology of the product space 𝑋 × 𝑌 in terms of the homology groups of 𝑋 and 𝑌 .

5.4. Excision in Singular Homology
We now establish that singular homology satisfies the excision axiom. Excision is a statement

that homology is “localizable.” Intuitively, it asserts that if 𝐴 ⊆ 𝑋 , and if the 𝑛-chains in question
lie “sufficiently deep” inside 𝐴, then removing a suitable subspace of 𝐴 does not alter the relative
homology groups 𝐻𝑛 (𝑋, 𝐴;Z). We now state the formal version of the excision property that we
aim to prove:

Proposition 5.4.1. Suppose 𝑍 ⊆ 𝐴 ⊆ 𝑋 are topological spaces such that 𝑍 ⊆ Int(𝐴). Then there
is an inclusion of the pair (𝑋 \ 𝑍, 𝐴 \ 𝑍) ⊆ (𝑋, 𝐴), and the induced map

𝐻𝑛 (𝑋 \ 𝑍, 𝐴 \ 𝑍;Z) → 𝐻𝑛 (𝑋, 𝐴;Z)
is an isomorphism for all 𝑛 ≥ 0. Equivalently, for subspaces 𝐴, 𝐵 ⊆ 𝑋 whose interiors cover 𝑋 , the
inclusion (𝐵, 𝐴 ∩ 𝐵) ↩→ (𝑋, 𝐴) induces isomorphisms

𝐻𝑛 (𝐵, 𝐴 ∩ 𝐵;Z) � 𝐻𝑛 (𝑋, 𝐴;Z)

Remark 5.4.2. To see that the two statements of the Excision Theorem are equivalent, just take
𝐵 = 𝑋 \ 𝑍 (or 𝑍 = 𝑋 \ 𝐵). Then 𝐴 ∩ 𝐵 = 𝐴 \ 𝑍 , and the condition 𝑍 ⊂ int(𝐴) is equivalent to
𝑋 = int(𝐴) ∪ int(𝐵).

To build some intuition, suppose that 𝑋 = int(𝐴) ∪ int(𝐵). In this setting, we might expect that
the relative homology group 𝐻𝑛 (𝑋, 𝐴) remains unaffected when we excise 𝐴, i.e., remove it from
consideration. This expectation is valid when all singular chains lie entirely within either 𝐴 or 𝐵.
However, complications arise when a chain does not lie completely within either 𝐴 or 𝐵. To address
this, we employ the technique of barycentric subdivision, which systematically replaces “large” sim-
plices with “smaller” ones that are sufficiently localized to lie within 𝐴 or 𝐵. This technique is also
called the locality principle.

Proposition 5.4.3. (Locality Principle) Let 𝑋 be a topological space, and let U = {𝑈 𝑗} be a
collection of subspaces of 𝑋 whose interiors form an open cover of 𝑋 . Consider the chain map
𝜄• : 𝐶U• (𝑋) ↩→ 𝐶•(𝑋) such that 𝑖𝑛 is the inclusion map for each 𝑛 ≥ 0. Then 𝑖• is a chain homotopy.

PROOF. The proof is lengthy. See [Hat02] for the the proof. □

We can now prove the excision theorem:

PROOF. (Proposition 5.4.1) Assume that 𝑋 = 𝐴 ∪ 𝐵. WLOG, assume that 𝐴 and 𝐵 are open sets.
We have

𝐶U𝑛 (𝑋) = 𝐶𝑛 (𝐴) + 𝐶𝑛 (𝐵),
𝐶𝑛 (𝐴 ∩ 𝐵) = 𝐶𝑛 (𝐴) ∩ 𝐶𝑛 (𝐵).
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Therefore, we have
𝐶𝑛 (𝐵)

𝐶𝑛 (𝐴 ∩ 𝐵)
=

𝐶𝑛 (𝐵)
𝐶𝑛 (𝐴) ∩ 𝐶𝑛 (𝐵)

�
𝐶𝑛 (𝐴) + 𝐶𝑛 (𝐵)

𝐶𝑛 (𝐴)
�
𝐶U𝑛 (𝑋)
𝐶𝑛 (𝐴)

All the maps appearing in the proof of ?? take chains in 𝐴 to chains in 𝐴. So these maps induce
quotient maps when we factor out chains in 𝐴 and the quotient maps satisfy all the corresponding
formulas in the proof of ??. There, ?? implies that the inclusion

𝐶U𝑛 (𝑋)/𝐶𝑛 (𝐴) ↩→ 𝐶𝑛 (𝑋)/𝐶𝑛 (𝐴)
induces an isomorphism on homology. Since

𝐶U𝑛 (𝑋)/𝐶𝑛 (𝐴) =
𝐶𝑛 (𝐵)

𝐶𝑛 (𝐴 ∩ 𝐵)
,

we have that
𝐻𝑛 (𝐵, 𝐴 ∩ 𝐵;Z) � 𝐻𝑛 (𝑋, 𝐴;Z)

for each 𝑛 ≥ 0. This completes the proof. □

The case of an open cover U = {𝐴, 𝐵} consisting of two subsets gives rise to an alternative
formulation of the excision principle, known as the Mayer–Vietoris sequence. This is a long exact
sequence in homology that provides a powerful computational tool, especially in inductive argu-
ments. Specifically, if a homological property is known to hold for 𝐴, 𝐵, and their intersection
𝐴 ∩ 𝐵, the Mayer–Vietoris sequence can be used to deduce that the same property holds for the
union 𝐴 ∪ 𝐵.⁴
Proposition 5.4.4. (Mayer-Vietoris Sequence) Let 𝐴, 𝐵 ⊆ 𝑋 be open sets such that 𝑋 = 𝐴∪ 𝐵. Let

𝑖𝐴 : 𝐴 ↩→ 𝑋,

𝑖𝐵 : 𝐵 ↩→ 𝑋,

𝑗𝐴 : 𝐴 ∩ 𝐵→ 𝐴,

𝑗𝐵 : 𝐴 ∩ 𝐵→ 𝐵

denote inclusions maps. Then there is a long exact sequence

· · · 𝐻𝑛 (𝐴 ∩ 𝐵;Z) 𝐻𝑛 (𝐴;Z) ⊕ 𝐻𝑛 (𝐵;Z) 𝐻𝑛 (𝑋;Z) 𝐻𝑛−1(𝐴 ∩ 𝐵;Z) · · ·𝛼𝑛 𝛽𝑛 𝜕𝑛

where 𝛼𝑛 = (𝐻𝑛 (𝑖𝐴), 𝐻𝑛 (𝑖𝐵)) and 𝛽𝑛 = 𝐻𝑛 ( 𝑗𝐴) − 𝐻𝑛 ( 𝑗𝐵).
PROOF. Let U = {𝐴, 𝐵}. Consider the long exact sequence associated to the short exact sequence
of chain complexes:

0→ 𝐶•(𝐴 ∩ 𝐵)
𝛼−→ 𝐶•(𝐴) ⊕ 𝐶•(𝐵)

𝛽−→ 𝐶U• (𝑋) → 0,
Invoking Proposition 5.4.3, the associated long exact sequence in homology yields the desired result.

□

Remark 5.4.5. By using augmented chain complexes, we also obtain a correspondingMayer-Vietoris
sequence for the reduced homology groups.

We end this section by proving the suspension theorem. This result provides a fundamental link
between the homology of a space and the homology of its suspension, allowing us to relate different
dimensions of homology groups. It also plays a key role in the study of stable phenomena in algebraic
topology.

⁴The Mayer–Vietoris sequence can also be interpreted as an abelian analogue of the Seifert–van Kampen theorem.
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Proposition 5.4.6. (Suspension Theorem)⁵ Let 𝑋 be a topological space and let 𝑆𝑋 be its suspen-
sion:

𝑆𝑋 =
𝑋 × 𝐼

(𝑋 × {0}, 𝑋 × {1})
We have

𝐻𝑛 (𝑋;Z) � 𝐻𝑛+1(𝑆𝑋;Z)
for 𝑛 ≥ −1.

PROOF. For 𝑛 = −1, 𝐻−1(𝑋;Z) is the trivial group. Since 𝑆𝑋 is path-connected, 𝐻0(𝑆𝑋;Z) is also
the trivial group. Let 𝑛 ≥ 0. Let 𝑃,𝑄 denote the collapsed spaces 𝑋 × {0} and 𝑋 × {1} respectively.
Let 𝐴 = 𝑆𝑋 − {𝑃} and let 𝐵 = 𝑆𝑋 − {𝑄}. Each of 𝐴 and 𝐵 are homeomorphic to the cone space

𝐶𝑋 = (𝑋 × 𝐼)/(𝑋 × {0})
By the Mayer-Vietoris sequence for reduced homology, since 𝐴∩𝐵 = 𝑋 × (0, 1), we obtain the exact
sequence

· · · → 𝐻𝑛+1(𝐴;Z) ⊕𝐻𝑛+1(𝐵;Z) → 𝐻𝑛+1(𝑆𝑋;Z) → 𝐻𝑛 (𝐴∩ 𝐵;Z) → 𝐻𝑛 (𝐴;Z) ⊕𝐻𝑛 (𝐵;Z) → · · ·
for all 𝑛. Note that𝐶𝑋 is contractible⁶. Moreover, 𝑋×(0, 1) deformation retracts down to 𝑋 . Hence,
the sequence simplifies to:

· · · → 0→ 𝐻𝑛+1(𝑆𝑋;Z) → 𝐻𝑛 (𝑋;Z) → 0→ · · ·
This proves the claim. □

5.5. Interpretation of Relative Homology
We examine relative homology in greater depth in order to develop a clearer understanding of

its structure and significance.

Lemma 5.5.1. Let 𝐴 ⊆ 𝑋 be topological spaces. Consider an exact sequence of abelian groups:
𝐴→ 𝐵→ 𝐶 → 𝐷 → 𝐸

(1) 𝐶 = 0 if and only if the map 𝐴→ 𝐵 is surjective and 𝐷 → 𝐸 is injective.
(2) For a pair of spaces (𝑋, 𝐴) ∈ Top2, the inclusion 𝐴 ↩→ 𝑋 induces isomorphisms on all

homology groups if and only if 𝐻𝑛 (𝑋, 𝐴;Z) = 0 for all 𝑛 ≥ 0.

PROOF. The proof is as follows:
(1) Let 𝛼, 𝛽, 𝛾, 𝛿 be the corresponding maps. By exactness,

im(𝛼) = ker(𝛽), im(𝛽) = ker(𝛾), im(𝛾) = ker(𝛿).
Note that 𝛼 is surjective iff ker(𝛽) = 𝐵 iff im(𝛽) = 0, and 𝛿 is injective iff im(𝛾) = 0
iff ker(𝛾) = 𝐶. Putting both together, 𝛼 is surjective and 𝛿 is injective iff 𝐶 = 0, since
im(𝛽) = ker(𝛾).

(2) Consider the following part of the the long exact sequence in homology:

· · · 𝐻𝑛+1(𝐴;Z) 𝐻𝑛+1(𝑋;Z) 𝐻𝑛+1(𝑋, 𝐴;Z) 𝐻𝑛 (𝐴;Z) 𝐻𝑛 (𝑋;Z) · · ·

The maps 𝐻𝑛 (𝐴;Z) → 𝐻𝑛 (𝑋;Z) are isomorphisms for all 𝑛 ≥ 0 if and only if they
are both injective and surjective for all 𝑛 ≥ 0. By re-indexing, this is true if and only if
the leftmost map in our five-term exact sequence is surjective and the rightmost map is

⁵Suspension is defined formally later on.
⁶Indeed, the homotopy ℎ𝑡 (𝑥, 𝑠) = (𝑥, (1 − 𝑡)𝑠) continuously shrinks 𝐶𝑋 down to its vertex point.
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injective for all 𝑛 ≥ 0. But (1), this is true if and only if the middle group vanishes for all
𝑛 ≥ 0.

This completes the proof. □

As per Lemma 5.5.1, we can think of 𝐻𝑛 (𝑋, 𝐴;Z) as measuring the failure of the induced mor-
phism 𝐻𝑛 (𝐴;Z) → 𝐻𝑛 (𝑋;Z) to be an isomorphism for each 𝑛 ≥ 0. Based on Lemma 5.5.1, we can
characterize relative homology groups for 𝑛 = 0, 1.

Proposition 5.5.2. Let 𝐴 ⊆ 𝑋 be topological spaces.
(1) 𝐻0(𝑋, 𝐴;Z) = 0 if and only if 𝐴 meets each path-component of 𝑋 . In other words,

𝐻0(𝑋, 𝐴;Z) = Z[path-components of 𝑋 not intersecting 𝐴]
(2) 𝐻1(𝑋, 𝐴;Z) = 0 if and only if𝐻1(𝐴;Z) → 𝐻1(𝑋;Z) is surjective and each path-component

of 𝑋 contains at most one path-component of 𝐴.
(3) Let (𝑋, 𝑥0) be a pointed topological space. Then

𝐻𝑛 (𝑋, 𝑥0;Z) � 𝐻𝑛 (𝑋;Z) � 𝐻𝑛 (𝑋;Z)
for each 𝑛 ≥ 1.

PROOF. The proof is given below:
(1) We first prove the special case that if 𝑋 is a non-empty path-connected space and 𝐴 ⊆ 𝑋 ,

then 𝐻0(𝑋, 𝐴;Z) = 0 if and only if 𝐴 is not-empty. Consider the end of the long exact
sequence for the pair (𝑋, 𝐴;Z):

𝐻0(𝐴;Z) → Z→ 𝐻0(𝑋, 𝐴;Z) → 0
If 𝐴 is empty, the sequence is,

0→ Z→ 𝐻0(𝑋, 𝐴;Z) → 0
Hence, Z � 𝐻0(𝑋, 𝐴;Z) and 𝐻0(𝑋, 𝐴;Z) must be non-zero. If 𝐴 is non-empty, pick a
point 𝑎 ∈ 𝐴 and consider the homology class [𝑎] ∈ 𝐻0(𝐴;Z). The image of [𝑎] under

𝐻0(𝐴;Z) → Z
is the homology class of a point, which generates the co-domain. So 𝐻0(𝐴;Z) → Z is
surjective. Hence

𝐻0(𝐴;Z) → 𝐻0(𝑋, 𝐴;Z)
is surjective as well implying that and 𝐻0(𝑋, 𝐴;Z) = 0. More generally, suppose 𝑋 has
multiple connected components. Assume that 𝐴 meets each path component of 𝑋 . If 𝑋𝑖 is
a component of 𝑋 , then 𝐻0(𝐴 ∩ 𝑋𝑖;Z) → 𝐻0(𝑋𝑖;Z) is surjective. But then

𝐻0(𝐴;Z) =
⊕
𝑖

𝐻0(𝐴 ∩ 𝑋𝑖;Z) →
⊕
𝑖

𝐻0(𝑋𝑖;Z) = 𝐻0(𝑋;Z)

is surjective. Therefore, So 𝐻0(𝑋, 𝐴;Z) = 0. Conversely, if 𝐴 does not meet a component
of 𝑋 , say 𝑋 𝑗 , then 𝐻0(𝑋 𝑗 , 𝐴;Z) ≠ 0. But then 𝐻0(𝑋 𝑗 , 𝐴;Z) ≠ 0 is a direct summand of
𝐻0(𝑋, 𝐴;Z). Hence 𝐻0(𝑋, 𝐴;Z) must be non-zero.

(2) If 𝐻1(𝑋, 𝐴;Z) = 0, then 𝐻1(𝐴;Z) → 𝐻1(𝑋;Z) is surjective and 𝐻0(𝐴;Z) → 𝐻0(𝑋;Z)
is injective by Lemma 5.5.1. This last statement can’t be true if some path component 𝑋𝑖
of 𝑋 contains multiple components of 𝐴 because then 𝐻0(𝐴 ∩ 𝑋𝑖) � Z𝑛 for some 𝑛 ≥ 2
while 𝐻0(𝑋𝑖) = Z. So then

𝐻0(𝐴 ∩ 𝑋𝑖) → 𝐻0(𝑋𝑖)
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can’t be one-to-one, and the same follows for

𝐻0(𝐴;Z) → 𝐻0(𝑋;Z)

If𝐻1(𝐴;Z) → 𝐻1(𝑋;Z) is surjective, then the kernel of themap𝐻1(𝑋;Z) → 𝐻1(𝑋, 𝐴;Z)
is 𝐻1(𝑋;Z). So the map 𝐻1(𝑋;Z) → 𝐻1(𝑋, 𝐴;Z) is the 0 map. Similarly, if each compo-
nent of 𝑋 contains at most one component of 𝐴, then 𝐻0(𝐴;Z) → 𝐻0(𝑋;Z) is injective.
So its kernel is 0, so the image of 𝐻1(𝑋, 𝐴;Z) → 𝐻0(𝐴;Z) is 0. But then by exactness,
0 = 𝐻1(𝑋, 𝐴;Z).

(3) If 𝑛 ≥ 2, then𝐻𝑛 (𝑋;Z) = 0 and𝐻𝑛−1(𝑥;Z) = 0, and thus we immediately see𝐻𝑛 (𝑋, 𝑥0) �
𝐻𝑛 (𝑋;Z) by inspecting the long exact sequence in relative homology. For 𝑛 = 1, consider
the following part of the long exact sequence in relative homology:

0→ 𝐻1(𝑋;Z) → 𝐻1(𝑋, 𝑥0;Z) → 𝐻0(𝑋;Z) � Z→ 𝐻0(𝑋;Z) → 𝐻0(𝑋, 𝑥0;Z) → 0

Proposition 5.5.2(1) readily implies that

0→ 𝐻1(𝑋;Z) → 𝐻1(𝑋, 𝑥;Z)

is surjective if and only if

𝐻0(𝑋;Z) � Z→ 𝐻0(𝑋;Z)

is injective if and only if it is not-the zero map. The last equivalence follows from the obser-
vation that 𝐻0(𝑋;Z) is a free abelian group. If it were the zero map, the map 𝐻0(𝑋;Z) →
𝐻0(𝑋, 𝑥0;Z) will be injective. However, this is not the case since the point 𝑥0 ∈ 𝑋 defines
a generator ⟨𝑥0⟩ of 𝐻0(𝑋;Z) that is is in the kernel of the map 𝐻0(𝑋;Z) → 𝐻0(𝑋, 𝑥0).
Therefore, the claim is true for 𝑛 = 1 as well.

This completes the proof. □

Definition 5.5.3. Let (𝑋, 𝐴) be in Top2. If 𝐴 ⊆ 𝑋 is a closed subspace such that there exists a
neighborhood𝑉 of 𝑋 such that 𝐴 is a strong deformation retract of𝑉 , we say that (𝑋, 𝐴;Z) is a good
pair.

The next proposition provides an alternative interpretation of relative homology in many cases of
interest. Intuitively, it asserts that for nice pairs of topological spaces (𝑋, 𝐴), the relative homology
group of (𝑋, 𝐴) is isomorphic to the homology of the quotient space 𝑋/𝐴.

Proposition 5.5.4. Let (𝑋, 𝐴) ∈ Top2 such that there exists 𝐵 ⊆ 𝑋 such that the following conditions
are satisfied:

(1) 𝐴 ⊂ 𝐵 ⊂ 𝑋 ,
(2) 𝐴 ⊆ Int(𝐵),
(3) 𝐴 is a strong deformation retract of 𝐵.

For each 𝑛 ≥ 0, we have

𝐻𝑛 (𝑋, 𝐴;Z) � 𝐻𝑛 (𝑋/𝐴, ∗;Z) � 𝐻𝑛 (𝑋/𝐴;Z)

Remark 5.5.5. A (𝑋, 𝐴) satisfying the hypothesis in Proposition 5.5.4 is called a good pair. The
associated triple (𝐴, 𝐵, 𝑋) is called an excisive triple. Note that these conditions are satisfied is 𝐴
is a closed subspace and there exists an open neighbourhood of 𝐴 that retracts surjective 𝐴.
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PROOF. Consider the following diagram:

𝐻𝑛 (𝑋, 𝐴;Z) 𝐻𝑛 (𝑋, 𝐵;Z) 𝐻𝑛 (𝑋 \ 𝐴, 𝐵 \ 𝐴;Z)

𝐻𝑛 (𝑋/𝐴, ∗;Z) 𝐻𝑛 (𝑋/𝐴, 𝐵/𝐴;Z) 𝐻𝑛 (𝑋/𝐴 \ ∗, 𝐵/𝐴 \ ∗;Z)

We make the following observations:
(1) The upper-left horizontal map is an isomorphism by virtue of the long exact sequence of

the triple (𝑋, 𝐵, 𝐴) (see Remark 5.2.5) since the groups𝐻𝑛 (𝐵, 𝐴) vanish for all 𝑛 ≥ 0. This
vanishing follows from the fact that a deformation retraction of 𝐵 surjective 𝐴 induces a
homotopy equivalence of pairs (𝐵, 𝐴) ≃ (𝐴, 𝐴) ≃ (∗, ∗). Hence, 𝐻𝑛 (𝐵, 𝐴) � 𝐻𝑛 (∗, ∗) =
0.

(2) The deformation retraction of 𝐵 surjective 𝐴 descends to a deformation retraction of the
quotient 𝐵/𝐴 surjective the point 𝐴/𝐴⁷. Therefore, the same reasoning as above applies to
show that the lower-left horizontal map is also an isomorphism.

(3) The remaining two horizontal maps are isomorphisms by the excision property.
Since the right-hand vertical map is an isomorphism, it follows by the five lemma (Proposition 4.6.1)
that the left-hand vertical map must also be an isomorphism. This completes the proof. □

Corollary 5.5.6. If (𝑋, 𝐴;Z) is a good pair, then there is an exact sequence:

· · · → 𝐻𝑛 (𝐴;Z) → 𝐻𝑛 (𝑋;Z) → 𝐻𝑛 (𝑋/𝐴;Z) → 𝐻𝑛−1(𝐴;Z) → 𝐻𝑛−1(𝑋;Z) → · · ·

PROOF. This is clear. □

Corollary 5.5.7. Let (𝑋𝛼, 𝑥𝛼)𝛼∈𝐼 be a collection of good pairs in Top∗. Let 𝑋 =
∨
𝛼∈𝐼 𝑋𝛼 with the

basepoint 𝑥 = (𝑥𝛼)𝛼∈𝐼 in Top∗. Then

𝐻𝑛 (𝑋;Z) �
⊕
𝛼∈𝐼

𝐻𝑛 (𝑋𝛼;Z)

for 𝑛 ≥ 1.

PROOF. Since (𝑋𝛼, 𝑥𝛼)𝛼∈𝐼 be a collection of good pairs, (𝑋, 𝑥) is also a good pair. We have:

𝐻𝑛 (𝑋;Z) = 𝐻𝑛

(∐
𝛼∈𝐼

𝑋𝛼

/ ∐
𝛼∈𝐼
{𝑥𝛼};Z

)
� 𝐻𝑛

(∐
𝛼∈𝐼

𝑋𝛼,
∐
𝛼∈𝐼
{𝑥𝛼};Z

)
�

⊕
𝛼∈𝐼

𝐻𝑛 (𝑋𝛼, 𝑥𝛼;Z)

�
⊕
𝛼∈𝐼

𝐻𝑛 (𝑋𝛼;Z).

The first and third equivalences follow by Proposition 5.5.2. The second equivalence follows by
observing that the additivity axiom holds in Top2 as can be checked. □

⁷This uses the fact that taking the product with 𝐼 commutes with taking quotients, since 𝐼 is a compact Hausdorff space.
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5.6. First Computations
We now turn to some fundamental computations and illustrative applications of singular ho-

mology. These examples will help clarify the behavior of the theory and demonstrate its utility in
distinguishing and analyzing topological spaces.

Example 5.6.1. (Homology of Spheres) We now are now in a position to compute the (reduced)
homology groups of spheres. The reduced homology groups of spheres are given as:

𝐻𝑘 (S𝑛;Z) �
{
Z, if 𝑘 = 𝑛

0, if 𝑘 ≠ 0

Since (D𝑛, S𝑛−1) is a good pair and D𝑛/S𝑛−1 � S𝑛, the long exact sequence in relative reduced
homology yields:

· · · → 𝐻𝑘 (S𝑛−1;Z) → 𝐻𝑘 (D𝑛;Z) → 𝐻𝑘 (S𝑛;Z) → 𝐻𝑘−1(S𝑛−1;Z) → 𝐻𝑘−1(D𝑛;Z) → · · ·

Since D𝑛 is contractible, 𝐻𝑘 (D𝑛;Z) = 0 for 𝑘 ≥ 0. Therefore,
𝐻𝑘 (S𝑛−1;Z) → 0→ 𝐻𝑘 (S𝑛;Z) → 𝐻𝑘−1(S𝑛−1;Z) → 0→ · · ·

Hence, we have:
𝐻𝑘 (S𝑛;Z) � 𝐻𝑘−1(S𝑛;Z)

The result now follows via induction and the observation that
𝐻0(S0;Z) � Z 𝐻𝑘 (S0;Z) � 0 𝑘 > 0

The computation above readily implies the following:

𝐻𝑘 (S𝑛;Z) �


Z ⊕ Z, if 𝑘 = 0, 𝑛 = 0
Z if 𝑘 = 0, 𝑛 > 1
Z if 𝑘 = 𝑛 > 0
0 otherwise

Remark 5.6.2. We can also use the Mayer-Vietoris sequence to compute the homology groups of
sphere. Indeed, consider the following argument. Let 𝑋 = S𝑛, 𝐴 = S𝑛 \ {𝑆}, and 𝐵 = S𝑛 \ {𝑁},
where 𝑆 and 𝑁 are the south pole and north pole, respectively. Then

𝐴 ≃ R𝑛 𝐵 ≃ R𝑛 𝐴 ∩ 𝐵 ≃ S𝑛−1

From the Mayer-Vietoris sequence for reduced homology groups, we get 𝐻𝑘 (S𝑛) ≃ 𝐻𝑘−1(S𝑛−1) for
all 𝑖. By induction, we find as before:

𝐻𝑘 (S𝑛;Z) ≃
{
Z, 𝑘 = 𝑛

0, 𝑘 ≠ 𝑛.

Using the homology groups of spheres, we can distinguish spheres from Euclidean spaces of
arbitrary dimension.

Corollary 5.6.3. Let 𝑚 ≠ 𝑛.
(1) S𝑚 and S𝑛 are not homotopy equivalent.
(2) R𝑚 and R𝑛 are not homeomorphic.
(3) If𝑈 ⊆ R𝑚 and 𝑉 ⊆ R𝑛 are non-empty homeomorphic open sets, then 𝑚 = 𝑛.

PROOF. The proof is given below:
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(1) This follows from Example 5.6.1 since the homology groups are not isomorphic for𝑚 ≠ 𝑛.
(2) If 𝑚 or 𝑛 is zero, this is clear. So let 𝑚, 𝑛 > 0. Assume we have a homeomorphism

𝑓 : R𝑚 → R𝑛. WLOG assume that 𝑓 (0) = 0. This restricts to a homeomorphism R𝑚 \
{0} → R𝑛 \ { 𝑓 (0)}. But these spaces are homotopy equivalent to spheres of different
dimension, yielding a contradiction.

(3) For all 𝑥 ∈ 𝑈 and for all 𝑘 ∈ Z, we have

𝐻𝑘 (𝑈,𝑈 \ {𝑥}) � 𝐻𝑘 (R𝑚,R𝑚 \ {𝑥})

by the Excision Theorem. Combining this with the long exact sequence for the reduced
homology of (R𝑚,R𝑚 \ {𝑥}) and the fact that R𝑚 \ {𝑥} is homotopy equivalent to S𝑚−1,
we obtain for all 𝑥 ∈ 𝑈 and all 𝑘 ∈ Z:

𝐻𝑘 (𝑈,𝑈 \ {𝑥}) � 𝐻𝑘 (R𝑚,R𝑚 \ {𝑥}) � 𝐻𝑘−1(R𝑚 \ {𝑥}) �
{
Z, 𝑘 = 𝑚

0, 𝑘 ≠ 𝑚.

Similarly,

𝐻𝑘 (𝑉,𝑉 \ {𝑥}) � 𝐻𝑘 (R𝑛,R𝑛 \ {𝑥}) � 𝐻𝑘−1(R𝑛 \ {𝑥}) �
{
Z, 𝑘 = 𝑛

0, 𝑘 ≠ 𝑛.

If𝑈,𝑉 are homeomorphic via 𝑓 : 𝑈 → 𝑉 , then

𝐻𝑘 (𝑈,𝑈 \ {𝑥}) � 𝐻𝑘 (𝑉,𝑉 \ { 𝑓 (𝑥)})

The claim follows by comparing homology groups.
This completes the proof. □

Remark 5.6.4. If 𝑋 is a topological space, 𝑥 ∈ 𝑋 , and 𝑈 ⊆ 𝑋 is an open neighborhood of 𝑥, then
for all 𝑛 ∈ Z, the excision theorem yields that

𝐻𝑛 (𝑋, 𝑋 \ {𝑥}) � 𝐻𝑛 (𝑈,𝑈 \ {𝑥}).

In particular, for all 𝑛 ∈ Z, the group𝐻𝑛 (𝑋, 𝑋\{𝑥}) depends only on the topology of a neighborhood
of 𝑥. Therefore, these homology groups are called the local homology groups of 𝑋 at 𝑥.

Using the discussion about the homology groups of spheres and Corollary 5.6.3, we can prove
the invariance of dimension (Remark 1.3.2) and the invariance of boundary (Remark 1.3.9) results
about topological manifolds.

PROOF. Let 𝑋 be a topological 𝑛-manifold.
(1) Working in local coordinate charts, this follows from Corollary 5.6.3(2).
(2) Skipped.

This completes the proof. □

Example 5.6.5. Let 𝐴 ⊆ 𝑋 be a finite set of points in 𝑋 . We compute 𝐻𝑛 (S2, 𝐴;Z). Assume |𝐴| = 𝑘
for 𝑘 ≥ 1. Since 𝐴 is assumed to be non-empty, Proposition 5.5.2 implies 𝐻0(S2, 𝐴;Z) = 0. The
long exact sequence in relative homology implies we have:

· · · 𝐻𝑛+1(𝐴;Z) 𝐻𝑛+1(S2;Z) 𝐻𝑛+1(S2, 𝐴;Z) 𝐻𝑛 (𝐴;Z) 𝐻𝑛 (S2;Z) · · ·
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Noting that,

𝐻1(S2;Z) = 0
𝐻0(S2;Z) = Z
𝐻0(𝐴;Z) = Z𝑘

the right most end of the long exact sequence becomes

· · · 0 0 𝐻1(S2, 𝐴;Z) Z𝑘 Z 0 0

Since Z is a free abelian group, the sequence above splits and implies that

Z𝑘 � 𝐻1(S2, 𝐴;Z) ⊕ Z.

Hence,
𝐻1(S2, 𝐴;Z) � Z𝑘−1.

For 𝑛 ≥ 2, 𝐻𝑛 (𝐴;Z) = 0 implies that we have the sequence

· · · 0 𝐻𝑛+1(S2;Z) 𝐻𝑛+1(S2, 𝐴;Z) 0 𝐻𝑛 (S2;Z) 𝐻𝑛 (S2, 𝐴;Z) · · ·

By Lemma 5.5.1, 𝐻𝑛 (S2) → 𝐻𝑛 (S2, 𝐴) is surjective. But the map is also injective. Hence by
exactness and the first isomorphism theorem, Therefore,

𝐻𝑛 (S2, 𝐴;Z) � 𝐻𝑛 (S2;Z).

Hence, we have:

𝐻𝑛 (S2, 𝐴;Z) �


0 if 𝑛 ≥ 3
Z if 𝑛 = 2
Z𝑘−1 if 𝑛 = 1
0 if 𝑛 = 0

Example 5.6.6. We compute 𝐻1(R,Q). We have the following exact sequence in homology,

· · · → 𝐻𝑛 (Q) → 𝐻𝑛 (R) → 𝐻𝑛 (R,Q) → 𝐻𝑛−1(Q) → · · ·

Since Q is a totally disconnected set, every point 𝑞 ∈ Q is a path-component. Hence, we have

𝐻𝑛 (Q) =
{⊕

𝛼∈Q Z if 𝑛 = 0,
0 otherwise.

Since R is contractible, the long-exact sequence on the right becomes

0→ 𝐻1(R,Q) →
⊕
𝛼∈Q
Z→ Z→ 0.

This implies that the map 𝐻1(R,Q) →
⊕

𝛼∈𝑄 Z is injective, and since subgroups of free groups are
free, 𝐻1(R,Q) is a free abelian group. Since Z is a free Z-module, we have⊕

𝛼∈Q
Z � 𝐻1(R,Q) ⊕ Z⇒ 𝐻1(R,Q) �

⊕
𝛼∈Q
Z

If 𝜎𝑞 : Δ0 → Q, the set {𝜎0 − 𝜎𝑞 | 𝑞 ∈ 𝑄} is a basis for 𝐻1(R,Q).
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5.7. Equivalence of Simplicial & Singular Homologies
Let 𝑋 be a topological space that admits a Δ-complex structure. We say that a subspace 𝐴 ⊆

𝑋 admits a Δ-subcomplex structure on 𝑋 if 𝐴 is a union of simplicies of 𝑋 . Relative simplicial
homology group can be defined in the same way as relative (singular) homology groups. That is,
the 𝑛-th relative simplicial homology group, 𝐻Δ

𝑛 (𝑋, 𝐴;Z), is the 𝑛-th homology group of the chain
complex:

· · · Δ2(𝑋)/Δ2(𝐴) Δ1(𝑋)/Δ1(𝐴) Δ0(𝑋;Z)/Δ0(𝐴)
𝜕
Δ
2 𝜕

Δ
1

That is:

𝐻Δ
𝑛 (𝑋, 𝐴;Z) = Ker 𝜕

Δ
𝑛

Im 𝜕
Δ
𝑛+1

As before, this yields a long exact sequence of simplicial homology groups for the pair (𝑋, 𝐴;Z) by
the same algebraic argument as for singular homology. We now show that the simplicial homology
groups of 𝑋 corresponding to any Δ-complex structure on 𝑋 coincides with its singular homology
groups of 𝑋 .

Proposition 5.7.1. Let 𝑋 be a topological space that admits a Δ-complex structure and let 𝐴 be a
Δ-subcomplex of 𝑋 . The inclusion map

Δ𝑛 (𝑋, 𝐴) ↩→ 𝐶𝑛 (𝑋, 𝐴)
induces an isomorphism

𝐻Δ
𝑛 (𝑋, 𝐴;Z) � 𝐻𝑛 (𝑋, 𝐴;Z)

for each 𝑛 ≥ 0.

Remark 5.7.2. Taking 𝐴 = ∅, we obtain the equivalence of absolute singular and simplicial homol-
ogy.

Our strategy will be to proceed by induction 𝑋Δ
𝑘 consisting of all simplices of dimension 𝑘 or

less.

PROOF. We proceed in multiple steps:
(1) First suppose that 𝑋 is finite dimensional. That is, 𝑋Δ

𝑚 = ∅ for 𝑚 ≥ 𝑛 for some 𝑛 ∈ N.
Assume that 𝐴 = ∅. Consider the following diagram:

𝐻Δ
𝑛+1(𝑋Δ

𝑘 , 𝑋
Δ
𝑘−1 𝑍) 𝐻Δ

𝑛 (𝑋Δ
𝑘−1 𝑍) 𝐻Δ

𝑛 (𝑋Δ
𝑘 𝑍) 𝐻Δ

𝑛 (𝑋Δ
𝑘 , 𝑋

Δ
𝑘−1 𝑍) 𝐻Δ

𝑛−1(𝑋Δ
𝑘−1 𝑍)

𝐻𝑛+1(𝑋Δ
𝑘 , 𝑋

Δ
𝑘−1 𝑍) 𝐻𝑛 (𝑋Δ

𝑘−1 𝑍) 𝐻𝑛 (𝑋Δ
𝑘 𝑍) 𝐻𝑛 (𝑋Δ

𝑘 , 𝑋
Δ
𝑘−1 𝑍) 𝐻𝑛−1(𝑋Δ

𝑘−1 𝑍)

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

Note thatΔ𝑘 (𝑋Δ
𝑘 , 𝑋

Δ
𝑘−1) is a free abelian group generated by 𝑘-simplices andΔ𝑛 (𝑋Δ

𝑘 , 𝑋
Δ
𝑘−1) =

∅ for 𝑛 ≠ 𝑘 . Therefore, we have:

Δ𝑘 (𝑋Δ
𝑘 , 𝑋

Δ
𝑘−1) =

{
free abelian group generated by 𝑘-simplices if 𝑛 = 𝑘
∅ if 𝑛 ≠ 𝑘

A simple calculation shows that:

𝐻Δ
𝑛 (𝑋Δ

𝑘 , 𝑋
Δ
𝑘−1 𝑍) =

{
Z#𝑘−simplicies if 𝑛 = 𝑘
0 if 𝑛 ≠ 𝑘
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It is easy to check that (𝑋Δ
𝑘 , 𝑋

Δ
𝑘−1) is a good pair and

𝑋Δ
𝑘 /𝑋Δ

𝑘−1 =
#𝑘−simplicies∨

𝑖=1
S𝑘

Therefore, Corollary 5.5.7 implies

𝐻𝑛 (𝑋Δ
𝑘 , 𝑋

Δ
𝑘−1 𝑍) =

{
Z#𝑘−simplicies if 𝑛 = 𝑘
0 if 𝑛 ≠ 𝑘

Therefore, both 𝑓1 and 𝑓4 are isomorphisms. An induction argument shows that 𝑓2 and 𝑓5
are isomorphisms. The five lemma (??) then implies that 𝑓3 is an isomorphism.

(2) Suppose that 𝑋 is possibly infinite-dimensional. Assume that 𝐴 = ∅. Note that a compact
set 𝐶 ⊆ 𝑋 can meet only finitely many open simplices of 𝑋 . If not, 𝐶 would contain an
infinite sequence of points 𝑥𝑖 , each lying in a different open simplex. Then the sets

𝑈𝑖 = 𝑋 −
⋃
𝑖≠ 𝑗

{𝑥 𝑗}

which are open since their pre-images under the characteristic maps of all the simplices
are clearly open, form an open cover of 𝐶 with no finite sub-cover. This can be applied to
show the map

𝐻Δ
𝑛 (𝑋;Z) → 𝐻𝑛 (𝑋;Z)

is bijective. For surjectivity, let [𝑐] ∈ 𝐻Δ
𝑛 (𝑋;Z). Choose a representative 𝑛-cycle, 𝛼,

of [𝑐]. Now 𝛼 is a linear combination of finitely many singular simplices with compact
images, meeting only finitely many open simplices of 𝑋 . Hence, 𝛼 in 𝑋Δ

𝑘 for some 𝑘 . We
have shown that

𝐻𝑛 (𝑋Δ
𝑘 𝑍) � 𝐻Δ

𝑛 (𝑋Δ
𝑘 𝑍)

So there exists a 𝑛-cycle 𝑣 ∈ Δ𝑛 (𝑋Δ
𝑘 ) such that [𝑣] gets mapped to [𝑐]. This proves surjec-

tivity. Injectivity is similar so we omit details.
(3) Now consider the general case where 𝐴 ≠ ∅. Consider the following diagram:

𝐻Δ
𝑛+1(𝑋, 𝐴;Z) 𝐻Δ

𝑛 (𝐴;Z) 𝐻Δ
𝑛 (𝑋;Z) 𝐻Δ

𝑛 (𝑋, 𝐴;Z) 𝐻Δ
𝑛−1(𝐴;Z)

𝐻𝑛+1(𝑋, 𝐴;Z) 𝐻𝑛 (𝐴;Z) 𝐻𝑛 (𝑋;Z) 𝐻𝑛 (𝑋, 𝐴;Z) 𝐻𝑛−1(𝐴;Z)

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

By (2), 𝑓2, 𝑓3, 𝑓5 are isomorphisms. The claim now follows by induction and the five-
lemma.

This completes the proof. □

Example 5.7.3. Let 𝑋 = S1 × S1. Note that 𝑋 is homemorphic to the torus, 𝑇 , considered in
Section 4.1. Hence, Proposition 5.7.1 implies that

𝐻𝑛 (𝑋;Z) = 𝐻Δ
𝑛 (𝑇 ;Z) =


Z ⊕ Z for 𝑛 = 1
Z for 𝑛 = 0, 2
0 for 𝑛 ≥ 3
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Example 5.7.4. Let 𝐴 ⊆ 𝑋 be a finite set of points in 𝑋 . We compute 𝐻𝑛 (S1 × S1, 𝐴;Z).It can be
checked that S1×S1 is homemorphic to the torus, 𝑇 , considered in Section 4.1. As in Example 5.6.5,
𝐻0(S1 × S1, 𝐴;Z) = 0 and 𝐻𝑛 (S1 × S1, 𝐴;Z) � 𝐻𝑛 (S1 × S1) for 𝑛 ≥ 2. For 𝑛 = 1, noting that,

𝐻1(S1 × S1;Z) = Z ⊕ Z
𝐻0(S1 × S1;Z) = Z

𝐻0(𝐴;Z) = Z𝑘

the right most end of the long exact sequence in homology becomes

· · · 0 Z ⊕ Z 𝐻1(S1 × S1, 𝐴;Z) Z𝑘 Z 0 0

The reduced homology version of the sequence above is

· · · 0 Z ⊕ Z 𝐻1(S1 × S1, 𝐴;Z) Z𝑘−1 0

Since Z is a free Z-module, the sequence above splits and implies that
𝐻1(S1 × S1, 𝐴;Z) � 𝐻1(S1 × S1, 𝐴) � Z𝑘+1.

Hence, we have:

𝐻𝑛 (S1 × S1, 𝐴;Z) �


0 if 𝑛 ≥ 3
Z if 𝑛 = 2
Z𝑘+1 if 𝑛 = 1
0 if 𝑛 = 0

Remark 5.7.5. Let 𝑋 = S1 × S1 and 𝑌 = S1 ∨ S1 ∨ S2. We have

𝐻𝑛 (𝑌 ) =

Z ⊕ Z for 𝑛 = 1
Z for 𝑛 = 0, 2
0 for 𝑛 ≥ 3

We see that
𝐻𝑛 (𝑋;Z) = 𝐻𝑛 (𝑌 )

for 𝑛 ≥ 0. It can be checked that the covering spaces of 𝑋 and 𝑌 have different homology groups.
Hence, 𝑋 and 𝑌 are not homotopy equivalent. Therefore, homology groups might not be able to
distinguish topological spaces that are not homotopy equivalent.



CHAPTER 6

Computations & Applications

6.1. Cellular Homology
We define the cellular homology of a CW complex 𝑋 in terms of a given cell structure, then we

show that it coincides with the singular homology, so it is in fact independent on the cell structure.
Cellular homology is very useful for computations. Before discussing cellular homology, we com-
pute the relative homology groups of a topological space, 𝑋 , that can be given the structure of a CW
complex.

Lemma 6.1.1. Let 𝑋 be a topological space that can be endowed with the structure of a CW complex.
Then:

(1) The relative romology 𝐻𝑘 (𝑋𝑛, 𝑋𝑛−1;Z) is given by:

𝐻𝑘 (𝑋𝑛, 𝑋𝑛−1;Z) =
{

0, if 𝑘 ≠ 𝑛

Z#𝑛-cells, if 𝑘 = 𝑛.

for 𝑘 ≥ 1.
(2) 𝐻𝑘 (𝑋𝑛;Z) = 0 if 𝑘 > 𝑛 ≥ 1. In particular, if 𝑋 is finite dimensional, then 𝐻𝑘 (𝑋;Z) = 0 if

𝑘 > dim(𝑋).
(3) The inclusion 𝑖 : 𝑋𝑛 ↩→ 𝑋 induces an isomorphism 𝐻𝑘 (𝑋𝑛;Z) � 𝐻𝑘 (𝑋) if 𝑘 < 𝑛.

PROOF. The proof is given below:
(1) Since (𝑋𝑛, 𝑋𝑛−1) is a good pair, we have:

𝐻𝑘 (𝑋𝑛, 𝑋𝑛−1;Z) � 𝐻𝑘 (𝑋𝑛/𝑋𝑛−1;Z)
= 𝐻𝑘 (𝑋𝑛/𝑋𝑛−1;Z)

�
#𝑛-cells∨
𝑖=1

S𝑛 �

{
0, if 𝑘 ≠ 𝑛,

Z#𝑛-cells, if 𝑘 = 𝑛.

(2) Since (𝑋𝑛, 𝑋𝑛−1) is a good pair for each 𝑛 ≥ 1, we can consider the following portion of
the long exact sequence:

𝐻𝑘+1(𝑋𝑛, 𝑋𝑛−1;Z) 𝐻𝑘 (𝑋𝑛−1;Z) 𝐻𝑘 (𝑋𝑛;Z) 𝐻𝑘 (𝑋𝑛, 𝑋𝑛−1;Z)

If 𝑘 + 1 ≠ 𝑛 and 𝑘 ≠ 𝑛, we have from (1) we have that 𝐻𝑘+1(𝑋𝑛, 𝑋𝑛−1;Z) = 0 and
𝐻𝑘 (𝑋𝑛, 𝑋𝑛−1) = 0. Thus

𝐻𝑘 (𝑋𝑛−1;Z) � 𝐻𝑘 (𝑋𝑛;Z)
Hence, if 𝑘 > 𝑛 (so in particular, 𝑛 ≠ 𝑘 + 1 and 𝑛 ≠ 𝑘), we get by iteration that

𝐻𝑘 (𝑋𝑛;Z) 𝐻𝑘 (𝑋𝑛−1;Z) · · · 𝐻𝑘 (𝑋0;Z)� � �

121
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Note that 𝑋0 is just a collection of points, so 𝐻𝑘 (𝑋0;Z) = 0. Thus, when 𝑘 > 𝑛 ≥ 1, we
have 𝐻𝑘 (𝑋𝑛;Z) = 0 as desired.

(3) We only prove the statement for finite-dimensional CW complexes. Let 𝑘 < 𝑛, and consider
the following portion of the long exact sequence:

· · · 𝐻𝑘+1(𝑋𝑛+1, 𝑋𝑛;Z) 𝐻𝑘 (𝑋𝑛;Z) 𝐻𝑘 (𝑋𝑛+1;Z) 𝐻𝑘 (𝑋𝑛+1, 𝑋𝑛;Z) · · ·

Since 𝑘 < 𝑛, we have 𝑘+1 ≠ 𝑛+1 and 𝑘 ≠ 𝑛+1, so by part (1), we get that𝐻𝑘+1(𝑋𝑛+1, 𝑋𝑛;Z) =
0 and 𝐻𝑘 (𝑋𝑛+1, 𝑋𝑛;Z) = 0. Thus, 𝐻𝑘 (𝑋𝑛) � 𝐻𝑘 (𝑋𝑛+1;Z). By repeated iteration, we ob-
tain:

𝐻𝑘 (𝑋𝑛;Z) � 𝐻𝑘 (𝑋𝑛+1;Z) � 𝐻𝑘 (𝑋𝑛+2;Z) � · · · � 𝐻𝑘 (𝑋𝑛+𝑙;Z) = 𝐻𝑘 (𝑋;Z),
where 𝑙 is such that 𝑋𝑛+𝑙 = 𝑋 since we assumed 𝑋 is finite dimensional. See [Hat02] for
the case when 𝑋 is infinite-dimensional.

This completes the proof. □

In what follows we define the cellular homology of a CW complex, 𝑋 , in terms of a given cell
structure, then we show that it coincides with the singular homology.

Definition 6.1.2. The cellular homology 𝐻CW (𝑋) of a CW complex 𝑋 is the homology of the
cellular chain complex (𝐶∗(𝑋), 𝑑∗) indexed by the cells of 𝑋 , i.e.,

𝐶𝑛 (𝑋) := 𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1;Z) = Z#𝑛-cells,

and with differentials 𝑑𝑛 : 𝐶𝑛 (𝑋) → 𝐶𝑛−1(𝑋) defined by the following diagram: 𝑑𝑛 etc. are defined
in the obvious way to make the diagram commute. It is easy to check that 𝑑𝑛+1 ◦ 𝑑𝑛 = 0 since the
composition of these two maps induces two successive maps in one of the diagonal exact sequences.

𝐻𝑛 (𝑋𝑛+1, 𝑋𝑛;Z) = 0

0 = 𝐻𝑛 (𝑋𝑛−1;Z) 𝐻𝑛 (𝑋𝑛+1;Z) � 𝐻𝑛 (𝑋;Z)

𝐻𝑛 (𝑋𝑛;Z)

𝐻𝑛+1(𝑋𝑛+1, 𝑋𝑛;Z) 𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1;Z) 𝐻𝑛−1(𝑋𝑛−1, 𝑋𝑛−2;Z)

𝐻𝑛−1(𝑋𝑛−1;Z)

𝐻𝑛−1(𝑋𝑛−2;Z) = 0

𝑖𝑛

𝑗𝑛𝜕𝑛+1

𝑑𝑛+1

𝜕𝑛

𝑑𝑛

𝑗𝑛−1

Proposition 6.1.3. Let 𝑋 be a topological space that admits a CW-complex structure. We have:

𝐻CW
𝑛 (𝑋) � 𝐻𝑛 (𝑋;Z)

for all 𝑛 ≥ 0, where 𝐻𝑛 (𝑋;Z) is the singular homology of 𝑋 .

PROOF. We present an argument based on spectral sequences. Let 𝐶•(𝑋) denote its singular chain
complex. We filter 𝐶•(𝑋) by setting

𝐹 𝑝𝐶𝑛 (𝑋) = {𝜎 ∈ 𝐶𝑛 (𝑋) | 𝜎 |𝐶𝑛 (𝑋𝑝 ) = 0} = ker(𝐶𝑛 (𝑋 𝑝) → 𝐶𝑛 (𝑋)),
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where the map𝐶𝑛 (𝑋 𝑝) → 𝐶𝑛 (𝑋) is the natural restriction map. This defines an increasing filtration.
By the analog of Proposition 4.5.5, we get a homological spectral sequence such that

𝐸0
𝑝,𝑞 = G𝑝 𝐶𝑝+𝑞 (𝑋) ⇒ 𝐻𝑝+𝑞 (𝑋).

We claim that 𝐸0
𝑝,𝑞 � 𝐶𝑝+𝑞 (𝑋 𝑝+1, 𝑋 𝑝). Note that we have a homomorphism of short exact se-

quences:

0 𝐹 𝑝−1𝐶𝑝+𝑞 (𝑋) 𝐶𝑝+𝑞 (𝑋) 𝐶𝑝+𝑞 (𝑋 𝑝+1) 0

0 𝐹 𝑝𝐶𝑝+𝑞 (𝑋) 𝐶𝑝+𝑞 (𝑋) 𝐶𝑝+𝑞 (𝑋 𝑝) 0

Id𝐶𝑝+𝑞 (𝑋)

Since the middle map is an isomorphism, the snake lemma (Proposition 4.6.3) tells us that the left
map is injective, and that its cokernel is isomorphic to ker(𝐶𝑝+𝑞 (𝑋 𝑝+1) → 𝐶𝑝+𝑞 (𝑋 𝑝)). Hence, we
have

𝐸0
𝑝,𝑞 �

𝐹 𝑝𝐶𝑝+𝑞 (𝑋)
𝐹 𝑝−1𝐶𝑝+𝑞 (𝑋)

� ker(𝐶𝑝+𝑞 (𝑋 𝑝+1) → 𝐶𝑝+𝑞 (𝑋 𝑝)) = 𝐶𝑝+𝑞 (𝑋 𝑝+1, 𝑋 𝑝)

Hence, the 𝐸1 page is defined such that:

𝐸1
𝑝,𝑞 = 𝐻𝑝+𝑞 (𝑋 𝑝+1, 𝑋 𝑝)

Recall that 𝐻𝑝+𝑞 (𝑋 𝑝+1, 𝑋 𝑝) = 0 if 𝑞 ≠ 1, so the only nontrivial differentials on the 𝐸1 page are

𝑑1
𝑝,1 : 𝐻𝑝+𝑞 (𝑋 𝑝+1, 𝑋 𝑝) → 𝐻𝑝+2(𝑋 𝑝+2, 𝑋 𝑝+1).

One easily checks that these agree with the differentials defining cellular homology, so the 𝐸2 page
is given by

𝐸 𝑝,𝑞2 =

{
𝐻CW
𝑝+1(𝑋) if 𝑞 = 1,

0 otherwise.

Since there are no further non-trivial differentials in the spectral sequence, we have 𝐸2
𝑝,𝑞 = 𝐸∞𝑝,𝑞 .

Moreover, because each diagonal 𝑝 + 𝑞 = 𝑛 contains at most one nonzero term, it follows that the
associated graded pieces stabilize, and we obtain an isomorphism

𝐻𝑝 (𝑋) � 𝐸∞𝑝−1,1 � 𝐻
CW
𝑝 (𝑋).

Therefore, the singular and cellular cohomology groups of 𝑋 are isomorphic. □

Let’s make some observations which are immediate:
(1) If 𝑋 has no 𝑛-cells, then𝐻𝑛 (𝑋;Z) = 0. Indeed, in this casewe have𝐶𝑛 = 𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1;Z) =

0. Therefore, 𝐻CW
𝑛 (𝑋;Z) = 0.

(2) If 𝑋 is connected and has a single 0-cell, then 𝑑1 : 𝐶1 → 𝐶0 is the zero map. Indeed, since
𝑋 contains only a single 0-cell, 𝐶0 = Z. Also, since 𝑋 is connected, 𝐻0(𝑋) = Z. So, by the
above theorem, Z = 𝐻0(𝑋;Z) = ker 𝑑0/Im 𝑑1 = Z/Im 𝑑1. This implies that Im 𝑑1 = 0, so
𝑑1 is the zero map as desired.

If 𝑋 has no cells in adjacent dimensions, then 𝑑𝑛 = 0 for all 𝑛, and 𝐻𝑛 (𝑋;Z) � Z#𝑛-cells for all
𝑛. Indeed, in this case, all maps 𝑑𝑛 vanish. So for any 𝑛, 𝐻CW

𝑛 (𝑋) � 𝐶𝑛 � Z#𝑛-cells. Let’s look at
two examples:
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Example 6.1.4. When 𝑛 > 1, S𝑛 × S𝑛 has one 0-cell, two 𝑛-cells, and one 2𝑛-cell. Since 𝑛 > 1,
these cells are not in adjacent dimensions. Hence:

𝐻𝑘 (S𝑛 × S𝑛;Z) =

Z, if 𝑘 = 0, 2𝑛
Z2, if 𝑘 = 𝑛

0, otherwise.

Example 6.1.5. Recall that CP𝑛 has one cell in each even dimension 0, 2, 4, . . . , 2𝑛. So CP𝑛 has no
two cells in adjacent dimensions. Hence:

𝐻𝑘 (CP𝑛;Z) =
{
Z, if 𝑘 = 0, 2, 4, . . . , 2𝑛
0, otherwise.

We next discuss how to compute, in general, the maps

𝑑𝑛 : 𝐶𝑛 (𝑋) = Z#𝑛-cells → 𝐶𝑛−1(𝑋) = Z#(𝑛−1)-cells

of the cellular chain complex. Let us consider the 𝑛-cells {𝑒𝛼𝑛 }𝛼 as the basis for 𝐶𝑛 (𝑋) and the
(𝑛 − 1)-cells {𝑒𝛽𝑛−1}𝛽 as the basis for 𝐶𝑛−1(𝑋). In particular, we can write:

𝑑𝑛 (𝑒𝛼𝑛 ) =
∑
𝛽

𝑑𝛼,𝛽 · 𝑒𝛽𝑛−1 𝑑𝛼,𝛽 ∈ Z,

Proposition 6.1.6. (Cellular Boundary Formula) The coefficient 𝑑𝛼,𝛽 is equal to the degree of the
map Δ𝛼,𝛽 : S𝑛−1

𝛼 → S𝑛−1
𝛽 defined by the composition:

S𝑛−1
𝛼 = 𝜕D𝑛𝛼

𝜑𝑛𝛼−−→ 𝑋𝑛−1 = 𝑋𝑛−2 ∪𝛾 D𝑛−1
𝛾

collapse−−−−−−→ 𝑋𝑛−1/(𝑋𝑛−2 ∪𝛾≠𝛽 D𝑛−1
𝛾 ) = S𝑛−1

𝛽 ,

where 𝜑𝑛𝛼 is the attaching map of D𝑛𝛼, and the collapsing map sends 𝑋𝑛−2 ∪𝛾≠𝛽 D𝑛−1
𝛾 to a point.

PROOF. We will proceed with the proof by chasing the following diagram:

𝐻𝑛 (D𝑛𝛼, S𝑛−1
𝛼 ;Z) 𝐻𝑛 (S𝑛−1

𝛼 ;Z) 𝐻𝑛 (S𝑛−1
𝛽 ;Z)

𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1;Z) 𝐻𝑛−1(𝑋𝑛−1;Z) 𝐻𝑛−1(𝑋𝑛−1/𝑋𝑛−2;Z)

𝐻𝑛−1(𝑋𝑛−1, 𝑋𝑛−2;Z) 𝐻𝑛−1(𝑋𝑛−1/𝑋𝑛−2, 𝑋𝑛−2/𝑋𝑛−2;Z)

�

(Φ𝑛𝛼 )∗

(Δ𝛼,𝛽 )∗

(𝜙𝑛𝛼 )∗

𝑑𝑛

𝜕𝑛

𝑗𝑛−1

𝑞∗

𝑞𝛽,∗

�

�

The maps are as follows:
(1) Φ𝑛𝛼 is the characteristic map of the cell 𝑒𝑛𝛼, and 𝜙𝑛𝛼 is its attaching map.
(2) The map

𝑞∗ : 𝐻𝑛−1(𝑋𝑛−1;Z) → 𝐻𝑛−1(𝑋𝑛−1/𝑋𝑛−2;Z) =
⊕
𝛽

𝐻𝑛−1(D𝑛−1
𝛽 /𝜕D𝑛−1

𝛽 ;Z)

is induced by the quotient map 𝑞 : 𝑋𝑛−1 → 𝑋𝑛−1/𝑋𝑛−2.
(3) 𝑞𝛽 : 𝑋𝑛−1/𝑋𝑛−2 → S𝑛−1

𝛽 collapses the complement of the cell 𝑒𝑛−1
𝛽 to a point, the resulting

quotient sphere being identified with S𝑛−1
𝛽 = D𝑛−1

𝛽 /𝜕D𝑛−1
𝛽 via the characteristic mapΦ𝑛−1

𝛽 .
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(4) Δ𝛼𝛽 : S𝑛−1
𝛼 → S𝑛−1

𝛽 is the composition 𝑞𝛽 ◦ 𝑞 ◦ 𝜙𝑛𝛼, i.e., the attaching map of 𝑒𝑛𝛼 followed
by the quotient map 𝑋𝑛−1 → S𝑛−1

𝛽 collapsing the complement of D𝑛−1
𝛽 in 𝑋𝑛−1 to a point.

The top left-hand square commutes by naturality of the long-exact sequence in reduced homol-
ogy. The top right-hand square commutes by the definition of Δ𝛼,𝛽 . The bottom left-hand triangle
commutes by definition of 𝑑𝑛 . The bottom right-hand square commutes due to the relationship
between reduced and relative homology. The map (Φ𝑛𝛼)∗ takes the generator [D𝑛𝛼] ∈ 𝐻𝑛 (D𝑛𝛼, S𝑛−1

𝛼 )
to a generator of the Z-summand of 𝐻𝑛 (𝑋𝑛, 𝑋𝑛−1) corresponding to D𝑛𝛼, i.e.,

(Φ𝑛𝛼)∗([D𝑛𝛼]) = D𝑛𝛼
Since the top left square and the bottom left triangle both commute, this gives that∑

𝛽

𝑑𝛼,𝛽D
𝑛−1
𝛽 = 𝑑𝑛 (D𝑛𝛼) = 𝑑𝑛 ◦ (Φ𝛼

𝑛 )∗( [D𝑛𝛼]) = 𝑗𝑛−1 ◦ (𝜙𝑛𝛼)∗( [D𝑛𝛼]).

Here we have implicitly identified 𝐻𝑛 (D𝑛𝛼, S𝑛−1
𝛼 ) with 𝐻𝑛 (S𝑛−1

𝛼 ). Looking to the bottom right
square, recall that since 𝑋 is a CW complex, (𝑋𝑛, 𝑋𝑛−1) is a good pair. This gives the isomorphism

𝐻𝑛−1(𝑋𝑛−1, 𝑋𝑛−2;Z) � 𝐻𝑛−1(𝑋𝑛−1/𝑋𝑛−2;Z)
� 𝐻𝑛−1(𝑋𝑛−1/𝑋𝑛−2, 𝑋𝑛−2/𝑋𝑛−2;Z).

Notice that the map 𝑞𝛽 , collapsing all the 𝑛 − 1 cells of 𝑋 to the 𝑛 − 1 cell S𝑛−1
𝛽 , induces the map

𝑞𝛽,∗, which projects linear combinations of {D𝑛−1
𝛽′ } onto its summand of D𝑛−1

𝛽 . Therefore, the value
of 𝑑𝑛 (D𝑛𝑖 ) is going to be the sum of the projections 𝑞𝛽′ ,∗ on the 𝑛 − 1 dimensional cells 𝑒𝑛−1

𝛽 . In
other words: ∑

𝛽

𝑑𝛼,𝛽D
𝛽
𝛽 = 𝑑𝑛 (D𝛼𝑛 ) =

∑
𝛽

𝑞𝛽∗ ◦ 𝑞∗ ◦ (𝜙𝛼𝑛 )∗ ◦ [D𝛼𝑛 ] .

As noted before, we have defined (Δ𝛼𝛽)∗ = 𝑞𝛽∗ ◦ 𝑞∗ ◦ (𝜙𝛼𝑛 )∗. The result now follows. □

Example 6.1.7. Let 𝑋 = S2. We S2 with D2/∼ such that

(𝑥, 𝑦) ∼ (𝑥′, 𝑦′) = 𝑥′, 𝑦 = |𝑦′ |
This induces a cell decomposition into one 2-cell, the image of the interior, one 1-cell, the image
of S1 \ {(0, 1), (0,−1)}, and two 0-cells, the images of (0, 1) and (0, 1) which are 𝑁 and 𝑆. Let
𝐴 = {𝑁, 𝑆}. Since 𝐴 is a sub-complex, 𝑋/𝐴 inherits a CW complex structure with one one 2-cell,
one 1-cell and one 0-cell. We have

0→ Z 𝑑2−−→ Z 𝑑1−−→ Z→ 0

Since 𝑋/𝐴 is connected as has a single 0-cell, 𝑑1 ≡ 0. The attaching map of the two-cell in either

𝑁

𝑆

𝑋 = S2

𝑉

𝑉

𝑋 = S2/{𝑁, 𝑆}
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case can be identified with the map:

𝜙1,2(𝑒𝜙𝑖) =
{
𝑒𝑖𝜙 0 ≤ 𝜙 ≤ 𝜋
𝑒−𝑖𝜙 𝜋 ≤ 𝜙 ≤ 2𝜋

The map has degree 0. Hence, 𝑑2 ≡ 0. As a result, we have

𝐻𝑛 (S2/{𝑁, 𝑆};Z) =
{
Z, if 𝑛 = 0, 1, 2
0, otherwise.

Example 6.1.8. Recall thatRP𝑛 has a CW structure with one 𝑘-cellD𝑘 in each dimension 0 ≤ 𝑘 ≤ 𝑛.
The attaching map for D𝑘 is the standard 2-fold covering map 𝜙 : S𝑘−1 → RP𝑘−1 identifying a point
and its antipodal point in S𝑘−1. To compute the boundary map 𝑑𝑘 , we compute the degree of the
composition

𝑓 : S𝑘−1 −→ RP𝑘−1 −→ RP
𝑘−1

RP𝑘−2 = S𝑘−1

We consider a neighborhood 𝑉 of 𝑦 and the two neighborhoods 𝑈1 and 𝑈2 given to exist by the
local homeomorphism property of 𝑓 . One of the homeomorphisms is the identity map and the other
homemorphisms is the anti-podal map. Then by the local degree formula implies

𝑑𝑘 = 1 + (−1)𝑘

It follows that

𝑑𝑘 =

{
0 if 𝑘 is odd,
2 if 𝑘 is even,

and therefore we obtain that

𝐻𝑘 (RP𝑛;Z) =

Z2 if 𝑘 is odd, 0 < 𝑘 < 𝑛,
Z if 𝑘 = 0, 𝑛 is odd,
0 otherwise.

Example 6.1.9. Let 𝑀𝑔 be the closed oriented surface of genus 𝑔, with its usual CW structure:
one 0-cell, 2𝑔 1-cells {𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔}, and one 2-cell attached by the product of commutators
[𝑎1, 𝑏1] · . . . · [𝑎𝑔, 𝑏𝑔]. The associated cellular chain complex of 𝑀𝑔 is:

0 𝑑3−−→ Z 𝑑2−−→ Z2𝑔 𝑑1−−→ Z 𝑑0−−→ 0

Since 𝑀𝑔 is connected and has only one 0-cell, we get that 𝑑1 = 0. We claim that 𝑑2 is also the zero
map. As the attaching map sends the generator to 𝑎1𝑏1𝑎

−1
1 𝑏−1

1 . . . 𝑎𝑔𝑏𝑔𝑎
−1
𝑔 𝑏−1

𝑔 , when we collapse
all 1-cells (except 𝑎𝑖) to a point, the word defining the attaching map 𝑎1𝑏1𝑎

−1
1 𝑏−1

1 . . . 𝑎𝑔𝑏𝑔𝑎−1
𝑔 𝑏−1

𝑔

reduces to 𝑎𝑖𝑎−1
𝑖 . Hence, the coefficient𝑑𝑒𝑎𝑖 = 1 − 1 = 0. Altogether, 𝑑2(𝑒) = 0. So the homology

groups of 𝑀𝑔 are given by

𝐻𝑛 (𝑀𝑔;Z) =

Z for 𝑛 = 0, 2,
Z2𝑔 for 𝑛 = 1,
0 otherwise.

For 𝑔 = 3, see the figure below to visualize the 2𝑔 = 6 generators of 𝐻1(𝑀3):
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6.2. Euler Characteristic
Definition 6.2.1. Let 𝑋 be a finite CW complex of dimension 𝑛. The Euler characteristic of 𝑋 is
defined as:

𝜒(𝑋) =
𝑛∑
𝑖=0
(−1)𝑖 ·#𝑛 − cells =

𝑛∑
𝑖=0
(−1)𝑖 ·# rank(𝐶CW

𝑖 )

Here 𝐶CW
𝑖 is the 𝑖-th abelian group in the chain complex that determines cellular homology. We

show that the Euler characteristic does not depend on the cell structure chosen for the space 𝑋 . As
we will see below, this is not the case.

Proposition 6.2.2. The Euler characteristic can be computed as:

𝜒(𝑋) =
𝑛∑
𝑖=0
(−1)𝑖 · rank(𝐻CW

𝑖 (𝑋;Z))

In particular, 𝜒(𝑋) is independent of the chosen cell structure on 𝑋 .
PROOF. We use the following notation: 𝐵𝑖 = im(𝑑𝑖+1), 𝑍𝑖 = ker(𝑑𝑖), and 𝐻CW

𝑖 = 𝑍𝑖/𝐵𝑖 . The
additivity of rank yields that

rank(𝐶𝑖) = rank(𝑍𝑖) + rank(𝐵𝑖−1)
rank(𝑍𝑖) = rank(𝐵𝑖) + rank(𝐻CW

𝑖 )
Substitute the second equality into the first, multiply the resulting equality by (−1)𝑖 , and sum over 𝑖
to get that

𝜒(𝑋) =
𝑛∑
𝑖=0
(−1)𝑖 · rank(𝐻CW

𝑖 )

Since cellular homology is isomorphic to singular homology and the latter is homotopy invariant,
the result follows.. □

Proposition 6.2.3. Let 𝑋,𝑌 be finite-dimensional CW complexes and let

𝜒(𝑋) =
𝑛∑
𝑖=0
(−1)𝑖𝑎𝑖

𝜒(𝑌 ) =
𝑚∑
𝑗=0
(−1) 𝑗𝑏 𝑗

Here 𝑎𝑖 is the number of 𝑖-cells in 𝑋 . Similarly, 𝑏 𝑗 is the number of 𝑗-cells in 𝐵 The Euler charac-
teristic enjoys some nice properties:

(1) 𝜒(𝑋 × 𝑌 ) = 𝜒(𝑋) × 𝜒(𝑌 )
(2) If 𝑋 = 𝐴 ∪ 𝐵 such that 𝐴, 𝐵 are sub-complexes of 𝑋 . Then

𝜒(𝑋) = 𝜒(𝐴) + 𝜒(𝐵) − 𝜒(𝐴 ∩ 𝐵)
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(3) If 𝑝 : 𝑋 → 𝑋 is an 𝑛-sheeted covering space, then
𝜒(𝑋) = 𝑛𝜒(𝑋)

PROOF. The proof is given below:
(1) For any index 𝑘 , 𝑘-cells in 𝑋 × 𝑌 are created by considering products of 𝑟-cells and 𝑘 − 𝑟

cells from X and Y respectively where 0 ≤ 𝑟 ≤ 𝑘 . Hence the number of 𝑘-cells is
𝑘∑
𝑟=0

𝑎𝑟𝑏𝑘−𝑟

Therefore,

𝜒(𝑋) × 𝜒(𝑌 ) =
(
𝑛∑
𝑖=0
(−1)𝑖𝑎𝑖

)
×

(
𝑚∑
𝑗=0
(−1) 𝑗𝑏 𝑗

)
=
𝑚+𝑛∑
𝑘=0
(−1)𝑘

𝑘∑
𝑟=0

𝑎𝑟𝑏𝑘−𝑟 = 𝜒(𝑋 × 𝑌 )

(2) Let 𝑎𝐴𝑖 denote the number of 𝑖-cells in 𝐴. Similarly, let 𝑎𝐵𝑖 be the number of 𝑖-cells in 𝐵.
Similarly, let 𝑎𝐴∩𝐵𝑖 be the number of 𝑖-cells in 𝐴 ∩ 𝐵. We have

𝑎𝑖 = 𝑎
𝐴
𝑖 + 𝑎𝐵𝑖 − 𝑎𝐴∩𝐵𝑖

for 𝑖 = 1, · · · , 𝑛. Therefore, we have,

𝜒(𝑋) =
𝑛∑
𝑖=0
(−1)𝑖𝑎𝑖

=
𝑛∑
𝑖=0
(−1)𝑖𝑎𝐴𝑖 +

𝑛∑
𝑖=0
(−1)𝑖𝑎𝐵𝑖 −

𝑛∑
𝑖=0
(−1)𝑖𝑎𝐴∩𝐵𝑖

= 𝜒(𝐴) + 𝜒(𝐵) − 𝜒(𝐴 ∩ 𝐵)

(3) Recall that if D𝑘𝛼 is a 𝑘-cell in 𝑋 , then 𝑋 has 𝑛 𝑘-cells. Therefore, it is clear that

𝜒(𝑋) = 𝑛𝜒(𝑋)
This completes the proof. □

Example 6.2.4. Let 𝑀𝑔 be the oriented surface of genus 𝑔, and let 𝑁𝑔 be the oriented surface of
genus 𝑔. We have

𝜒𝑀𝑔 = 2 − 2𝑔
𝜒𝑁𝑔 = 2 − 𝑔

Thus all the 𝑀𝑔, 𝑁𝑔 are distinguished from each other by their Euler characteristics. There are only
the relations

𝜒(𝑀𝑔) = 𝜒(𝑁2𝑔)

6.3. Tor Functor
We now discuss the Tor (derived) functor which will play an important role in the discussion of

homology with coefficients. Further details on derived functors and related topics can be found in
Chapter 15.

Remark 6.3.1. We work with commutative rings below. Hence, we don’t make any distinction be-
tween the categories of left 𝑅-modules and right 𝑅-modules. We use the generic phrase ‘𝑅-module’
to refer to a left/right 𝑅-module.
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Recall that the tensor product, ⊗𝑅, defines a functor from the category of 𝑅-modules to itself
such that if 𝑁 is a 𝑅-module, then

− ⊗𝑅 𝑀 (𝑁) = 𝑁 ⊗𝑅 𝑀
Moreover, if 𝑓 : 𝑁 → 𝑁 ′ is a 𝑅-module morphism, then

− ⊗𝑅 𝑀 ( 𝑓 ) : 𝑁 ⊗𝑅 𝑀
𝑓 ⊗𝑅Id𝑀−−−−−−−→ 𝑁 ′ ⊗𝑅 𝑀

It can be checked that − ⊗𝑅 𝑀 is a right exact functor. However, − ⊗𝑅 𝑀 is not a left exact functor
in general.

Example 6.3.2. The functor − ⊗𝑅 𝑀 need not be left exact functor. Let 𝑅 = Z. Consider the
sequence:

0→ Z ·𝑛−→ Z
Here ·𝑛 is the multiplication by 𝑛 map. Let 𝑀 = Z/𝑛Z we obtain a map:

Z/𝑛Z � Z ⊗Z Z/𝑛Z
·𝑛⊗ZIdZ/𝑛Z−−−−−−−−−→ Z ⊗Z Z/𝑛Z � Z/𝑛Z

However, this is the zero map since we have
·𝑛 ⊗Z IdZ/𝑛Z(1 ⊗Z 𝑚) = 𝑛 ⊗Z 𝑚 = 1 ⊗Z 𝑛𝑚 = 0.

The zero map is not injective.

Remark 6.3.3. A 𝑅-module 𝑀 is called flat if − ⊗𝑅 𝑀 is a left exact functor. If 𝑀 is a projective
𝑅-module, then −⊗𝑅𝑀 is a left exact functor. This follows because a projective 𝑅-module is a direct
summand of a free 𝑅-module, a free 𝑅-module is a flat module and that a 𝑅-module is flat if and
only if each summad is a flat 𝑅-module.

Since the − ⊗𝑅 𝑀 functor is a right exact functor which in general is not a left exact functor, we
can consider its left derived functor.

Definition 6.3.4. Let 𝑅 be a ring and let 𝑀 be a 𝑅-module. The 𝑖-th Tor functor is the 𝑖-th left
derived functor of − ⊗𝑅 𝑀 . It is denoted as

Tor𝑅𝑖 (−, 𝑀)

By definition, Tor𝑅𝑖 (−, 𝑀) is computed as follows. If 𝑁 is a 𝑅-module, take any projective
resolution

· · · → 𝑃1 → 𝑃0 → 𝑁 → 0,
and form the chain complex:

· · · → 𝑃2 ⊗𝑅 𝑀 → 𝑃1 ⊗𝑅 𝑀 → 𝑃0 ⊗𝑅 𝑀
Then Tor𝑅𝑖 (𝑁, 𝑀) is the homology of this complex at position 𝑖.

Tor𝑅𝑖 (𝑁, 𝑀) = 𝐻𝑖 ((𝑃𝑖 ⊗𝑅 𝑀)•)
Remark 6.3.5. General results about derived functors (Chapter 15) show that the homology is in-
dependent of the choice of the projective resolution.

If 𝑅 is a commutative ring and 𝑀 is a 𝑅-module, we can define another functor 𝑀 ⊗𝑅 −. The
definition is similar to that of the functor defined above. It can also be checked that 𝑀 ⊗𝑅 − is right
exact functor that is, in general, not left exact. Hence, we can attempt to construct a left-derived
functor associated to 𝑀 ⊗𝑅 − as above. We label that derived functor Tor𝑅𝑖 (𝑀,−). We have the
following result:
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Proposition 6.3.6. (Balanacing Tor) Let 𝑅 be a ring, 𝑀, 𝑁 be 𝑅-modules. Denote by Tor𝑅∗ (𝑁,−)
the left-derived functors of the tensor product functor 𝑁 ⊗𝑅 −, and by Tor𝑅∗ (−, 𝑀) the left-derived
functors of − ⊗𝑅 𝑀 . We have that

Tor𝑅∗ (𝑁, 𝑀) � Tor𝑅∗ (𝑀, 𝑁)

PROOF. We provide an argument based on homological spectral sequences of double complexes. We
choose projective resolutions

· · · → 𝑃2 → 𝑃1 → 𝑃0 → 𝑁 → 0,
· · · → 𝑄2 → 𝑄1 → 𝑄0 → 𝑀 → 0

of 𝑁 and 𝑀 , respectively. We define a first quadrant homological double complex 𝐶•,• by
𝐶𝑝,𝑞 = 𝑃𝑝 ⊗ 𝑄𝑞,

where the maps are the induced ones coming from the maps in the projective resolutions. The double
complex can be visualized as follows:

...
...

...

𝑃0 ⊗ 𝑄2 𝑃1 ⊗ 𝑄2 𝑃2 ⊗ 𝑄2 · · ·

𝑃0 ⊗ 𝑄1 𝑃1 ⊗ 𝑄1 𝑃2 ⊗ 𝑄1 · · ·

𝑃0 ⊗ 𝑄0 𝑃1 ⊗ 𝑄0 𝑃2 ⊗ 𝑄0 · · ·

Since projective modules are flat modules, the rows and columns of this double complex are in-
deed complexes, and the squares in the double complex are commutative. We first filter this double
complex by columns. Note that the homology in the vertical direction determines the 𝐸1 page such
that

𝐸1
𝑝,𝑞 = Tor𝑅𝑞 (𝑃𝑝, 𝑀).

Since 𝑃𝑝 are projective and hence flatmodules, we haveTor𝑅𝑞 (𝑃𝑝, 𝑀) = 0 for 𝑞 > 0, andTor𝑅0 (𝑃𝑝, 𝑀) =
𝑃𝑝 ⊗ 𝑀 . Thus, the 𝐸1 page is:

...
...

...

0 0 0 · · ·

𝑃0 ⊗ 𝑀 𝑃1 ⊗ 𝑀 𝑃2 ⊗ 𝑀 · · ·

Taking homology of the 𝐸1 page yields the 𝐸2 page:

0 0 0 0 0 0

Tor𝑅0 (𝑁, 𝑀) Tor𝑅1 (𝑁, 𝑀) Tor𝑅2 (𝑁, 𝑀) Tor𝑅3 (𝑁, 𝑀) Tor𝑅4 (𝑁, 𝑀) Tor𝑅5 (𝑁, 𝑀)
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In a similar manner, we can filter the double complex by rows, and we obtain a spectral sequence
whose 𝐸2-page looks like:

0 0 0 0 0 0

Tor𝑅0 (𝑀, 𝑁) Tor𝑅1 (𝑀, 𝑁) Tor𝑅2 (𝑀, 𝑁) Tor𝑅3 (𝑀, 𝑁) Tor𝑅4 (𝑀, 𝑁) Tor𝑅5 (𝑀, 𝑁)

For both spectral sequences, we have 𝐸 𝑝,𝑞2 = 𝐸 𝑝,𝑞∞ . Since both spectral sequences converge to the
associated graded object, we can conclude that

Tor𝑅∗ (𝑁, 𝑀) � Tor𝑅∗ (𝑀, 𝑁).
This completes the proof. □

Remark 6.3.7. In light of Proposition 6.3.6, we can identify the two Tor functors. This allows us to
compute projective resolutions of either 𝑁 or 𝑀 to compute Tor𝑅𝑖 (𝑁, 𝑀) for each 𝑖 ≥ 0.

Proposition 6.3.8. Let 𝑅 be a commutative ring and let 𝑀 be a 𝑅-module. The Tor functor satisfies
the following properties:

(1) Tor𝑅0 (𝑁, 𝑀) � 𝑁 ⊗𝑅 𝑀 for any 𝑅-modules 𝑀, 𝑁 .
(2) If 𝑁 is a projective 𝑅-module, then Tor𝑅𝑖 (𝑁, 𝑀) = 0 for all 𝑖 ≥ 1
(3) Any 𝑓 : 𝑁1 → 𝑁2 𝑅-module homomorphism induces a morphism

𝑓 𝑖∗ : Tor𝑅𝑖 (𝑁1, 𝑀) −→ Tor𝑅𝑖 (𝑁2, 𝑀)
for each 𝑖 ≥ 0.

(4) Any short exact sequence 0 → 𝑁1
𝜙−→ 𝑁2

𝜓−→ 𝑁3 → 0 of 𝑅-modules induces a long exact
sequence:

· · · −→ Tor𝑅1 (𝑁1, 𝑀) −→ Tor𝑅1 (𝑁2, 𝑀) −→ Tor𝑅1 (𝑁3, 𝑀) −→ 𝑁1 ⊗𝑅 𝑀 −→ 𝑁2 ⊗𝑅 𝑀 −→ 𝑁3 ⊗𝑅 𝑀 −→ 0

PROOF. (1) and (2) follow from general properties of derived functors (Corollary 15.4.15). For (3),
let 𝑃•1 be a projective resolution of 𝑁1 and 𝑃•2 be a projective resolution of 𝑁2. General properties
about projective resolutions imply that that 𝑓 lifts to a chain map 𝜑• : 𝑃•1 −→ 𝑃•2. Then, 𝜑

• induces
a morphism of chain complexes 𝑃•1 ⊗𝑅 𝑀 −→ 𝑃•2 ⊗𝑅 𝑀 which, in turn, induces a morphism:

𝑓 𝑖∗ : Tor𝑅𝑖 (𝑁1, 𝑀) −→ Tor𝑅𝑖 (𝑁2, 𝑀)
for each 𝑖 ≥ 0. For (4), let 𝑃• be a projective resolution of 𝑀 . Then there is an induced short exact
sequence of chain complexes:

0→ 𝑁1 ⊗𝑅 𝑃• −→ 𝑁2 ⊗𝑅 𝑃• −→ 𝑁3 ⊗𝑅 𝑃• → 0
because each module 𝑃𝑖 is projective. Applying the long exact sequence in homology produces the
required long exact sequence. □

We now specialize to the category of Z-modules. In what follows, we fix 𝐺 to be an abelian
group. We have the following result:

Lemma 6.3.9. For any abelian group 𝐴, we have TorZ𝑖 (𝐴, 𝐺) = 0 if 𝑖 > 1.

PROOF. Recall that any abelian group, 𝐴, admits a two-step free resolution.
0→ 𝐹1 → 𝐹0 → 𝐴→ 0

Thus, TorZ𝑖 (𝐴, 𝐺) = 0 if 𝑖 > 1. □
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Remark 6.3.10. Only TorZ1 (−, 𝐺) encodes any interesting information. In what follows, we adopt
the notation: Tor(−, 𝐺) := TorZ1 (−, 𝐺).
Proposition 6.3.11. If 𝑅 = Z, the Tor functor satisfies the following properties:

(1) Tor
(⊕

𝑖 𝐴𝑖 , 𝐺
)
�

⊕
𝑖 Tor(𝐴𝑖 , 𝐺).

(2) If 𝐴 is a free abelian group, then Tor(𝐴, 𝐺) = 0.
(3) Tor(Z/𝑛Z, 𝐺) � ker(𝐺 𝑛−→ 𝐺).
(4) For a short exact sequence: 0→ 𝐵 → 𝐶 → 𝐷 → 0 of abelian groups, there is a natural

exact sequence:
0→ Tor(𝐵, 𝐺) → Tor(𝐶,𝐺) → Tor(𝐷,𝐺) → 𝐵 ⊗𝑅 𝐺 → 𝐶 ⊗𝑅 𝐺 → 𝐷 ⊗𝑅 𝐺 → 0.

PROOF. The proof is given below:
(1) This follows from the identity,(⊕

𝑖

𝐴𝑖

)
⊗Z 𝐺 =

⊕
𝑖

(𝐴𝑖 ⊗Z 𝐺)

and noting that taking direct sums of projective resolutions of 𝐴𝑖 forms a projective reso-
lution for

⊕
𝑖 𝐴

𝑖 , and that homology commutes with direct sums.
(2) If 𝐴 is free, then 0→ 𝐴→ 𝐴→ 0 is a projective resolution of 𝐴, so Tor(𝐴, 𝐺) = 0.
(3) The exact sequence 0 → Z

·𝑛−→ Z → Z/𝑛Z → 0 is a projective resolution of Z/𝑛Z.
Tensoring with 𝐺 and dropping the right-most term yields the complex:

𝐺 � Z ⊗𝑅 𝐺
·𝑛⊗𝑅1𝐺−−−−−−→ 𝐺 � Z ⊗𝑅 𝐺 → 0,

Thus, Tor(Z/𝑛Z, 𝐺) = ker(𝐺 𝑛−→ 𝐺).
(4) This follows from Proposition 6.3.8(4).

This completes the proof. □

6.4. Homology with Coefficients & Universal Coefficient Theorem
In this section, we discuss homology with coefficients and the universal coefficient theorem in

homology.

Definition 6.4.1. Let 𝐺 be an abelian group and 𝑋 a topological space. The homology of 𝑋 with
𝐺-coefficients, denoted 𝐻𝑛 (𝑋;𝐺) for 𝑛 ∈ N, is the homology of the chain complex:

𝐶•(𝑋;𝐺) = 𝐶•(𝑋) ⊗Z 𝐺
consisting of finite formal sums

∑
𝑖 𝜂𝑖 · 𝜎𝑖 with 𝜂𝑖 ∈ 𝐺, and with boundary maps given by

𝜕𝐺𝑛 := 𝜕𝑛 ⊗Z Id𝐺 .

Remark 6.4.2. Since 𝜕𝑛 satisfies 𝜕𝑛◦𝜕𝑛+1 = 0, it follows that 𝜕𝐺𝑛 ◦𝜕𝐺𝑛+1 = 0. Hence, (𝐶•(𝑋);𝐺, 𝜕𝐺• )
is indeed a chain complex.

We can construct versions of the usual modified homology groups (relative, reduced, etc.) in the
most natural way.

(1) (Relative homology with 𝐺-coefficients) Consider the augmented chain complex:
𝐶1(𝑋;𝐺) → 𝐶0(𝑋;𝐺) → 𝐺 → 0

where 𝜖 (∑𝑖 𝜂𝑖𝜎𝑖) =
∑
𝑖 𝜂𝑖 ∈ 𝐺. Reduced homology with 𝐺-coefficients is defined as the

homology of the augmented chain complex.
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(2) (Relative chain Complex with 𝐺-coefficients) Define relative chains with 𝐺-coefficients
by:

𝐶𝑛 (𝑋, 𝐴;𝐺) := 𝐶𝑛 (𝑋;𝐺)/𝐶𝑛 (𝐴;𝐺),
Consider the chain complex:

𝐶1(𝑋, 𝐴;𝐺) → 𝐶0(𝑋, 𝐴;𝐺) → 0

The relative homologywith𝐺-coefficients is defined as the homology of the augmeneted
chain complex.

(3) (Cellular homologywith𝐺-coefficients)Wecan build cellular homologywith𝐺-coefficients
by defining

𝐶𝐺𝑛 (𝑋) = 𝐻𝑛 (𝑋𝑛, 𝑋𝑖−1;𝐺) � 𝐺 (number of 𝑖-cells)

The cellular boundary maps are given by:

𝑑𝐺𝑛
(
𝑒𝛼𝑛

)
=

∑
𝛽

𝑑𝛼𝛽𝑒
𝛽
𝑖−1,

where 𝑑𝛼𝛽 is as before the degree of a map Δ𝛼𝛽 : S𝑛−1 → S𝑛−1. As it is the case for
integers, we get an isomorphism:

𝐻CW
𝑛 (𝑋;𝐺) � 𝐻𝑛 (𝑋;𝐺)

Example 6.4.3. Let’s look at some examples:
(1) By studying the chain complex with 𝐺-coefficients, it follows that:

𝐻𝑛 ({∗};𝐺) =
{
𝐺 if 𝑛 = 0,
0 if 𝑛 ≠ 0.

(2) (Sketch) The homology of a sphere as before by induction and using the long exact sequence
of the pair (D𝑛, S𝑛) to be:

𝐻𝑛 (S𝑛;𝐺) =
{
𝐺 if 𝑖 = 0, 𝑛,
0 otherwise.

The result will follow more easily from our discussion of the universal coefficient theorem below.

We now prove an important theorem that relates how homology with different coefficients are
connected. Changing the coefficient group in homology can alter the resulting invariants, and un-
derstanding this relationship is essential for computations and deeper theoretical insights. The theo-
rem we present provides a precise mechanism—often involving universal coefficient theorems—for
translating between homology groups with various coefficients.

Proposition 6.4.4. (Universal Coefficient Theorem) If a chain complex (𝐶•, 𝜕•) of free abelian
groups has homology groups 𝐻𝑛 (𝐶•), then the homology groups 𝐻𝑛 (𝐶•;𝐺) are determined by the
short exact sequence:

0→ 𝐻𝑛 (𝐶•) ⊗Z 𝐺 → 𝐻𝑛 (𝐶•;𝐺)
ℎ−→ Tor(𝐻𝑛−1(𝐶•), 𝐺) → 0

PROOF. Choose a projective resolution for 𝐺:

· · · −→ 𝑃2 −→ 𝑃1 −→ 𝑃0 −→ 𝐺 −→ 0.
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We define a first quadrant homological double complex 𝐶•,• by 𝐶𝑝,𝑞 = 𝑃𝑝 ⊗ 𝐶𝑞, where the maps
are the induced ones coming from the maps in the projective resolutions. The double complex can
be visualized as follows:

...
...

...

𝑃0 ⊗ 𝐶2 𝑃1 ⊗ 𝐶2 𝑃2 ⊗ 𝐶2 · · ·

𝑃0 ⊗ 𝐶1 𝑃1 ⊗ 𝐶1 𝑃2 ⊗ 𝐶1 · · ·

𝑃0 ⊗ 𝐶0 𝑃1 ⊗ 𝐶0 𝑃2 ⊗ 𝐶0 · · ·

We first filter this double complex by columns. Taking the homology in the vertical direction, we
obtain the 𝐸1 page:

...
...

...

𝑃0 ⊗ 𝐻2(𝐶) 𝑃1 ⊗ 𝐻2(𝐶) 𝑃2 ⊗ 𝐻2(𝐶) · · ·

𝑃0 ⊗ 𝐻1(𝐶) 𝑃1 ⊗ 𝐻1(𝐶) 𝑃2 ⊗ 𝐻1(𝐶) · · ·

𝑃0 ⊗ 𝐻0(𝐶) 𝑃1 ⊗ 𝐻0(𝐶) 𝑃2 ⊗ 𝐻0(𝐶) · · ·

This follows because 𝑃𝑝 ⊗− is an exact functor. The rows here correspond to the complexes used to
calculate TorZ∗ (𝐺,−), so the (𝑝, 𝑞)-th entry on the 𝐸2 page is TorZ𝑞 (𝐺, 𝐻𝑝 (𝐶)). Let’s examine this
more closely. Applying 𝐺 ⊗ − to the short exact sequence of chain complexes

0 −→ im 𝑑• −→ ker 𝑑• −→ 𝐻•(𝐶•) −→ 0

and deriving gives a long exact sequence:

· · · → TorZ2 (𝐺, 𝐻𝑛 (𝐶)) → TorZ1 (𝐺, im 𝑑𝑛−1) → TorZ1 (𝐺, ker 𝑑𝑛) → TorZ1 (𝐺, 𝐻𝑛 (𝐶)) → TorZ0 (𝐺, im 𝑑𝑛−1) → · · ·

But since im 𝑑𝑛−1 and ker 𝑑𝑛 are subgroups of the free abelian group 𝐶𝑛, they are themselves free.
Therefore, the higher Tor groups vanish. By the long exact sequence, it follows thatTorZ𝑞 (𝐺, 𝐻𝑝 (𝐶)) =
0 for all 𝑞 ≥ 2. Hence, the 𝐸2 page looks as follows:

TorZ0 (𝐺, 𝐻2(𝐶•)) TorZ1 (𝐺, 𝐻2(𝐶•)) 0 0

TorZ0 (𝐺, 𝐻1(𝐶•)) TorZ1 (𝐺, 𝐻1(𝐶•)) 0 0

TorZ0 (𝐺, 𝐻0(𝐶•)) TorZ1 (𝐺, 𝐻0(𝐶•)) 0 0
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By Remark 4.6.6, we have

0 −→ 𝐸2
0,𝑛 −→ 𝑀𝑛 −→ 𝐸2

1,𝑛−1 −→ 0

Note that 𝐸2
0,𝑛 = TorZ0 (𝐺, 𝐻𝑛 (𝐶•)) = 𝐺 ⊗ 𝐻𝑛 (𝐶•) and 𝐸2

1,𝑛−1 = TorZ1 (𝐺, 𝐻𝑛−1(𝐶•)). Hence, the
exact sequence becomes

0 −→ 𝐺 ⊗ 𝐻𝑛 (𝐶•) −→ 𝑀𝑛 −→ TorZ1 (𝐺, 𝐻𝑛−1(𝐶•)) −→ 0
To identify 𝑀𝑛, we now filter the double complex by rows. This amounts to considering a spectral
sequence whose 𝐸0 page is the transposed double complex:

...
...

...

𝑃2 ⊗ 𝐶0 𝑃2 ⊗ 𝐶1 𝑃2 ⊗ 𝐶2 · · ·

𝑃1 ⊗ 𝐶0 𝑃1 ⊗ 𝐶1 𝑃1 ⊗ 𝐶2 · · ·

𝑃0 ⊗ 𝐶0 𝑃0 ⊗ 𝐶1 𝑃0 ⊗ 𝐶2 · · ·

Here the vertical maps are induced by the horizontal maps of the double complex. Hence, taking
the homology in the vertical direction of the transposed double complex is equivalent to taking the
homology of the double complex in the horizontal direction. Thus, the (𝑝, 𝑞)-th entry of the 𝐸1 page
is Tor𝑝 (𝐺,𝐶𝑞). For 𝑝 ≥ 1, this vanishes because each 𝐶𝑞 is a free abelian group. Moreover, we
have Tor0(𝐺,𝐶𝑞) = 𝐺 ⊗ 𝐶𝑞. Hence, the 𝐸1 page is given by:

...
...

...

0 0 0 · · ·

𝐺 ⊗ 𝐶0 𝐺 ⊗ 𝐶1 𝐺 ⊗ 𝐶2 · · ·

Here the horizontal differentials are induced by the vertical differentials of the double complex.
Taking homology, on the 𝐸2 page, everything except the bottom row is zero. In the bottom row, we
have:

𝐻0(𝐺 ⊗ 𝐶•) 𝐻1(𝐺 ⊗ 𝐶•) 𝐻2(𝐺 ⊗ 𝐶•) · · ·
This shows that 𝑀𝑛 = 𝐻𝑛 (𝐺 ⊗ 𝐶•). Therefore, we obtain the short exact sequence:

0 −→ 𝐺 ⊗ 𝐻𝑛 (𝐶•) −→ 𝐻𝑛 (𝐺 ⊗ 𝐶•) −→ TorZ1 (𝐺, 𝐻𝑛−1(𝐶•)) −→ 0
This completes the proof. □

Remark 6.4.5. It can be checked that the sequence in Proposition 6.4.4 splits.

Remark 6.4.6. There is also a universal coefficient theorem for homology where Z is replaced by a
PID, 𝑅 and 𝐺 is a 𝑅-module. In this case, we have

0 𝐻𝑛 (𝐶•) ⊗𝑅 𝐺 𝐻𝑛 (𝐶•;𝐺) Tor𝑅1 (𝐻𝑛−1(𝐶•), 𝐺) 0ℎ
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This comes from first establishing that Tor𝑅𝑖 vanishes for 𝑖 ≥ 2 for when 𝑅 is a PID, and then going
through a proof for universal coefficient theorem essentially as above.

Example 6.4.7. Suppose 𝑋 = 𝐾 is the Klein bottle, and 𝐺 = Z/4. Recall that 𝐻1(𝐾;Z) = Z ⊕ Z/2,
and 𝐻2(𝐾;Z) = 0, so:

𝐻2(𝐾;Z/4) = (𝐻2(𝐾;Z) ⊗Z Z/4) ⊕ Tor(𝐻1(𝐾),Z/4)
= Tor(Z,Z/4) ⊕ Tor(Z/2,Z/4)
= 0 ⊕ Z/2
= Z/2.

Example 6.4.8. Let 𝑋 = RP𝑛 and 𝐺 = 𝑍/2Z. Recall that we have

𝐻𝑘 (RP𝑛;Z) =

Z/2Z if 𝑘 is odd, 0 < 𝑘 < 𝑛,
Z if 𝑘 = 0, 𝑛 is odd,
0 otherwise.

We compute 𝐻𝑘 (RP𝑛;Z/2Z). We consider multiple cases. For 𝑘 = 0, we have:

𝐻0(RP𝑛;Z/2Z) � 𝐻0(RP𝑛;Z) ⊗Z Z/2Z = Z ⊗Z Z/2Z � Z/2Z.

For 𝑘 = 1, we have:

𝐻1(RP𝑛;Z/2Z) � 𝐻1(RP𝑛;Z) ⊗Z Z/2Z ⊕ Tor(𝐻0(RP𝑛),Z/2Z)
= (Z/2Z ⊗Z Z/2Z) ⊕ Tor(Z,Z/2Z)
= Z/2Z ⊕ 0 = Z/2Z.

For 1 < 𝑘 < 𝑛, such that 𝑘 is an odd integer, we have

𝐻𝑘 (RP𝑛;Z/2Z) � (𝐻𝑘 (RP𝑛;Z) ⊗Z Z/2Z) ⊕ Tor(𝐻𝑘−1(RP𝑛;Z),Z/2Z)
= (Z/2Z ⊗Z Z/2Z) ⊕ Tor(0,Z/2Z)
= Z/2Z

For 1 < 𝑘 < 𝑛, such that 𝑘 is an even integer, we have

𝐻𝑘 (RP𝑛;Z/2Z) � (𝐻𝑘 (RP𝑛;Z) ⊗Z Z/2Z) ⊕ Tor(𝐻𝑘−1(RP𝑛;Z),Z/2Z)
= (0 ⊗Z Z/2Z) ⊕ Tor(Z/2Z,Z/2Z)
= Z/2Z

For 𝑘 = 𝑛 even, we have

𝐻𝑘 (RP𝑛;Z/2Z) = (0 ⊗Z Z/2Z) ⊕ Tor(Z/2Z,Z/2Z) � Z/2Z

If 𝑘 = 𝑛 is odd, we have

𝐻𝑘 (RP𝑛;Z/2Z) = (Z ⊗Z Z/2Z) ⊕ Tor(0,Z/2Z) � Z/2Z

All in all, we have

𝐻𝑘 (RP𝑛;Z/2Z) =
{
Z/2Z if 𝑘 = 0, · · · , 𝑛
0 otherwise.
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6.5. Künneth Formula
6.6. Equivalence of Homology Theories

We have encountered various homology theories, including singular, simplicial, and cellular ho-
mology, and have seen that they all coincide in specific cases. For instance, if a topological space
admits a Δ-complex structure, the singular and simplicial homologies coincide. Similarly, if a topo-
logical space admits a CW-complex structure, the singular and cellular homologies coincide. We
now demonstrate that this is a specific instance of a more general principle: homology theories are
uniquely determined on well-behaved topological spaces, particularly within the category of CW
pairs.

Proposition 6.6.1. Let ℎ∗ be a homology theory in the sense of Definition 5.2.1 with Z coefficients
defined as a collection of functors

ℎ𝑛 : CW2 → Ab
If ℎ𝑛 (∗;Z) � 0 for 𝑛 ≠ 0, then there exists a natural isomorphism

ℎ𝑛 (𝑋, 𝐴) � 𝐻𝑛 (𝑋, 𝐴;𝐺)
for all CW-pairs (𝑋, 𝐴) and for all 𝑛 ≥ 1, where 𝐺 := ℎ0(∗;Z) ∈ Ab.

PROOF. Since (𝑋, 𝐴) is a good pair, we have an isomorphism
ℎ𝑛 (𝑋, 𝐴;Z) � ℎ̃𝑛 (𝑋/𝐴;Z)

for all 𝑛 ≥ 0. This is a formal consequence of Eilenberg-Steenrod axioms that we have verified for
singular homology. Hence, we only need to check the absolute case. Just as for singular homology,
we have

ℎCW
𝑛 (𝑋;Z) � ℎ𝑛 (𝑋;Z)

The hypothesis that ℎ𝑛 (∗;Z) = 0 for 𝑛 ≠ 0 is used here. The long exact sequences of ℎ∗ homology
groups for the pairs (𝑋𝑛, 𝑋𝑛−1) give rise to a cellular chain complex.

· · · → ℎCW
𝑛 (𝑋𝑛, 𝑋𝑛−1;Z) 𝑑𝑛−−→ ℎCW

𝑛−1 (𝑋𝑛−1, 𝑋𝑛−2;Z) → · · ·
We also have

· · · → 𝐻CW
𝑛 (𝑋𝑛, 𝑋𝑛−1;𝐺) 𝜕𝑛−−→ 𝐻CW

𝑛−1 (𝑋𝑛−1, 𝑋𝑛−2;𝐺) → · · ·
The individual groups are isomorphic, since

ℎCW
𝑛 (𝑋𝑛, 𝑋𝑛−1;Z) � 𝐺#𝑛-cells � 𝐻CW

𝑛 (𝑋𝑛, 𝑋𝑛−1;𝐺).
Thus, it remains to show that 𝑑𝑛 = 𝜕𝑛 for 𝑛 ≥ 1. For 𝑛 = 1, we can pass from 𝑋 to 𝑆2𝑋 since
suspension is a natural isomorphism in any homology theory. 𝑆2𝑋 has no 1-cells, so immediately
𝑑1 = 0 = 𝜕1. Now let 𝑛 > 1. The calculation of cellular boundary maps 𝑑𝑛 for 𝑛 > 1 in terms of
degrees of certain maps between spheres works equally well for ℎ∗, where degree now means degree
with respect to the ℎ∗ theory. But a map

𝑓 : S𝑛 → S𝑛

of degree 𝑚 in the usual sense is simply multiplication by 𝑚 on 𝐻𝑛 (S𝑛;𝐺) � 𝐺 � ℎ𝑛 (S𝑛;𝐺). The
claim follows. □
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CHAPTER 7

Singular Cohomology

7.1. Definitions
In parallel with the theory of singular homology, we develop the theory of singular cohomology.

Let 𝐺 be an abelian group and let 𝑋 be a topological space with a singular chain complex (𝐶•, 𝜕•)
of abelian groups:

· · · 𝜕𝑛+1−−−→ 𝐶𝑛 (𝑋)
𝜕𝑛−−→ 𝐶𝑛−1(𝑋)

𝜕𝑛−1−−−−→ 𝐶𝑛−2(𝑋)
𝜕𝑛−2−−−−→ · · · .

Consider 𝐶∗𝑛 (𝑋) = Hom(𝐶𝑛 (𝑋), 𝐺), the group of singular 𝑛 co-chains of 𝑋 with 𝐺-coefficients.
This defines the dual chain complex:

𝜕∗𝑛+1←−−− 𝐶∗𝑛 (𝑋)
𝜕∗𝑛←−− 𝐶∗𝑛−1(𝑋)

𝜕∗𝑛−1←−−−− 𝐶∗𝑛−2(𝑋)
𝜕∗𝑛−2←−−−− · · · .

Remark 7.1.1. Wewrite (𝐶•, 𝜕•) for the above diagramwhich is called a singular co-chain complex.
We often abbreviate (𝐶•, 𝜕•) as 𝐶•. We write 𝐶𝑛 for 𝐶∗𝑛 = Hom(𝐶𝑛, 𝐺). Moreover, we shall also
write the boundary map 𝜕∗𝑛+1 as 𝛿𝑛 for the boundary map.

The boundary maps are 𝜕∗𝑛 : 𝐶∗𝑛−1 −→ 𝐶∗𝑛 defined as:
(𝜕∗𝑛𝜓)(𝛼) = (𝜓 ◦ 𝜕𝑛) (𝛼) 𝜓 ∈ 𝐶∗𝑛−1, 𝛼 ∈ 𝐶𝑛.

Note that the boundary map are such that 𝜕∗𝑛+1 ◦ 𝜕∗𝑛 = 0 for 𝑛 ∈ Z. Indeed,
(𝜕∗𝑛+1 ◦ 𝜕∗𝑛)(𝜓) = 𝜓(𝜕𝑛+1 ◦ 𝜕𝑛) = 0 𝜓 ∈ 𝐶∗𝑛−1

We can now make the following definition:

Definition 7.1.2. Let 𝐺 be an abelian group, and let (𝐶•, 𝜕•) be a chain complex of free abelian
groups. The 𝑛-th cohomology group of (𝐶•, 𝜕•) with 𝐺-coefficients is defined as

𝐻𝑛 ((𝐶•, 𝜕•);𝐺) := 𝐻𝑛 ((𝐶•, 𝜕•);𝐺)
Elements of ker 𝜕∗𝑛+1 are called 𝑛-cocycles, and elements of Im 𝜕∗𝑛 are called 𝑛-coboundaries.

We shall write 𝑍𝑛 (𝑋) for ker 𝜕∗𝑛+1 = ker 𝛿𝑛 and 𝐵𝑛 (𝑋) for Im 𝜕∗𝑛 = ker 𝛿𝑛−1.

Remark 7.1.3. Recall that chain complexes of abelian groups for a category, ChainAb. The dual
category, ChainOp

Ab, is called the category of co-chain complexes of abelian groups. Singular co-
chain complexes are elements of ChainOp

Ab. It can be checked that both ChainAb and ChainOp
Ab are

abelian categories. Thus, all results that hold forChainAb, or singular chain complexes in particular
continue to hold in ChainOp

Ab, or singular co-chain co-chain complexes in particular. For instance,
we have various diagram-chasing lemmas such as the five lemma, the nine lemma, and the snake
lemma. We shall not repeat these details in these notes. In any case, the proofs are similar to those
discussed in the context of homology.

Proposition 7.1.4. Singular cohomology with coefficients in 𝐺 defines a contravariant functor Top
to Ab.

139
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PROOF. Recall that if If 𝑓 : 𝑋 → 𝑌 is a continuous map, we have induced chain maps 𝑓𝑛 : 𝐶𝑛 (𝑋) →
𝐶𝑛 (𝑌 ) satisfying 𝑓𝑛 ◦ 𝜕𝑛+1 = 𝜕′𝑛 ◦ 𝑓𝑛+1 for each 𝑛 ≥ 0.

· · · 𝐶𝑛+1(𝑋) 𝐶𝑛 (𝑋) 𝐶𝑛−1(𝑋) · · ·

· · · 𝐶𝑛+1(𝑌 ) 𝐶𝑛 (𝑌 ) 𝐶𝑛−1(𝑌 ) · · ·

𝜕𝑛+1

𝑓𝑛+1

𝜕𝑛

𝑓𝑛 𝑓𝑛−1
𝜕
′
𝑛+1 𝜕

′
𝑛

Apply the Hom(−, 𝐺) functor, we get maps such that
𝑓 𝑛 : 𝐶𝑛 (𝑌 ;𝐺) → 𝐶𝑛 (𝑋;𝐺)

defined such that
𝑓 𝑛 (𝛾)(𝜎) = 𝛾( 𝑓𝑛 (𝜎)) = 𝛾( 𝑓 ◦ 𝜎)

for 𝛾 : 𝐶𝑛 (𝑌 ) → 𝐺 and 𝜎 : Δ𝑛 → 𝑋 a singular 𝑛-simplex in 𝑋 . We claim that
𝛿𝑛 ◦ 𝑓 𝑛 = 𝑓 𝑛+1 ◦ 𝛿𝑛′

· · · 𝐶𝑛+1(𝑋, 𝐺) 𝐶𝑛 (𝑋, 𝐺) 𝐶𝑛−1(𝑋, 𝐺) · · ·

· · · 𝐶𝑛+1(𝑌, 𝐺) 𝐶𝑛 (𝑌, 𝐺) 𝐶𝑛−1(𝑌, 𝐺) · · ·

𝛿𝑛 𝛿𝑛−1

𝑓 𝑛+1 𝑓 𝑛

𝛿𝑛
′

𝑓 𝑛−1

𝛿𝑛−1′

Indeed, we have
(𝛿𝑛 ◦ 𝑓 𝑛) (𝛾) = 𝜕𝑛+1 ◦ 𝑓𝑛 (𝛾) = 𝜕′𝑛+1 ◦ 𝑓𝑛+1(𝛾) = 𝑓 𝑛+1 ◦ 𝛿𝑛′ (𝛾)

for 𝛾 : 𝐶𝑛 (𝑌 ) → 𝐺. If 𝛾 ∈ 𝑍𝑛 (𝑌 ) then we claim that 𝑓 𝑛 (𝛾) ∈ 𝑍𝑛 (𝑋). Indeed,
𝛿𝑛 ( 𝑓 𝑛 (𝜎)) = 𝑓 𝑛+1(𝛿𝑛′ (𝜎)) = 𝑓 𝑛+1(0) = 0.

for 𝛾 : 𝐶𝑛 (𝑌 ) → 𝐺. Similarly, if 𝛾 ∈ 𝐵𝑛 (𝑌 ) then 𝑓 𝑛 (𝛾) ∈ 𝐵𝑛 (𝑋). Thus 𝑓𝑛 induces a map
𝐻𝑛 ( 𝑓 ) : 𝐻𝑛 (𝑌, 𝐺) → 𝐻𝑛 (𝑋, 𝐺). One easily sees that

𝐻𝑛 (Id𝑋) = Id𝐻𝑛 (𝑋)
and that if 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 then

𝐻𝑛 (𝑔 ◦ 𝑓 ) = 𝐻𝑛 ( 𝑓 ) ◦ 𝐻𝑛 (𝑔)
This completes the proof. □

7.2. Ext Functor
We now discuss the Ext (derived) functor, which arises as a derived functor of Hom(−, 𝐺), and

plays a crucial role in the formulation of the universal coefficient theorem for singular cohomology.

Remark 7.2.1. We work with commutative rings below. Hence, we don’t make any distinction be-
tween the categories of left 𝑅-modules and right 𝑅-modules. We use the generic phrase ‘𝑅-module’
to refer to a left/right 𝑅-module.

In the category of 𝑅-modules, recall that the Hom(𝑋,−) functor defines a covariant functor from
the category of 𝑅-modules to itself. If 𝑀 is an 𝑅-module, then

Hom(𝑋,−)(𝑀) = Hom(𝑋, 𝑀).
Moreover, if 𝑓 : 𝑀 → 𝑀 ′ is a morphism of 𝑅-modules, then the functor acts on morphisms by

Hom(𝑋,−)( 𝑓 ) : Hom(𝑋, 𝑀) −→ Hom(𝑋, 𝑀 ′)
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defined. It can be checked that Hom(𝑋,−) is a left exact functor. However, Hom(𝑋,−) is not a right
exact functor in general.

Example 7.2.2. The functor Hom(𝑋,−) is not a right exact functor in general. Let 𝑅 = Z. Consider
the short exact sequence of abelian groups:

0→ Z ·2−→ Z→ Z/2Z→ 0.
Apply the functor Hom(Z/2Z,−) to this sequence. We obtain:

0 −→ Hom(Z/2Z,Z) ( ·2)∗−−−−→ Hom(Z/2Z,Z) −→ Hom(Z/2Z,Z/2Z)
The resulting sequence is:

0→ 0→ 0→ Z/2Z,
which is not an exact since Z/2Z→ 0 is not a surjective function.

Definition 7.2.3. Let 𝑅 be a ring and let 𝑋 be a 𝑅-module. The 𝑖-th Ext functor is the 𝑖-th left derived
functor of Hom(𝑋,−) := ℎ𝑋. It is denoted as

Ext𝑖𝐼 (𝑋,−)
Remark 7.2.4. The subscript 𝐼 denotes that we have taken an injective resolution.

By definition, Ext𝑖𝐼 (𝑋,−) is computed as follows: for an 𝑅-module 𝑌 take any injective resolu-
tion

0→ 𝑌 → 𝐼0 → 𝐼1 → · · ·
and form the co-chain complex:

Hom(𝑋, 𝐼0) → Hom(𝑋, 𝐼1) → · · · .
For each integer 𝑖, Ext𝑖 (𝑋,𝑌 ) is the homology of this co-chain complex at position 𝑖:

Ext𝑖𝐼 (𝑋,𝑌 ) = 𝐻𝑖 (Hom(𝑋, 𝐼𝑖)•)
Similarly, we can consider the contravariant Hom functor and consider its right derived functor.

Since it is a contravariant functor, we take projective resolutions now.

Definition 7.2.5. Let 𝑅 be a ring and let𝑌 be a 𝑅-module. The 𝑖-th Ext functor is the 𝑖-th left derived
functor of Hom(−, 𝑌 ) := ℎ𝑌 . It is denoted as

Ext𝑖𝑃 (−, 𝑌 )
Remark 7.2.6. The subscript 𝑃 denotes that we have taken a projective resolution.

By definition, Ext𝑖𝑃 (−, 𝑌 ) is computed as follows: for an 𝑅-module 𝑋 take any projective reso-
lution

· · · → 𝑃1 → 𝑃0 → 𝑋 → 0,
and form the co-chain complex:

Hom(𝑃0, 𝑌 ) → Hom(𝑃1, 𝑌 ) → · · · .
Then Ext𝑖𝑃 (𝑋,𝑌 ) is the homology of this co-chain complex at position 𝑖:

Ext𝑖𝑃 (𝑋,𝑌 ) = 𝐻𝑖 (Hom(𝑃𝑖 , 𝑌 )•)
The left exact Hom(−,−) functor can be thought of as a bifunctor which is covariant in the

second variable and contravariant in the first variable. The discussion above seemingly provides us
with with two different strategies to compute the Ext functor. Fortunately, it turns out that we can
use either strategy as formalized by the following proposition.
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Proposition 7.2.7. (Balancing Ext) Let 𝑋,𝑌 be 𝑅-modules. Then

Ext𝑖𝑃 (𝑋,𝑌 ) � Ext𝑖𝐼 (𝑋,𝑌 )
for each 𝑖 ≥ 0.

PROOF. A spectral sequence argument analogous to that used in Proposition 6.3.6 can be employed
to establish this result. □

Therefore, one can work with either strategy mentioned above. Therefore, we can now unam-
biguously write Ext𝑖 (𝑋,𝑌 ).

Proposition 7.2.8. The Ext functor satisfies the following properties:
(1) Ext0(𝑋,𝑌 ) � Hom(𝑋,𝑌 ) for all 𝑅-modules 𝑋,𝑌 ..
(2) If 𝑋 is a projective 𝑅-module, then Ext𝑖 (𝑋,𝑌 ) = 0 for all 𝑖 ≥ 1
(3) If 𝑌 is an injective 𝑅-module, then Ext𝑖 (𝑋,𝑌 ) = 0 for all 𝑖 ≥ 1
(4) Any 𝑓 : 𝑋1 → 𝑋2 induces a morphism

𝑓 ∗,𝑖 : Ext𝑖 (𝑋2, 𝑌 ) −→ Ext𝑖 (𝑋1, 𝑌 )
for each 𝑖 ≥ 0.

(5) Any 𝑔 : 𝑌1 → 𝑌2 induces a morphism

𝑔𝑖∗ : Ext𝑖 (𝑋,𝑌1) −→ Ext𝑖 (𝑋,𝑌2)
for each 𝑖 ≥ 0.

(6) Any short exact sequence 0→ 𝑌1
𝜙−→ 𝑌2

𝜓−→ 𝑌3 → 0 induces a long exact sequence:

0→ Ext0(𝑋,𝑌1) −→ Ext0(𝑋,𝑌2) −→ Ext0(𝑋,𝑌3) −→ Ext1(𝑋,𝑌1) −→ Ext2(𝑋,𝑌2) −→ · · ·

(7) Any short exact sequence 0→ 𝑋1
𝜙−→ 𝑋2

𝜓−→ 𝑋3 → 0 induces a long exact sequence:

0→ Ext0(𝑋3, 𝑌 ) −→ Ext0(𝑋2, 𝑌 ) −→ Ext0(𝑋1, 𝑌 ) −→ Ext1(𝑋3, 𝑌 ) −→ Ext2(𝑋2, 𝑌 ) −→ · · ·

PROOF. (1), (2) and (3) all follow from general properties of derived functors (Corollary 15.4.15).
For (4) Let 𝑃•1 be a projective resolution of 𝑋1 and 𝑃•2 be a projective resolution of 𝑋2. General
properties about resolutions implies that 𝑓 lifts to a chain map 𝜑• : 𝑃•1 −→ 𝑃•2. Then, 𝜑

• induces a
morphism of chain complexes Hom(𝑃•2, 𝑌 ) −→ Hom(𝑃•1, 𝑌 ) which, in turn, induces a morphism:

𝑓 ∗,𝑖 : Ext𝑖 (𝑋2, 𝑌 ) −→ Ext𝑖 (𝑋1, 𝑌 )
for each 𝑖 ≥ 0. For (5), let 𝑃• be a projective resolution of 𝑋 . Then, there is a morphism of chain
complexes 𝛽• : Hom(𝑃•, 𝑌1) −→ Hom(𝑃•, 𝑌2) induced by 𝑔, which, in turn, induces a morphism:

𝑔𝑖∗ : Ext𝑖 (𝑋,𝑌1) −→ Ext𝑖 (𝑋,𝑌2)
for each 𝑖 ≥ 0. For (6), let 𝑃• be a projective resolution of 𝑋 . Then there is an induced short exact
sequence of chain complexes:

0→ Hom(𝑃•, 𝑌1) −→ Hom(𝑃•, 𝑌2) −→ Hom(𝑃•, 𝑌3) → 0

because each module 𝑃𝑖 is projective. Indeed, at each degree 𝑖, 𝑃𝑖 this sequence is

0→ Hom(𝑃𝑖 , 𝑌1) −→ Hom(𝑃𝑖 , 𝑌2) −→ Hom(𝑃𝑖 , 𝑌3) → 0

obtained by applying the functor Hom(𝑃𝑖 ,−), which is exact as 𝑃𝑖 is projective. It is then easily
checked that this gives a short exact sequence of chain complexes. Thus, applying the long exact
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sequence in homology produces the required long exact sequence. For (7), Let 𝑃• be a projective res-
olution of 𝑋1 and let𝑄• be a projective resolution of 𝑋3. By the horseshoe lemma (Lemma 15.4.16),
there exists a projective resolution 𝑅• of 𝑋2 and a short exact sequence of chain complexes

0→ 𝑃• → 𝑅• → 𝑄• → 0,

Since 𝑄𝑖 is projective, applying Hom(−, 𝑌 ) yields
0→ Hom(𝑄𝑖 , 𝑌 ) → Hom(𝑅𝑖 , 𝑌 ) → Hom(𝑃𝑖 , 𝑌 ) → 0

for each 𝑖 ≥ 0. It follows that there is a s.e.s. of cochain complexes

0→ Hom(𝑄•, 𝑌 ) → Hom(𝑅•, 𝑌 ) → Hom(𝑃•, 𝑌 ) → 0.

The associated long exact sequence in cohomology is the required long exact sequence. □

The above proposition show that the Ext groups ‘measure’ and ‘repair’ the non-exactness of the
functors Hom(−, 𝑌 ) and Hom(𝑋,−). Let us now specialize to 𝑅 = Z. In what follows, let 𝐺 be a
fixed abelian group.

Lemma 7.2.9. For any abelian group 𝐴, we have that
Ext𝑛 (𝐴, 𝐺) = 0 if 𝑛 > 1,

PROOF. Any abelian group, 𝐴, admits a two-step free resolution.

0→ 𝐹1 → 𝐹0 → 𝐴→ 0

Thus, Ext𝑛 (𝐴, 𝐺) = 0 if 𝑛 > 1. □

Remark 7.2.10. Only Ext1(𝐴, 𝐺) encodes interesting information for abelian groups. We write
Ext(𝐴, 𝐺) := Ext1(𝐴, 𝐺).

Proposition 7.2.11. The Ext functor satisfies the following properties:
(1) Ext

(⊕
𝑖 𝐴𝑖 , 𝐺

)
�

∏
𝑖 Ext(𝐴𝑖 , 𝐺).

(2) If 𝐴 is free, then Ext(𝐴, 𝐺) = 0.
(3) Ext(Z/𝑛Z, 𝐺) = 𝐺/𝑛𝐺.
(4) If 𝐻 is a finitely generated abelian group, then:

Ext(𝐻,𝐺) = Ext(Torsion(𝐻), 𝐺) = Torsion(𝐻) ⊗Z 𝐺
(5) For a short exact sequence: 0→ 𝐴→ 𝐴′ → 𝐴′′ → 0 of abelian groups, there is a natural

exact sequence:

0→ Hom(𝐴′′, 𝐺) → Hom(𝐴′, 𝐺) → Hom(𝐴, 𝐺) → Ext(𝐴′′, 𝐺) → Ext(𝐴′, 𝐺) → Ext(𝐴, 𝐺) → 0

PROOF. The proof is given below:
(1) This follows from the identity,

Hom
(⊕

𝑖

𝐴𝑖 , 𝐺
)
=

∏
𝑖

Hom(𝐴𝑖 , 𝐺),

and noting that taking direct sums of projective resolutions of 𝐴𝑖 forms a projective reso-
lution for

⊕
𝑖 𝐴

𝑖 , and that homology commutes with arbitrary direct products.
(2) If 𝐴 is free, then

0→ 𝐴→ 𝐴→ 0
is a projective resolution of 𝐴, so Ext(𝐴, 𝐺) = 0.
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(3) Consider the projective resolution of Z/𝑛Z given by

0→ Z ·𝑛−→ Z→ Z/𝑛Z→ 0
dualize it and use the fact that Hom(Z, 𝐺) � 𝐺 to conclude that Ext(Z/𝑛Z, 𝐺) = 𝐺/𝑛𝐺.

(4) This follows at once from the previous statement.
(5) This follows from Proposition 7.2.8.

This completes the proof. □

Remark 7.2.12. The discussion above implies has dealt with the case ofZ-modules (abelian groups).
The general case can be more involved. For instance, consider Z2 as a Z4-module. Let Z4

𝑞−→ Z2

denote the quotient map. Let Z4
×2−−→ Z4 denote multiplication by 2. Z2 has the following free

resolution over Z4:
· · · ×2−−→ Z4

×2−−→ Z4
×2−−→ Z4

×2−−→ Z4
𝑞−→ Z2 → 0.

Since HomZ4 (Z4,Z2) � Z2 (by mapping the generator of Z4 to either 0 or 1), the dual of ×2 : Z4 →
Z4 is simply the zero map. Hence, we have the dual sequence

0→ Z2 → Z2
0−→ Z2

0−→ Z2
0−→ Z2 → · · ·

Consider the truncated sequence

Z2
0−→ Z2

0−→ Z2
0−→ Z2 → · · ·

The homology of this complex is Z2 for every degree. Hence,
Ext𝑛Z4

(Z2,Z2) � Z2

is nonzero for all 𝑛 ∈ N. This is stark contrast Remark 7.2.10.

Remark 7.2.13. The name Ext comes from the phrase extension. We say 𝑋 is an extension of 𝐴 by
𝐵 if

0→ 𝐵→ 𝑋 → 𝐴→ 0
is exact. Given 𝐴 and 𝐵, there is always the trivial extension 𝑋 = 𝐴 ⊕ 𝐵, corresponding to the
isomorphism class of the split exact sequence. It can be shown that isomorphism classes of exten-
sions of 𝐴 by 𝐵 are in 1-1 correspondence with elements of Ext1(𝐴, 𝐵), with the trivial extension
corresponding to 0.

7.3. Universal Coefficient Theorem
Recall the construction of singular cohomology in Section 7.1. Since everything is determined in

terms of (𝐶•, 𝜕•), can we compute cohomology groups using information about homology groups?
The answer is a qualified yes. This is the universal coefficient theorem (UCT) for cohomology, which
we now discuss. We first motivate the statement of UCT. As a first guess, we might think that

𝐻𝑛 (𝐶•;𝐺) := 𝐻𝑛 (𝐶•;𝐺) � Hom(𝐻𝑛 (𝐶•), 𝐺)
This turns out to be almost true. We indeed have a natural map:

𝜑 : 𝐻𝑛 (𝐶•, 𝐺) −→ Hom(𝐻𝑛 (𝐶•), 𝐺).
Denote 𝑍𝑛 = ker 𝜕𝑛 ⊆ 𝐶𝑛 and 𝐵𝑛 = Im 𝜕𝑛+1 ⊆ 𝐶𝑛. We have 𝐵𝑛 ⊆ 𝑍𝑛. A class in 𝐻𝑛 (𝐶•;𝐺) is
represented by a homomorphism 𝜙 : 𝐶𝑛 → 𝐺 such that 𝜕∗𝑛+1𝜙 = 0. That is, 𝜙𝜕𝑛+1 = 0, or in words,
𝜙 vanishes on 𝐵𝑛. The restriction 𝜙0 = 𝜙 |𝑍𝑛 then induces a quotient homomorphism

𝜙0 : 𝑍𝑛/𝐵𝑛 → 𝐺,
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an element of Hom(𝐻𝑛 (𝐶•), 𝐺). If 𝜙 is in Im 𝜕∗𝑛, say 𝜙 = 𝜓𝜕𝑛 for some 𝜓 ∈ 𝐶∗𝑛−1, then 𝜙 is zero
on 𝑍𝑛 since 𝜕𝑛 ◦ 𝜕𝑛+1 = 0. So 𝜙0 = 0 and hence also 𝜙0 = 0.

· · · 𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1 · · ·

𝐺

𝜕𝑛+2

𝜙◦𝜕𝑛+1

𝜕𝑛+1

𝜙

𝜕𝑛

𝜓

𝜕𝑛−1

Thus, there is a well-defined quotient map

ℎ : 𝐻𝑛 (𝐶•, 𝐺) → Hom(𝐻𝑛 (𝐶), 𝐺)

sending the cohomology class of [𝜙] to 𝜙0. Obviously ℎ is a homomorphism.

Proposition 7.3.1. (Universal Coefficient Theorem) If a chain complex (𝐶•, 𝜕•) of free abelian
groups has homology groups 𝐻𝑛 (𝐶•), then the cohomology groups 𝐻𝑛 (𝐶•;𝐺) of the cochain com-
plex Hom(𝐶𝑛, 𝐺) are determined by the short exact sequence:

0 −→ Ext(𝐻𝑛−1(𝐶•), 𝐺) −→ 𝐻𝑛 (𝐶•;𝐺)
ℎ−−−→ Hom(𝐻𝑛 (𝐶•), 𝐺) −→ 0

PROOF. The proof is based on a spectral sequence argument and is similar to Proposition 6.4.4. □

Remark 7.3.2. It can be checked that the sequence in Proposition 7.3.1 splits.

Corollary 7.3.3. Let (𝐶•, 𝜕•) be a chain complex so that its Z-homology groups are finitely gener-
ated. Let 𝑇𝑛 = Torsion(𝐻𝑛). We have

0→ 𝑇𝑛−1 → 𝐻𝑛 (𝐶•;Z) → 𝐻𝑛/𝑇𝑛 → 0

This sequence splits¹, so:
𝐻𝑛 (𝐶•;Z) � 𝑇𝑛−1 ⊕ 𝐻𝑛/𝑇𝑛.

PROOF. Clear. □

Let us now derive some immediate consequences of the UCT:
(1) If 𝑛 = 0, we have

𝐻0(𝑋;𝐺) = HomZ(𝐻0(𝑋), 𝐺) � HomZ(Z#path components, 𝐺)

(2) If 𝑛 = 1, the Ext-term vanishes since 𝐻0(𝑋) is free, so we get:

𝐻1(𝑋;𝐺) = HomZ(𝐻1(𝑋), 𝐺)

Remark 7.3.4. There is also a universal coefficient theorem for cohomology where Z is replaced by
a PID, 𝑅 and 𝐺 is a 𝑅-module. In this case, we have

0→ Ext1
𝑅 (𝐻𝑛−1(𝑋; 𝑅), 𝐺) → 𝐻𝑛 (𝑋;𝐺) ℎ−→ Hom𝑅 (𝐻𝑛 (𝑋; 𝑅), 𝐺) → 0.

This comes from first establishing that Ext𝑛𝑅 vanishes for 𝑛 ≥ 2 for when 𝑅 is a PID, and then going
through a proof for universal coefficient theorem as above.

¹Since 𝐻𝑛/𝑇𝑛 is free and hence projective.
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7.4. Eilenberg-Steenrod Axioms
We have defined singular cohomology. There are many other cohomology theories: sheaf co-

homology, Čech cohomology, etc. All these cohomology theories satisfy the Eilenberg-Steenrod
axioms. The purpose of this section is to state these axioms and prove that singular cohomology
satisfies these axioms.

Definition 7.4.1. (Eilenberg-Steenrod Axioms) Let 𝐺 be an abelian group. A (unreduced) coho-
mology theory consists of

(1) A family of functors 𝐻𝑛 : Top2 → Ab for 𝑛 ≥ 0, and
(2) A family of natural transformations 𝛾𝑛 : 𝐻𝑛 → 𝐻𝑛+1 ◦ 𝑝, where 𝑝 is the functor sending
(𝑋, 𝐴) to (𝐴,∅) and 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) to 𝑓 |𝐵 : (𝐴,∅) → (𝐵,∅).

such that the following axioms are satisfied:
(a) (Homotopy invariance) If 𝑓 , 𝑔 : (𝑋, 𝐴) → (𝑌, 𝐵) are homotopic maps, then the induced

maps
𝐻𝑛 ( 𝑓 ), 𝐻𝑛 (𝑔) : 𝐻𝑛 (𝑋, 𝐴) → 𝐻𝑛 (𝑌, 𝐵)

are such that 𝐻𝑛 ( 𝑓 ) = 𝐻𝑛 (𝑔) for 𝑛 ≥ 0. In other words, 𝐻𝑛 may be regarded as a functor
from hTop to Ab.

(b) (Long exact sequence) For every pair (𝑋, 𝐴), the inclusions

(𝐴, ∅) 𝑖
↩→ (𝑋, ∅)

𝑗
↩→ (𝑋, 𝐴)

give rise to a long exact sequence

· · · 𝐻𝑛 (𝑋, 𝐴) 𝐻𝑛 (𝑋) 𝐻𝑛 (𝐴) 𝐻𝑛+1(𝑋, 𝐴) 𝐻𝑛+1(𝑋) 𝐻𝑛+1(𝐴) · · ·𝑗∗𝑛 𝑖∗𝑛 𝛾𝑛 𝑗∗𝑛+1 𝑖∗𝑛+1

(c) (Excision) If 𝑍 ⊆ 𝐴 ⊆ 𝑋 are topological spaces such that 𝑍 ⊆ Int(𝐴), the inclusion of
pairs (𝑋 \ 𝑍, 𝐴 \ 𝑍) ⊆ (𝑋, 𝐴) induces isomorphisms

𝐻𝑛 (𝑋 \ 𝑍, 𝐴 \ 𝑍) → 𝐻𝑛 (𝑋, 𝐴)

for all 𝑛 ≥ 0.
(d) (Multiplicativity) If 𝑋 =

∐
𝛼 𝑋𝛼 and 𝐴 =

∐
𝛼 𝐴𝛼 is the disjoint union of a family of

topological spaces 𝑋𝛼, then

𝐻𝑛 (𝑋, 𝐴) =
∏
𝛼

𝐻𝑛 (𝑋𝛼, 𝐴𝛼)

for each 𝑛 ≥ 0.
Additionally, if a cohomology theory satisfies the following additional axiom

(e) (Dimension Axiom) For any one-point set 𝑋 = {•},

𝐻𝑛 (𝑋) =
{
𝐺 if 𝑛 = 0
0 otherwise,

the the cohomology theory is called an ordinary cohomology theory.

The purpose of the remainder of this section is to show that singular cohomology satisfies the
Eilenberg-Steenrod axioms.
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7.4.1. Relative cohomology groups. We first contruct the relative cohomology group that shall
allow us to construct the appropriate functors from Top to Ab. We apply the Hom(−, 𝐺) functor to
the the relative singular chain complex to get

𝐶𝑛 (𝑋, 𝐴;𝐺) := Hom(𝐶𝑛 (𝑋, 𝐴), 𝐺).
The group 𝐶𝑛 (𝑋, 𝐴;𝐺) can be identified with functions from the set of 𝑛-simplices in 𝑋 to 𝐺 that
vanish on simplices in 𝐴, so we have a natural inclusion

𝐶𝑛 (𝑋, 𝐴;𝐺) ↩→ 𝐶𝑛 (𝑋;𝐺)
The relative coboundary maps

𝛿
𝑛 : 𝐶𝑛 (𝑋, 𝐴;𝐺) → 𝐶𝑛+1(𝑋, 𝐴;𝐺)

are obtained by restricting 𝛿𝑛. We have a co-chain complex (𝐶•(𝑋, 𝐴), 𝛿•).
Definition 7.4.2. Let 𝐴 ⊆ 𝑋 be a subspace of a topological space 𝑋 . The 𝑛-th relative cohomology
group, 𝐻𝑛 (𝑋, 𝐴), is the 𝑛-th homology group of the chain complex (𝐶•(𝑋, 𝐴), 𝛿•). That is:

𝐻𝑛 (𝑋, 𝐴) = Ker 𝛿𝑛

Im 𝛿
𝑛+1

Similar to Proposition 7.1.4, it is easily checked that each 𝐻𝑛 is a functor from Top2 to Ab. This
effectively checkes the first two conditons in the definition of the Eilenberg-Steenrod axioms.

Remark 7.4.3. Since the cohomology of the empty set is trivial for all 𝑛 ≥ 0, we have:
𝐻𝑛 (𝑋, ∅) = 𝐻𝑛 (𝑋), ∀𝑛 ≥ 0.

Remark 7.4.4. Universal coefficient theorem continues to hold true for relative cohomology. The
proof is identical as the one given before.

Wenowprove that singular cohomology satisfies the long exact sequence axiom. The importance
of the long exact sequence axiom is that is allows us to compute cohomology groups of various
spaces in using an ‘inductive’ and/or ‘bottom-up’ approach. Applying by the Hom(−, 𝐺) functor to
the short exact sequence,

0→ 𝐶𝑛 (𝐴)
𝑖𝑛−→ 𝐶𝑛 (𝑋)

𝑗𝑛−−→ 𝐶𝑛 (𝑋, 𝐴) → 0,
we get another short exact sequence²

0← 𝐶𝑛 (𝐴;𝐺) 𝑖∗←− 𝐶𝑛 (𝑋;𝐺) 𝑗∗←− 𝐶𝑛 (𝑋, 𝐴;𝐺) ← 0.
Since 𝑖𝑛 and 𝑗𝑛 commute with the boundary maps, it follows that 𝑖∗𝑛 and 𝑗∗𝑛 commute with co-
boundary maps. So we obtain a short exact sequence of cochain complexes:

0← 𝐶•(𝐴;𝐺) 𝑖∗←− 𝐶•(𝑋;𝐺) 𝑗∗←− 𝐶•(𝑋, 𝐴;𝐺) ← 0.
By taking the associated long exact sequence of homology groups, we get the long exact sequence
for the cohomology groups of the pair (𝑋, 𝐴):

· · · 𝐻𝑛 (𝑋, 𝐴;𝐺) 𝐻𝑛 (𝑋;𝐺) 𝐻𝑛 (𝐴;𝐺) 𝐻𝑛+1(𝑋, 𝐴;𝐺) 𝐻𝑛+1(𝑋;𝐺) · · ·𝑗∗𝑛 𝑖∗𝑛 𝛾𝑛 𝑗∗𝑛+1 𝑖∗𝑛+1

This shows that the long exact sequence axiom is satified.

²Hom(−, 𝐺) is only a left exact functor in general. But it can be checked in this case that the resulting sequence is both
left exact and right exact.
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7.4.2. Homotopy Invariance. We now show that singular cohomology satisfies the homotopy
invariance property.

Proposition 7.4.5. (Homotopy Invariance) Let 𝑋,𝑌 be topological spaces, and let 𝐺 be an abelian
group. If 𝑓 ≃ 𝑔 : 𝑋 → 𝑌 are homotopic maps, then

𝐻𝑛 ( 𝑓 ) = 𝐻𝑛 (𝑔) : 𝐻𝑛 (𝑌, 𝐺) → 𝐻𝑛 (𝑋, 𝐺).
PROOF. Recall from the proof of the similar statement for homology that a chain homotopy between
𝐶•(𝑋, 𝐴;𝐺) and 𝐶•(𝑌, 𝐵;𝐺) is given by a prism operator

𝑇𝑛 : 𝐶𝑛 (𝑋, 𝐴;𝐺) → 𝐶𝑛+1(𝑌, 𝐵;𝐺)
satisfying

𝑓𝑛 − 𝑔𝑛 = 𝑇𝑛−1 ◦ 𝜕𝑛 + 𝜕′𝑛+1 ◦ 𝑇𝑛
with 𝑓𝑛 and 𝑔𝑛 being the induced maps on singular chain complexes. The claim about cohomology
follows by applying the Hom(−.𝐺) functor to the prism operator to get

𝑇𝑛 : 𝐶𝑛+1(𝑌, 𝐵;𝐺) → 𝐶𝑛 (𝑋, 𝐴;𝐺)
which satisfies

𝑓 𝑛 − 𝑔𝑛 = 𝜕∗𝑛 ◦ 𝑇𝑛−1 + 𝑇𝑛 ◦ 𝜕∗′𝑛+1.
Hence, we have a chain homotopy between 𝐶•(𝑋, 𝐴;𝐺) and 𝐶•(𝑌, 𝐵;𝐺). It is now a standard fact
that a chain homotopy induces the same maps on homology groups. Hence,

𝐻𝑛 ( 𝑓 ) = 𝐻𝑛 (𝑔)
for each 𝑛 ≥ 0. □

Corollary 7.4.6. If 𝑋 is contractible, then 𝐻𝑛 (𝑋) = 0 for all 𝑛 ≥ 1.

PROOF. Immediate from the homotopy invariance of singular cohomology and that 𝐻𝑛 ({∗}) = 0 for
𝑛 ≥ 1. □

7.4.3. Excision. We now prove that singular cohomology satisfies the excision axiom. The
important of the excision axiom is that if 𝐴 ⊆ 𝑋 and 𝑛-cochains are “sufficiently inside” of 𝐴,
we can cut 𝐴 out without affecting the relative cohomology groups 𝐻𝑛 (𝑋, 𝐴). Here is the formal
statement we’d like to prove in this section:

Proposition 7.4.7. (Excision) Given a topological space 𝑋 , suppose that 𝑍 ⊂ 𝐴 ⊂ 𝑋 , with 𝑍 ⊆
int(𝐴). Then the inclusion of pairs 𝑖 : (𝑋 \ 𝑍, 𝐴 \ 𝑍) ↩→ (𝑋, 𝐴) induces isomorphisms:

𝑖𝑛 : 𝐻𝑛 (𝑋, 𝐴;𝐺) → 𝐻𝑛 (𝑋 \ 𝑍, 𝐴 \ 𝑍;𝐺)
for all 𝑛. Equivalently, if 𝐴 and 𝐵 are subsets of 𝑋 with 𝑋 = int(𝐴) ∪ int(𝐵), then the inclusion map
(𝐵, 𝐴 ∩ 𝐵) ↩→ (𝑋, 𝐴) induces isomorphisms in cohomology.
PROOF. Excision for singular homology implies that left and right maps in the diagram below are
isomorphisms.

0 Ext(𝐻𝑛−1(𝑋, 𝐴), 𝐺) 𝐻𝑛 (𝑋, 𝐴;𝐺) Hom(𝐻𝑛 (𝑋, 𝐴), 𝐺) 0

0 Ext(𝐻𝑛−1(𝑋 \ 𝑍, 𝐴 \ 𝑍), 𝐺) 𝐻𝑛 (𝑋 \ 𝑍, 𝐴 \ 𝑍;𝐺) Hom(𝐻𝑛 (𝑋 \ 𝑍, 𝐴 \ 𝑍), 𝐺) 0

The five-lemma then implies that the middle map is also an isomorphism. This completes the proof.
□
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7.4.4. Dimension Axiom. Let 𝑋 = {∗} be a single point space. By Proposition 7.3.1, we have:

𝐻𝑛 (𝑋;𝐺) = Hom(𝐻𝑛 (𝑋), 𝐺) ⊕ Ext(𝐻𝑛−1(𝑋), 𝐺).

Since

𝐻𝑛 (𝑋) �
{
Z, if 𝑛 = 0
0, otherwise

we get

Hom(𝐻𝑛 (𝑋), 𝐺) �
{
𝐺, if 𝑛 = 0
0, otherwise

.

Furthermore, since 𝐻𝑛 (𝑋) is free for all 𝑛, we also have that Ext(𝐻𝑛−1(𝑋), 𝐺) = 0, for all 𝑛. There-
fore,

𝐻𝑛 (𝑋;𝐺) =
{
𝐺, if 𝑛 = 0
0, otherwise

.

7.4.5. Multiplicativity Axiom. The multiplicativityaxiom is easily seen to hold using the uni-
versal coefficient theorem in relative cohomology. Let 𝑋 =

∐
𝛼 𝑋𝛼 and 𝐴 =

∐
𝛼 𝐴𝛼. We have:

𝐻𝑛 (𝑋, 𝐴;𝐺) = Ext(𝐻𝑛−1(𝑋, 𝐴);𝐺) ⊕ Hom(𝐻𝑛 (𝑋, 𝐴);𝐺)

= Ext(𝐻𝑛−1(
∐
𝛼

𝑋𝛼,
∐
𝛼

𝐴𝛼);𝐺) ⊕ Hom(𝐻𝑛 (
∐
𝛼

𝑋𝛼,
∐
𝛼

𝐴𝛼);𝐺)

= Ext(
⊕
𝛼

𝐻𝑛−1(𝑋𝛼, 𝐴𝛼);𝐺) ⊕ Hom(
⊕
𝛼

𝐻𝑛 (𝑋𝛼, 𝐴𝛼);𝐺)

=
∏
𝛼

Ext(𝐻𝑛−1(𝑋𝛼, 𝐴𝛼);𝐺) ⊕
∏
𝛼

Hom(𝐻𝑛 (𝑋𝛼, 𝐴𝛼);𝐺)

=
∏
𝛼

Ext(𝐻𝑛−1(𝑋𝛼, 𝐴𝛼);𝐺) ⊕ Hom(𝐻𝑛 (𝑋𝛼, 𝐴𝛼);𝐺) =
∏
𝛼

𝐻𝑛 (𝑋𝛼, 𝐴𝛼;𝐺)

Hence, we see that singular cohomology satisfies the Eilenberg-Steenrod axioms.

Remark 7.4.8. The Mayer-Viertoris sequence is a formal consequence of the Eilenberg-Steenrod
axioms. Therefore, we have that Mayer-Viertoris holds for singular cohomology: if 𝑋 be a topolog-
ical space, and 𝐴 and 𝐵 are open subsets of 𝑋 such that 𝑋 = int(𝐴) ∪ int(𝐵), then there is a long
exact sequence of cohomology groups:

· · · → 𝐻𝑛 (𝑋;𝐺) 𝜓−→ 𝐻𝑛 (𝐴;𝐺) ⊕ 𝐻𝑛 (𝐵;𝐺) 𝜙−→ 𝐻𝑛 (𝐴 ∩ 𝐵;𝐺) −→ · · ·

We also have a Mayer-Vietoris sequence in relative cohomology groups.

Remark 7.4.9. We can also define reduced cohomology. Consider the augmented singular chain
complex for 𝑋:

· · · 𝜕3−−→ 𝐶2
𝜕2−−→ 𝐶1

𝜕1−−→ 𝐶0
𝜀−→ Z −→ 0

where 𝜀(∑𝑖 𝑛𝑖𝑥𝑖) =
∑
𝑖 𝑛𝑖 . After applying the Hom(−, 𝐺) functor, we get the augmented co-chain

complex:
𝜕∗3←−− 𝐶∗2

𝜕∗2←−− 𝐶∗1
𝜕∗1←−− 𝐶∗0

𝜀∗←−− Z←− 0
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Note that since 𝜖 ◦ 𝜕1 = 0, we get by by applying the Hom(−, 𝐺) functor that 𝜕∗1 ◦ 𝜖∗ = 0. The
cohomology of this augmented cochain complex is the reduced cohomology of 𝑋 with𝐺-coefficients,
denoted by 𝐻𝑛 (𝑋;𝐺). It follows by definition that

𝐻𝑛 (𝑋;𝐺) = 𝐻𝑛 (𝑋;𝐺) 𝑛 > 0

and by the universal coefficient theorem (applied to the augmented chain complex), we get

𝐻0(𝑋;𝐺) = Hom(𝐻0(𝑋), 𝐺).

Remark 7.4.10. If (𝑋, 𝐴) is a good pair, then the long exact sequence in reduced cohomology holds
true. This is because the analogous result is a formal consequence of the Eilenberg-Steenrod axioms.

· · · −→ 𝐻𝑛 (𝑋, 𝐴;𝐺) −→ 𝐻𝑛 (𝑋;𝐺) −→ 𝐻𝑛 (𝐴;𝐺) −→ 𝐻𝑛+1(𝑋, 𝐴;𝐺) −→ · · ·

In particular, if 𝐴 = {∗} is a point in 𝑋 , we get that

𝐻𝑛 (𝑋;𝐺) � 𝐻𝑛 (𝑋, 𝑥0;𝐺)

for 𝑛 ≥ 1. Moreover, we have
𝐻𝑛 (𝑋, 𝐴;𝐺) � 𝐻𝑛 (𝑋/𝐴;𝐺)

for all 𝑛 ∈ N. The proof is the same as in the homology case since it is a formal consequence of the
Eilenberg-Steenrod axioms and the hypothesis on the space. Also, if each 𝑋𝛼 is path-connected, we
have

𝐻𝑛 (
∨
𝛼

𝑋𝛼) =
∏
𝛼

𝐻𝑛 (𝑋𝛼)

for 𝑛 ≥ 0. Once again, the proof is similar to the proof in the case of singular homology. We also
have a Mayer-Vietoris sequence in reduced cohomology.

Remark 7.4.11. We can define simplicial cohomology and cellular cohomology in exactly the same
way as expected. As expexted, simplicial cohomology and cellular cohomology are isomorphic to
singular cohomology. The proofs are identical in the homology case.

7.5. First Computations
The purpose of this section is to compute cohomology groups of some topological spaces. We

begin by looking at some specific examples.

Example 7.5.1. (Contractible Spaces) Let 𝑋 be a contractible topological space. We have:

𝐻𝑛 (𝑋;𝐺) =
{
𝐺, if 𝑛 = 0
0, otherwise

.

This follows immediately by the homotopy invariance of cohomology groups since 𝑋 homotopy
equivalent to a point.

Example 7.5.2. (Spheres) Let 𝑋 = S𝑛. Then we have

𝐻𝑘 (S𝑛 Z) =

Z ⊕ Z, if 𝑘 = 𝑛 = 0
Z, if 𝑘 = 𝑛 > 0, 𝑘 = 0, 𝑛 > 0
0, otherwise
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Since, Z and Z ⊕ Z are free-abelian groups, the Ext term in the UCT for cohomology vanishes for
each 𝑘 . Hence,

𝐻𝑘 (S𝑛, 𝐺) � Hom(𝐻𝑘 (S𝑛, 𝐺),Z) �

𝐺 ⊕ 𝐺, if 𝑘 = 𝑛 = 0
𝐺, if 𝑘 = 𝑛 > 0, 𝑘 = 0, 𝑛 > 0
0, otherwise

.

for each 𝑘 ≥ 0.

Remark 7.5.3. We can also compute the cohomology groups of S𝑛 by using the aboveMayer-Vietoris
sequence. Cover S𝑛 by two open sets 𝐴 = S𝑛 \ {𝑁} and 𝐵 = S𝑛 \ {𝑆}, where 𝑁 and 𝑆 are the North
and South poles of 𝑆𝑛. Then we have

𝐴 ∩ 𝐵 ≃ S𝑛−1 𝐴 ≃ 𝐵 ≃ R𝑛

Thus, by the Mayer-Vietoris sequence for reduced cohomology, homotopy invariance, and induction,
we get:

𝐻𝑘 (S𝑛;𝐺) � 𝐻𝑘−𝑛 (S0;𝐺) �
{
𝐺, if 𝑘 = 𝑛

0, otherwise
for each 𝑘 ≥ 0.

Example 7.5.4. (Mobius Band) Let 𝑀 denote the Mobius band. Since 𝑀 is homotopic to S1. we
have,

𝐻𝑘 (𝑀,𝐺) �
{
𝐺, if 𝑘 = 0, 1
0, otherwise

.

for each 𝑘 ≥ 0.

Example 7.5.5. (Torus) Let 𝑋 = S1 × S1. Recall that we have,

𝐻𝑛 (S1 × S1,Z) �

Z ⊕ Z for 𝑛 = 1
Z for 𝑛 = 0, 2
0 for 𝑛 ≥ 3

Since, Z and Z ⊕ Z are free-abelian groups, the Ext term in the UCT for cohomology vanishes for
each 𝑘 . Hence,

𝐻𝑛 (S1 × S1, 𝐺) � HomZ(𝐻𝑛 (S1 × S1,Z), 𝐺) �

𝐺 ⊕ 𝐺 for 𝑛 = 1
𝐺 for 𝑛 = 0, 2
0 for 𝑛 ≥ 3

Example 7.5.6. (Klein Bottle) Let 𝑋 = 𝐾 be the Klein bottle. Recall that we have,

𝐻𝑛 (𝐾 Z) �

Z for 𝑛 = 0
Z ⊕ Z2 for 𝑛 = 1
0 for 𝑛 ≥ 2

Note that we have,

Ext(𝐻0(𝐾,Z), 𝐺) = 0,
Ext(𝐻1(𝐾,Z), 𝐺) � Ext(Z2, 𝐺) � 𝐺/2𝐺

Therefore, we have
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𝐻𝑛 (𝐾,𝐺) � HomZ (𝐻𝑛 (𝐾,Z), 𝐺) ⊕ Ext (𝐻𝑛−1(𝐾,Z), 𝐺)

�


𝐺, for 𝑛 = 0,
𝐺 ⊕ 𝐺/2𝐺, for 𝑛 = 1,
𝐺/2𝐺, for 𝑛 = 2,
0, for 𝑛 ≥ 3.

The case 𝐺 = Z2 is important. Then,

𝐻𝑛 (𝐾 Z2) �

Z2 for 𝑛 = 0, 2,
Z2 ⊕ Z2 for 𝑛 = 1
0 for 𝑛 ≥ 3

Example 7.5.7. (Real Projective Space) Let 𝑋 = RP𝑛. Recall that we have,

𝐻𝑘 (RP𝑛,Z) =

Z2 if 𝑘 is odd, 0 < 𝑘 < 𝑛,
Z if 𝑘 = 0, 𝑛 is odd,
0 otherwise.

Note that HomZ(Z2, 𝐺) � 𝐺2 = {𝑔 ∈ 𝐺 | 2𝑔 = 0} and Ext(Z2, 𝐺) � 𝐺/2𝐺. If 𝑛 is odd, we have:

𝐻𝑘 (RP𝑛, 𝐺) �


𝐺 if 𝑘 = 0, 𝑛,
𝐺/2𝐺 if 𝑘 is even, 0 < 𝑘 < 𝑛,
𝐺2 if 𝑘 is odd, 0 < 𝑘 < 𝑛,
0 otherwise.

If 𝑛 is even, we have:

𝐻𝑘 (RP𝑛, 𝐺) �


𝐺 if 𝑘 = 0,
𝐺/2𝐺 if 𝑘 is even, 0 < 𝑘 ≤ 𝑛,
𝐺2 if 𝑘 is odd, 0 < 𝑘 < 𝑛,
0 otherwise.

Remark 7.5.8. The case 𝐺 = Z2 in Example 7.5.7 is important. We have

𝐻𝑘 (RP𝑛 Z2) �
{
Z2 𝑘 = 0, · · · , 𝑛,
0 otherwise.

Example 7.5.9. (Complex Projective Space) Let 𝑋 = CP𝑛. Recall that we have,

𝐻𝑘 (CP𝑛 Z) =
{
Z, if 𝑘 = 0, 2, 4, . . . , 2𝑛
0, otherwise.

Since Z is a free abelian group, all the Ext terms in the UCT for cohomology vanish. Hence,

𝐻𝑘 (CP𝑛, 𝐺) � HomZ(𝐻𝑘 (CP𝑛,Z), 𝐺) �
{
𝐺, if 𝑘 = 0, 2, 4, . . . , 2𝑛
0, otherwise.



CHAPTER 8

Cohomology for Smooth Manifolds

This chapter assumes knowledge of smooth manifolds theory.

8.1. de-Rham Cohomology
Singular cohomology is quite abstract and somewhat useless unless we develop algebraic com-

putational tools to compute singular cohomology. We now discuss de Rham cohomology for smooth
manifolds. If we restrict our attention to smooth manifolds, singular cohomology admits a natural
geometric interpretation via its isomorphism with de-Rham cohomology. The latter is defined in
terms of differential forms and provides a cohomological perspective grounded in differential geom-
etry. Specifically, the 𝑘-th de-Rham cohomology group 𝐻𝑘dR (𝑀) of a smooth manifold 𝑀 measures
the failure of the Poincaré lemma to extend globally: it is the quotient of the space of closed 𝑘-forms
by the subspace of exact 𝑘-forms. Since every closed differential form is locally exact by the Poincaré
lemma, de-Rham cohomology reflects the broader principle underlying cohomology theories:

To what extent can local data be extended or promoted to global data?
This interpretation emphasizes the utility of cohomology in encoding obstructions to globalizing

locally defined structures.

8.1.1. Definitions. Let 𝑀 be a smooth manifold. Since

𝑑2 = 𝑑 ◦ 𝑑 : Ω𝑘−1(𝑀) 𝑑−→ Ω𝑘 (𝑀) 𝑑−→ Ω𝑘+1(𝑀)
is the zero operator for every 𝑘 ≥ 1, we have

im
(
𝑑 : Ω𝑘−1(𝑀) → Ω𝑘 (𝑀)

)
⊆ ker

(
𝑑 : Ω𝑘 (𝑀) → Ω𝑘+1(𝑀)

)
.

Thus, im 𝑑 is a subspace of ker 𝑑 for all 𝑘 ≥ 1.

Remark 8.1.1. Let 𝑀 be a smooth 𝑛-dimensional manifold. For convenience, we set Ω𝑘 (𝑀) = {0}
for all 𝑘 < 0 and 𝑘 > 𝑛. Moreover, we set

𝑑 = 0 : Ω𝑘 (𝑀) → Ω𝑘+1(𝑀)
for all 𝑘 < 0 and 𝑘 ≥ 𝑛. Then the inclusion above holds for all 𝑘 ∈ Z.

Definition 8.1.2. Let 𝑀 be a smooth manifold. The quotient vector space

𝐻𝑘dR(𝑀) =
ker(𝑑 : Ω𝑘 (𝑀) → Ω𝑘+1(𝑀))
im(𝑑 : Ω𝑘−1(𝑀) → Ω𝑘 (𝑀))

=
{𝜔 ∈ Ω𝑘 (𝑀) : 𝑑𝜔 = 0}
{𝑑𝜔 : 𝜔 ∈ Ω𝑘−1(𝑀)}

is the 𝑘-th de Rham cohomology group of 𝑀 .

Let 𝑀 be a smooth manifold. A form 𝜔 ∈ Ω𝑘 (𝑀) is closed if 𝑑𝜔 = 0 and exact if there exists a
(𝑘 − 1)-form 𝜏 ∈ Ω𝑘−1(𝑀) for which 𝑑𝜏 = 𝜔. Since 𝑑 ◦ 𝑑 = 0, every exact form is closed. hus,

𝐻𝑘dR(𝑀) =
{closed 𝑘-forms in 𝑀}
{exact 𝑘-forms in 𝑀}

153
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This suggests that Definition 8.1.2 measures the failure of closed forms to be exact forms. Indeed,
every closed form need not be exact:

Example 8.1.3. Consider the 1-form on R2 \ {0} defined by:

𝜔 =
𝑥 𝑑𝑦 − 𝑦 𝑑𝑥
𝑥2 + 𝑦2

Then,

𝑑𝜔 =
(𝑑𝑥 ∧ 𝑑𝑦 − 𝑑𝑦 ∧ 𝑑𝑥)(𝑥2 + 𝑦2) − (2𝑥 𝑑𝑥 + 2𝑦 𝑑𝑦)(𝑥 𝑑𝑦 − 𝑦 𝑑𝑥)

(𝑥2 + 𝑦2)2

=
2(𝑥2 + 𝑦2) 𝑑𝑥 ∧ 𝑑𝑦 − (2𝑥2 𝑑𝑥 ∧ 𝑑𝑦 − 2𝑦2 𝑑𝑦 ∧ 𝑑𝑥)

(𝑥2 + 𝑦2)2 = 0

So, 𝜔 is closed. But writing 𝜔 in polar coordinates and integrating around a circle centered at 0 in
R2 \ {0} gives ∫

S1
𝜔 = 2𝜋.

If 𝜔 = 𝑑𝜂 were exact, Stokes’ theorem would imply

0 =
∫
∅
𝜂 =

∫
𝜕S1

𝜂 =
∫
S1
𝑑𝜂 =

∫
S1
𝜔 = 2𝜋.

Hence, 𝜔 is not exact.

Remark 8.1.4. Elements 𝐻𝑘 (𝑀) are equivalence classes of 𝑘-forms. Given 𝜔 ∈ ker(𝑑 : Ω𝑘 (𝑀) →
Ω𝑘+1(𝑀)), we denote the equivalence class by

[𝜔] = {𝜔 + 𝑑𝜏 ∈ Ω𝑘 (𝑀) : 𝜏 ∈ Ω𝑘−1(𝑀)}.
Therefore, 𝐻𝑘dR(𝑀) is a vector space that classifies the closed 𝑘-forms in 𝑀 up to exact forms.

8.1.2. Properties of de Rham cohomology. We now discuss several algebraic properties of
de Rham cohomology, which are analogous to the properties of singular cohomology for general
topological spaces. We first show that the de Rham cohomology defines a contravariant functor
from the category of smooth manifolds, Man, to the category of abelian groups, Ab.

Proposition 8.1.5. Let 𝑀, 𝑁 be smooth manifolds and let 𝐹 : 𝑀 → 𝑁 be a smooth map. For each
𝑘 ∈ Z, let 𝐹∗ : Ω𝑘 (𝑁) → Ω𝑘 (𝑀) be the pullback map.

(1) For each 𝑘 ∈ Z, 𝐹∗ descends to a linear map 𝐹# : 𝐻𝑘dR(𝑁) → 𝐻𝑘dR(𝑀) between the de
Rham cohomology groups given by 𝐹# [𝜔] = [𝐹∗𝜔].

(2) (Functoriality) For each 𝑘 ∈ Z, 𝐻𝑘dR : Man→ Ab is a contravariant functor.

PROOF. We shall use the fact that the exterior derivative commutes with pullbacks. The proof is
given below:

(1) Let 𝜔 is a closed form. Then

𝑑 (𝐹∗𝜔) = 𝐹∗(𝑑𝜔) = 0
Hence, 𝐹∗𝜔 is also closed a form. This shows that 𝐹∗𝜔 restricts to a map

𝐹∗ : {closed 𝑘 − forms on 𝑁} → {closed 𝑘 − forms on 𝑀}
Now let 𝜔 = 𝑑𝜂 be an exact form. Then

𝐹∗𝜔 = 𝐹∗(𝑑𝜂) = 𝑑 (𝐹∗𝜂),
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Hence, 𝐹∗𝜔 is also an exact form. This shows that 𝐹∗ descends to a well-defined map map

𝐹# : 𝐻𝑘dR(𝑁) → 𝐻𝑘dR(𝑀)

given by 𝐹# [𝜔] = [𝐹∗𝜔].
(2) This follows from (1).

This completes the proof. □

Proposition 8.1.6. (de Rham Cohomolgy of Disjoint Unions) Let {𝑀 𝑗} 𝑗∈𝐽 be a countable collec-
tion of smooth 𝑛-dimensional manifolds. Let 𝑀 =

⊔
𝑗∈𝐽 𝑀 𝑗 . For each 𝑘 ∈ Z, the inclusion maps

𝑖 𝑗 : 𝑀 𝑗 ↩→ 𝑀 induce an isomorphism

𝐻𝑘dR(𝑀) �
∏
𝑗∈𝐽

𝐻𝑘dR(𝑀 𝑗)

PROOF. The pullback maps 𝑖∗𝑗 : 𝐻𝑘 (𝑀) → 𝐻𝑘 (𝑀 𝑗) induce an isomorphism from

𝑖 : 𝐻𝑘 (𝑀) →
∏
𝑗∈𝐽

𝐻𝑘 (𝑀 𝑗), 𝑖(𝜔) ↦→
(
𝑖∗𝑗 (𝜔)

)
𝑗∈𝐽

=
(
𝜔 |𝑀 𝑗

)
𝑗∈𝐽

This map is injective because any smooth 𝑘-form whose restriction to each 𝑀 𝑗 is zero must itself
be zero, and it is surjective because giving an arbitrary smooth 𝑘-form on each 𝑀 𝑗 defines one on
𝑀 . □

We now discuss the homotopy invariance of de Rham cohomology, allowing us to show that de
Rham cohomology is a topological invariant. If 𝑀 and 𝑁 are smooth manifolds, and 𝐹, 𝐺 : 𝑀 → 𝑁
are smooth maps, we shall show homotopy invariance by constructing a co-chain homotopy between
𝐹# and 𝐺# which are given by linear maps

ℎ𝑘 : Ω𝑘 (𝑁) → Ω𝑘−1(𝑀)

for each 𝑘 ∈ Z such that
𝐹#(𝜔) − 𝐺#(𝜔) = 𝑑 (ℎ𝑘𝜔) − ℎ𝑘+1(𝑑𝜔)

for each 𝜔 ∈ Ω𝑘 (𝑁) and 𝑘 ∈ Z.

· · · Ω𝑘−1(𝑁) Ω𝑘 (𝑁) Ω𝑘+1(𝑁) · · ·

· · · Ω𝑘−1(𝑀) Ω𝑘 (𝑀) Ω𝑘+1(𝑀) · · ·

𝑑 𝑑

𝐹#−𝐺#

𝑑

𝐹#−𝐺#
ℎ𝑘

𝑑

ℎ𝑘+1
𝐹#−𝐺#

𝑑 𝑑 𝑑 𝑑

The key to our proof of homotopy invariance is to construct a homotopy operator first in the
following special case. Let 𝑀 be a smooth manifold, and for each 𝑡 ∈ 𝐼, let

𝑖𝑡 : 𝑀 → 𝑀 × 𝐼

be the map 𝑖𝑡 (𝑥) = (𝑥, 𝑡). We first construct a co-chain homotopy between 𝑖#0 and 𝑖#1 .

Lemma 8.1.7. Let 𝑀 be a smooth 𝑛-dimensional manifold. There exists a co-chain homotopy be-
tween the two maps 𝑖#0 and 𝑖#1 .
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PROOF. For each 𝑘 ∈ Z, we need to define a linear map

ℎ𝑘 : Ω𝑘 (𝑀 × 𝐼) → Ω𝑘−1(𝑀)
such that

ℎ𝑘+1(𝑑𝜔) + 𝑑 (ℎ𝑘𝜔) = 𝑖#1 (𝜔) − 𝑖
#
0 (𝜔) (*)

for each 𝜔 ∈ Ω𝑘 (𝑀 × 𝐼). Let 𝑆 be the vector field on 𝑀 × R given by 𝑆(𝑝, 𝑠) = (0, 𝜕𝜕𝑠
��
𝑠
). Given

𝜔 ∈ Ω𝑘 (𝑀 × 𝐼), define ℎ𝑘 (𝜔) ∈ Ω𝑘−1(𝑀) by

ℎ𝑘 (𝜔) =
∫ 1

0
𝑖#𝑡 (𝑆⌟𝜔) 𝑑𝑡.

We shall verify the formula in (∗) in local coordinates. For 𝑝 ∈ 𝑀 , let 𝑈 = (𝑥1, · · · , 𝑥𝑛) denote a
co-ordinate chart containing then. Then 𝑈 × R = (𝑥1, · · · , 𝑥𝑛, 𝑠) is a co-cordinate chart containing
(𝑝, 𝑠) for each 𝑠 ∈ R. In coordinates:

𝜔 =
∑
𝐼

𝜔1
𝐼 (𝑥, 𝑠) 𝑑𝑠 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 +

∑
𝐽

𝜔2
𝐼 (𝑥, 𝑠) 𝑑𝑥 𝑗1 ∧ · · · ∧ 𝑑𝑥 𝑗𝑘

where 𝐼, 𝐽 range over all increasing 𝑘-multi-indices over {1, · · · , 𝑛}. We have,

𝑆⌟𝜔 =
∑
𝐼

𝜔1
𝐼 (𝑥, 𝑠) 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

𝑖#𝑡 (𝑆⌟𝜔) = 𝑖
#
𝑡

(∑
𝐼

𝜔1
𝐼 (𝑥, 𝑠) 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

)
=

∑
𝐼

𝜔1
𝐼 (𝑥, 𝑠) 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

We have,

𝑑 (ℎ𝑘𝜔) = 𝑑
∫ 1

0
𝑖#𝑡 (𝑆⌟𝜔) 𝑑𝑡

= 𝑑
∫ 1

0

(∑
𝐼

𝜔1
𝐼 (𝑥, 𝑡) 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

)
𝑑𝑡 =

∑
𝐼

∫ 1

0

(
𝜕𝜔1

𝐼 (𝑥, 𝑡)
𝜕𝑥 𝑗

𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘
)
𝑑𝑡.

We now compute ℎ𝑘+1(𝑑𝜔). Here 𝑑 is the exterior derivative on 𝑀 × 𝐼. First note that,

𝑑𝜔 =
∑
𝐼

𝜕𝜔1
𝐼 (𝑥, 𝑠)
𝜕𝑥 𝑗

𝑑𝑥 𝑗∧𝑑𝑡∧𝑑𝑥𝑖1∧· · ·∧𝑑𝑥𝑖𝑘+
∑
𝐽

𝜕𝜔2
𝐼 (𝑥, 𝑠)
𝜕𝑥𝑙

𝑑𝑥𝑙∧𝑑𝑥 𝑗1∧· · ·∧𝑑𝑥 𝑗𝑘+
∑
𝐽

𝜕𝜔2
𝐼 (𝑥, 𝑠)
𝜕𝑠

𝑑𝑠∧𝑑𝑥 𝑗1∧· · ·∧𝑑𝑥 𝑗𝑘

We now find ℎ𝑘+1(𝑑𝜔), which is given by the expression:

ℎ𝑘+1(𝑑𝜔) =
∫ 1

0
𝑖#𝑡 (𝑆⌟𝑑𝜔)𝑑𝑡

We have,

𝑆⌟𝑑𝜔 =
∑
𝐽

𝜕𝜔2
𝐼 (𝑥, 𝑠)
𝜕𝑠

𝑑𝑠 ∧ 𝑑𝑥 𝑗1 ∧ · · · ∧ 𝑑𝑥 𝑗𝑘 −
∑
𝐼

𝜕𝜔1
𝐼 (𝑥, 𝑠)
𝜕𝑥 𝑗

𝑑𝑡 ∧ 𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘

Therefore, we have,

ℎ𝑘+1(𝑑𝜔) =
∫ 1

0
𝑖#𝑡 (𝑆⌟𝑑𝜔)𝑑𝑡

=
∫ 1

0

(∑
𝐽

𝜕𝜔2
𝐼 (𝑥, 𝑡)
𝜕𝑠

𝑑𝑥 𝑗1 ∧ · · · ∧ 𝑑𝑥 𝑗𝑘 −
∑
𝐼

𝜕𝜔1
𝐼 (𝑥, 𝑡)
𝜕𝑥 𝑗

𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘
)
𝑑𝑡
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We have,

𝑑 (ℎ𝑘𝜔) + ℎ𝑘+1(𝑑𝜔) =
∫ 1

0

(∑
𝐽

𝜕𝜔2
𝐼 (𝑥, 𝑡)
𝜕𝑠

𝑑𝑥 𝑗1 ∧ · · · ∧ 𝑑𝑥 𝑗𝑘
)
𝑑𝑡

Noting that,

𝑖#𝑡 (𝜔) =
∑
𝐽

𝜔2
𝐼 (𝑥, 𝑡) 𝑑𝑥 𝑗1 ∧ · · · ∧ 𝑑𝑥 𝑗𝑘 ,

we have,

𝑑𝑖#𝑡 (𝜔)
𝑑𝑡

=
∑
𝐽

𝜕𝜔2
𝐼 (𝑥, 𝑡)
𝜕𝑡

𝑑𝑥 𝑗1 ∧ · · · ∧ 𝑑𝑥 𝑗𝑘

As a result, we have,

𝑑 (ℎ𝑘𝜔) + ℎ𝑘+1(𝑑𝜔) =
∫ 1

0

𝑑𝑖#𝑡 (𝜔)
𝑑𝑡

𝑑𝑡 = 𝑖#1 (𝜔) − 𝑖
#
0 (𝜔)

Hence, (∗) holds in every co-ordinate chart. This proves the claim. □

Proposition 8.1.8. Let 𝑀 and 𝑁 be smooth manifolds. If 𝐹, 𝐺 : 𝑀 → 𝑁 are smoothly homotopic
smooth maps, then the induced cohomology maps 𝐹∗, 𝐺∗ : 𝐻𝑘dR(𝑁) → 𝐻𝑘dR(𝑀) are equal for each
𝑘 ∈ Z.

PROOF. There exists a homotopy 𝐻 : 𝑀 × 𝐼 → 𝑁 from 𝐹 to 𝐺 such that 𝐹 = 𝐻 ◦ 𝑖0, 𝐺 = 𝐻 ◦ 𝑖1 We
have,

𝐹# = (𝐻 ◦ 𝑖0)# = 𝑖#0 ◦ 𝐻
∗,

𝐺# = (𝐻 ◦ 𝑖1)# = 𝑖#1 ◦ 𝐻
∗.

By Lemma 8.1.7, we know the maps 𝑖#0 and 𝑖#1 are equal from 𝐻𝑘dR(𝑀 × 𝐼) to 𝐻
𝑘
dR(𝑀) for each

𝑘 ∈ Z. Therefore,

𝐹# = (𝐻 ◦ 𝑖0)# = 𝑖#0 ◦ 𝐻
∗ = 𝑖#1 ◦ 𝐻

∗ = 𝐺#

This proves the claim. □

Corollary 8.1.9. (Smooth Homotopy Invariance) Let 𝑀 and 𝑁 be smoothly homotopy equivlaent
smooth manifolds. Then

𝐻𝑘dR(𝑀) � 𝐻
𝑘
dR(𝑁)

for each 𝑘 ∈ Z.

PROOF. Let 𝐹 : 𝑀 → 𝑁 and 𝐺 : 𝑁 → 𝑀 be smooth maps such that

𝐺 ◦ 𝐹 ≃ Id𝑀
𝐹 ◦ 𝐺 ≃ Id𝑁

We have,

(𝐺 ◦ 𝐹)# = 𝐹# ◦ 𝐺# = Id#
𝑀 = Id𝐻𝑘 (𝑀 ) ,

(𝐹 ◦ 𝐺)# = 𝐺# ◦ 𝐹# = Id#
𝑁 = Id𝐻𝑘 (𝑁 ) .
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Since Id#
𝑀 is a surjective map, then 𝐹# is surjective. Moreover, since Id#

𝑁 is an injective map, then
𝐹# is an injective map. Hence, 𝐹# is a linear map bijection, and hence an isomorphism. Hence, we
have

𝐻𝑘dR(𝑀) � 𝐻
𝑘
dR(𝑁)

for each 𝑘 ∈ Z. □

It is clear that if 𝑀 = {∗}, then 𝐻𝑘dR(𝑀) = 0 for all 𝑘 > 0. We will verify this explicitly later on.
If 𝑀 is a star-like manifold, then by smooth homotopy invariance, 𝐻𝑘dR(𝑀) = 0 for all 𝑘 > 0 since
𝑀 is contractible. This is immediately implies that the famous Poincaré lemma which states that if
𝑈 is an open star-shaped subset of R𝑛, then every closed form on 𝑈 is exact. A consequence of the
Poincaré lemma is that every closed form on a smooth manifold, 𝑀 , is locally exact. This suggests
that the the obstruction of solving the equation

𝑑𝜂 = 𝜔,

is connected to a global problem. This hints that the de Rham cohomology group is not affected by
the differential structure that is of local nature. This is made precise below:

Corollary 8.1.10. (Topological Invariance of de Rham Cohomology) If 𝑀 and 𝑁 are homotopy
equivalent,

𝐻𝑘dR(𝑀) � 𝐻
𝑘
dR(𝑁)

for each 𝑘 ∈ Z.

PROOF. By Whitney’s approximation theorem, every topological homotopy equivalence can be ap-
proximate is homotopic to a smooth homotopy equivalence. The result then follows from Corol-
lary 8.1.9. □

8.1.3. Mayer–Vietoris Sequence. Suppose 𝑀 is a smooth manifold, and let 𝑈 and 𝑉 be open
subsets of 𝑀 such that 𝑈 ∪ 𝑉 = 𝑀 . The main goal of using the Mayer-Vietoris Sequence is to
compute 𝐻𝑘dR(𝑀) in terms of 𝐻𝑘dR(𝑈), 𝐻

𝑘
dR(𝑉), and 𝐻

𝑘
dR(𝑈 ∩ 𝑉) where {𝑈,𝑉} is an open cover of

𝑀 . We have the following inclusions:

𝑈

𝑈 ∩𝑉 𝑀

𝑉

𝑘

𝑖

𝑗 𝑙

For each 𝑘 ∈ Z, these inclusion induce pullback maps on differential forms

Ω𝑘 (𝑈)

Ω𝑘 (𝑈 ∩𝑉) Ω𝑘 (𝑀)

Ω𝑘 (𝑉)

𝑖∗

𝑘∗

𝑙∗𝑗∗
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Note that these pullbacks are in fact just restrictions. If we take some 𝜔 ∈ Ω𝑘 (𝑀) and apply the map
𝑘∗ ⊕ ℓ∗, we get

𝑘∗ ⊕ ℓ∗(𝜔) : Ω𝑘 (𝑀) → Ω𝑘 (𝑈) ⊕ Ω𝑘 (𝑉), 𝑘∗ ⊕ ℓ∗(𝜔) = (𝑘∗𝜔, ℓ∗𝜔) = (𝜔|𝑈 , 𝜔 |𝑉 )
Furthermore, if we take (𝜔, 𝜂) ∈ Ω𝑝 (𝑈) ⊕ Ω𝑝 (𝑉) and apply the map 𝑖∗ − 𝑗∗, we have

𝑖∗ − 𝑗∗ : Ω𝑘 (𝑈) ⊕ Ω𝑘 (𝑉) → Ω𝑘 (𝑈 ∩𝑉) (𝑖∗ − 𝑗∗) (𝜔, 𝜂) = 𝜔
��
𝑈∩𝑉 − 𝜂

��
𝑈∩𝑉

In other words, we have the following diagram

Ω𝑘 (𝑈)

Ω𝑘 (𝑈 ∩𝑉) Ω𝑘 (𝑈) ⊕ Ω𝑘 (𝑉) Ω𝑘 (𝑀)

Ω𝑘 (𝑉)

𝑖∗

𝑖∗− 𝑗∗

𝑙∗

𝑘∗

𝑘∗⊕𝑙∗

𝑗∗

Proposition 8.1.11. (Mayer–Vietoris Sequence) Let 𝑀 be a smooth manifold, and let𝑈,𝑉 be open
subsets of 𝑀 such that 𝑀 = 𝑈 ∪ 𝑉 . For each 𝑘 ∈ Z, there is a linear map 𝛿𝑘 : 𝐻𝑘dR(𝑈 ∩ 𝑉) →
𝐻𝑘+1dR (𝑀) such that the following sequence, called the Mayer-Vietoris sequence for the open cover
{𝑈,𝑉}, is exact:

· · · 𝛿
𝑘−1
−−−−→ 𝐻𝑘dR(𝑀)

𝑘#⊕𝑙#−−−−−−→ 𝐻𝑘dR(𝑈) ⊕ 𝐻
𝑘
dR(𝑉)

𝑖#− 𝑗#−−−−−→ 𝐻𝑘dR(𝑈 ∩𝑉)
𝛿𝑘−−→ 𝐻𝑘+1dR (𝑀)

𝑘#⊕𝑙#−−−−−−→ · · ·

PROOF. Consider the following sequence:

0→ Ω𝑘 (𝑀) 𝑘
∗⊕𝑙∗−−−−→ Ω𝑘 (𝑈) ⊕ Ω𝑘 (𝑉) 𝑖

∗− 𝑗∗−−−−→ Ω𝑘 (𝑈 ∩𝑈) → 0
We show that this sequence is a short exact sequence. We first show that 𝑘∗⊕ 𝑙∗ is injective. Suppose
that 𝜎 ∈ Ω𝑝 (𝑀) satisfies

(𝑘∗ ⊕ 𝑙∗) (𝜎) = (𝜎 |𝑈 , 𝜎 |𝑉 ) = (0, 0)
This means that the restrictions of 𝜎 to𝑈 and 𝑉 are both zero. Since {𝑈,𝑉} is an open cover of 𝑀 ,
this implies that 𝜎 is zero. We now show exactness at Ω𝑘 (𝑈) ⊕ Ω𝑘 (𝑉). Note that

(𝑖∗ − 𝑗∗) ◦ (𝑘∗ ⊕ 𝑙∗) (𝜎) = (𝑖 ◦ 𝑗)(𝜎 |𝑈 , 𝜎 |𝑉 ) = 𝜎 |𝑈∩𝑉 − 𝜎 |𝑈∩𝑉 = 0,
This shows that Im(𝑘∗ ⊕ 𝑙∗) ⊆ ker(𝑖∗ − 𝑗∗). Conversely, suppose we are given (𝛼, 𝛼′) ∈ Ω𝑘 (𝑈) ⊕
Ω𝑘 (𝑉) such that (𝑖∗ ◦ 𝑗∗)(𝛼, 𝛼′) = 0. This means that 𝛼 |𝑈∩𝑉 = 𝛼′ |𝑈∩𝑉 . So there is 𝜎 ∈ Ω𝑘 (𝑀)
defined by

𝜎 =

{
𝛼 on𝑈,
𝛼′ on 𝑉.

Clearly, (𝛼, 𝛼′) = (𝑘 ⊕ 𝑙) (𝜎). So ker(𝑖∗− 𝑗∗) ⊆ im(𝑘∗ ⊕ 𝑙∗). We now show that 𝑖∗− 𝑗∗ is surjective.
Let 𝜔 ∈ Ω𝑘 (𝑈 ∩𝑈). Let {𝜑, 𝜓} be a smooth partition of unity subordinate to the open cover {𝑈,𝑉}
of 𝑀 . Define 𝛼 ∈ Ω𝑘 (𝑈) and 𝛼′ ∈ Ω𝑘 (𝑉) by

𝛼 =

{
𝜓𝜔 on𝑈 ∩𝑉,
0 on𝑈 \ supp𝜓

𝛼′ =

{
−𝜑𝜔 on𝑈 ∩𝑉,
0 on𝑈 \ supp 𝜑

We have
(𝑖∗ − 𝑗∗) (𝛼, 𝛼′) = 𝛼 |𝑈∩𝑉 − 𝛼′ |𝑈∩𝑉 = 𝜓𝜔 − (−𝜑𝜔) = (𝜓 − 𝜑)𝜔 = 𝜔.
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Hence, the sequence is indeed a short exact sequence. Because pullback maps commute with the
exterior derivative, above short exact sequence induces the following this will show that we have the
following short exact sequence:

0→ 𝐻𝑘dR(𝑀)
𝑘#⊕𝑙#−−−−−−→ 𝐻𝑘dR(𝑈) ⊕ 𝐻

𝑘
dR(𝑉)

𝑖#− 𝑗#−−−−−→ 𝐻𝑘dR(𝑈 ∩𝑈) → 0
Since this is true for each 𝑘 ∈ Z we get a short exact sequence of co-chain complexes involing the
de-Rham cohomology groups. The Mayer–Vietoris theorem then a formal consequence of the snake
lemma. □

The snake lemma defines the connecting morphism

𝐻𝑘dR(𝑈 ∩𝑉)
𝛿𝑘−−→ 𝐻𝑘+1dR (𝑀)

A characterization of the connecting homomorphism is given in the proof of the snake lemma. Re-
calling it and adapting it to our case, we have that 𝛿𝑘 [𝜔] = [𝜎], provided there exists (𝛼, 𝛼) ∈
Ω𝑘 (𝑈) ⊕ Ω𝑘 (𝑉) such that

𝑖∗𝛼 − 𝑗∗𝛼′ = 𝜔, (𝑘∗𝜎, 𝑙∗𝜎) = (𝑑𝛼, 𝑑𝛼′).
𝛼, 𝛼′ can be defined as in Proposition 8.1.11 to satisfy the first equation. Given such forms (𝛼, 𝛼′),
the fact that 𝜔 is closed implies that 𝑑𝛼 = 𝑑𝛼′ on𝑈 ∩𝑉 . Thus, there is a smooth (𝑘 + 1)-form 𝜎 on
𝑀 that is equal to 𝑑𝛼 on𝑈 and 𝑑𝛼′ on 𝑉 , and it satisfies the second equation.

8.1.4. de Rham cohomology in Degrees Zero & One. It is quite easy to characterize the de
Rham cohomology in degree zero.

Proposition 8.1.12. Let 𝑀 is a connected smooth manifold. Then 𝐻0
dR(𝑀) is equal to the space of

constant functions. Therefore,
𝐻0

dR(𝑀) � R

PROOF. Note that

𝐻0
dR(𝑀) � {closed 0 forms on 𝑀} � { 𝑓 ∈ 𝐶∞(𝑀) | 𝑑𝑓 = 0}

Since 𝑀 is connected, 𝑑𝑓 = 0 if and only if 𝑓 is constant real-valued function. Therefore,

𝐻0
dR(𝑀) � R

This completes the proof. □

Corollary 8.1.13. Let 𝑀 be a smooth manifold. Then

𝐻0
dR(𝑀) � R

|𝐽 | ,

where |𝐽 | is the number of connected components of 𝑀 .

PROOF. We have,
𝑀 =

∐
𝑗∈𝐽

𝑀 𝑗 ,

where each 𝑀 𝑗 is a connected component of 𝑀 and 𝐽 is at most countably infinite. By Proposi-
tion 8.1.6 and Proposition 8.1.12, we have,

𝐻0
dR(𝑀) �

∏
𝑗∈𝐽

𝐻0
dR(𝑀 𝑗 �)

∏
𝑗∈𝐽
R � R |𝐽 |

This completes the proof. □
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Another case in which we can say quite a lot about de Rham cohomology is in degree one. Let
Hom(𝜋1(𝑀, 𝑝),R) denote the set of group homomorphisms from 𝜋1(𝑀, 𝑝) to the additive group R.
We define a linear map Φ : 𝐻1

dR (𝑀) → Hom(𝜋1(𝑀, 𝑝),R) as follows: given a cohomology class
[𝜔] ∈ 𝐻1

dR (𝑀), define Φ([𝜔]) : 𝜋1(𝑀, 𝑝) → R by

Φ([𝜔]) ( [𝛾]) =
∫
𝛾
𝜔,

where [𝛾] is any path homotopy class in 𝜋1(𝑀, 𝑝), and 𝛾 is any piecewise smooth curve repre-
senting the same path class.

Proposition 8.1.14. Suppose 𝑀 is a connected smooth manifold. For each 𝑞 ∈ 𝑀 , the linear map
Φ : 𝐻1

dR (𝑀) → Hom(𝜋1(𝑀, 𝑝),R) is well defined and injective.

PROOF. (Sketch) Given [𝛾] ∈ 𝜋1(𝑀, 𝑝), it follows from the Whitney approximation theorem that
there is some smooth closed curve segment �̃� in the same path class as 𝛾. We use without proof the
fact that ∫

𝛾
𝜔 =

∫
˜̃𝛾 𝜔

for every closed forms, 𝜔 and every other smooth closed curve ˜̃𝛾 in the same path class as 𝛾. If 𝜔
is another smooth 1-form in the same cohomology class as 𝜔, then 𝜔 − 𝜔 = 𝑑𝑓 for some smooth
function 𝑓 , which implies ∫

𝛾
𝜔 −

∫
𝛾
𝜔 =

∫
𝛾
𝑑𝑓 = 𝑓 (𝑞) − 𝑓 (𝑞) = 0.

Thus, Φ is well defined. It follows from properties of the line integral that Φ( [𝜔]) is a group ho-
momorphism from 𝜋1(𝑀, 𝑝) to R, and that Φ itself is a linear map. Suppose Φ([𝜔]) is the zero
homomorphism. This means that

∫
𝛾
𝜔 = 0 for every piecewise smooth closed curve �̃� with base-

point 𝑞. If 𝛾 is a piecewise smooth closed curve starting at some other point 𝑞0 ∈ 𝑀 , we can choose
a piecewise smooth curve 𝛼 from 𝑞 to 𝑞0, so that the path product 𝛼 · 𝛾 · 𝛼 is a closed curve based
at 𝑞. It then follows that

0 =
∫
𝛼·𝛾 ·𝛼

𝜔 =
∫
𝛼
𝜔 +

∫
𝛾
𝜔 +

∫
𝛼
𝜔 =

∫
𝛼
𝜔 +

∫
𝛾
𝜔 −

∫
𝛼
𝜔 =

∫
𝛾
𝜔.

Thus, 𝜔 is conservative and therefore exact. □

Corollary 8.1.15. If𝑀 is a connected smoothmanifold with finite fundamental group, then𝐻1
dR (𝑀) =

0.

PROOF. There are no nontrivial homomorphisms from a finite group to R. The claim follows from
Proposition 8.1.14. □

Remark 8.1.16. If 𝑀 is a connected smooth manifold whose fundamental group is a torsion group,
then 𝐻1

dR (𝑀) = 0. This is because R has no torsion elements. Hence, Hom(𝜋1(𝑀, 𝑝),R) = 0 in
this case.

8.2. Examples & Applications
We discuss some example computations of de Rham cohomology.
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Example 8.2.1. (0-Dimensions) Let 𝑀 be a 0-dimensional smooth manifold. We have,

𝑀 �
∐
𝑖∈𝐼
{∗}

where |𝐼 | is the cardinality¹ of 𝑀 . Then

𝐻𝑘dR(𝑀) =
{
R |𝐼 | , if 𝑘 = 0
0, otherwise

.

where |𝐼 | is the cardinality of𝑀 . This follows at once from Proposition 8.1.6 and Proposition 8.1.12.

Example 8.2.2. (Contractible Manifolds) Let 𝑀 be contractible manifold. Then,

𝐻𝑘dR(𝑀) =
{
R |𝐽 | , if 𝑘 = 0
0, otherwise

.

where |𝐽 | is the number of connected components of 𝑀 . This follows immediately from Exam-
ple 8.2.1 and Corollary 8.1.13.

Remark 8.2.3. If 𝑀 is a star-like manifold, then by homotopy invariance, 𝐻𝑘dR(𝑀) = 0 for all 𝑘 > 0
since 𝑀 is contractible. This is immediately implies that the famous Poincaré lemma which states
that if𝑈 is an open star-shaped subset of R𝑛, then every closed form on𝑈 is exact. A consequencee
of the Poincaré lemma is that every closed form on a smooth manifold, 𝑀 , is locally exact.

Example 8.2.4. (Circle) Let’s compute the de-Rham cohomology of S1. Clearly, 𝐻0
dR(S

1) = R since
S1 is connected. Write S1 = 𝑈 ∪ 𝑉 , where 𝑈,𝑉 represent the ‘nothern hemisphere’ and ‘southern
heisphere’. 𝑈,𝑉 are contractible and𝑈 ∩𝑉 � {±1}. The Mayer-Vietoris theorem implies

0 R R ⊕ R R ⊕ R 𝐻1
dR(S

1) 0 0 · · ·

This clearly implies that 𝐻𝑘dR(S
1) = 0 for 𝑘 > 2. We can immediately conclude via exactness that

𝐻1
dR(S

1) = R. Hence,

𝐻𝑘dR(S
1) =

{
R, if 𝑘 = 0, 1
0, otherwise

.

We can compute the generator for 𝐻1
dR(S

1). The generator of is the angular 1-form 𝑑𝜃. Notice that
𝑑𝜃 is not globally defined on the circle since it is a multiple-valued function. Therefore, 𝑑𝜃 is not
zero in cohomology and generates 𝐻1

dR(S
1).

Example 8.2.5. (Spheres) Let’s compute the de Rham cohomology of S𝑛 for 𝑛 ≥ 1. We proceed
by induction on 𝑘 to show that

𝐻𝑘dR(S
𝑛) =

{
R, if 𝑘 = 0, 𝑛
0, otherwise

.

We have verified the claim for 𝑘 = 1 in Example 8.2.4. Now assume the claim is true for 𝑛 − 1. Let
𝑈 = S𝑛 \ {𝑁} and 𝑉 = S𝑛 \ {𝑆}. We have

𝑈 ∩𝑉 ≃ S𝑛−1 𝑈 ≃ 𝑉 ≃ R𝑛

The Mayer-Vietoris sequence implies
· · · → 0→ 𝐻𝑘−1

dR (S
𝑛−1) → 𝐻𝑘dR(S

𝑛) → 0→ · · ·

¹|𝐼 | is at most countably infinite.



8.2. EXAMPLES & APPLICATIONS 163

This implies that 𝐻𝑘−1
dR (S

𝑛−1) � 𝐻𝑘dR(S
𝑛). The claim now follows via induction and Example 8.2.4.

Example 8.2.6. (Punctured Euclidean Space) Let 𝑝 ∈ R𝑛 for 𝑛 ≥ 2. WLOG, we can assume that
𝑝 = 0. We have

𝐻𝑘dR(R
𝑛 \ {𝑝}) =

{
R, if 𝑘 = 0, 𝑛 − 1
0, otherwise

.

Indeed, the inclusion S𝑛−1 → R𝑛 is a homotopy equivalence. The claim now follows from Exam-
ple 8.2.5.

We can now discuss some elementary applications of de-Rham cohomology. We can now prove
the topological invariance of the dimension of smooth manifolds.

Proposition 8.2.7. If𝑚 ≠ 𝑛, thenR𝑛 is not homeomorphic toR𝑚. In particular, if𝑀 be a topological
𝑛-manifold then its dimension is uniquely determined.

PROOF. Assume that R𝑚 � R𝑛. If 𝑓 : R𝑛 → R𝑚 is a homeomorphism, then 𝑓 : R𝑛 \ {0} →
R𝑚 \ { 𝑓 (0)} is a homeomorphism. So,

𝐻𝑘dR(R
𝑛 \ {0}) = 𝐻𝑘dR(R

𝑚 \ { 𝑓 (0)}),

for each 𝑘 ∈ Z. But R𝑛 \ {0} � S𝑛−1 and R𝑚 \ { 𝑓 (0)} � S𝑚−1. So,

𝐻𝑘dR(S
𝑚−1) = 𝐻𝑘dR(S

𝑛−1)

for each 𝑘 ∈ Z. This is a contradiction by Example 8.2.5. The claim for a topological manifold
follows by working in co-ordinate charts. □

We can also show that the rank of the de-Rham cohomology groups is finite for most manifolds.
We first need a definition:

Definition 8.2.8. Let𝑀 be a smooth 𝑛-manifold and {𝑈𝛼}𝛼∈Λ an open cover of𝑀 . We say {𝑈𝛼}𝛼∈Λ
is a good cover if for any finite subset 𝐼 = {𝛼1, . . . , 𝛼𝑘} ⊆ Λ of indices, the intersection

𝑈𝐼 := 𝑈𝛼1 ∩𝑈𝛼2 ∩ · · · ∩𝑈𝛼𝑘
is either empty or diffeomorphic to R𝑛.

Remark 8.2.9. By using the theory of geodesically convex neighborhoods in Riemannian geometry,
one can show that any open cover of any smooth manifold 𝑀 admits a refinement which is a good
cover. In particular, if 𝑀 is compact, then 𝑀 admits a good cover which contains only finitely many
open sets. See [BT13].

Proposition 8.2.10. Let 𝑀 be a smooth 𝑛-manifold. If 𝑀 admits a finite good cover, dim𝐻𝑘dR(𝑀) <
∞ for each 𝑘 ∈ Z.

PROOF. We proceed by induction on the number of sets in a finite good cover of 𝑀 . If 𝑀 admits
a good cover that contains only one open set, then that open set has to be 𝑀 itself. In this case,
𝑀 is diffeomorphic to R𝑛, and the conclusion follows. Now suppose the theorem holds for any
manifold that admits a good cover containing 𝑘 − 1 open sets. Let 𝑀 be a manifold with a good
cover {𝑈1, . . . ,𝑈𝑘}. We denote

𝑈 = 𝑈1 ∪ · · · ∪𝑈𝑘−1 and 𝑉 = 𝑈𝑘 .
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Then 𝑈 ∩ 𝑉 admits a finite good cover {𝑈1 ∩ 𝑈𝑘 , . . . ,𝑈𝑘−1 ∩ 𝑈𝑘}. By the induction hypothesis,
all the de Rham cohomology groups of 𝑈, 𝑉 , and 𝑈 ∩ 𝑉 are finite-dimensional. Now consider the
Mayer-Vietoris sequence:

· · · → 𝐻𝑘−1
dR (𝑈 ∩𝑉)

𝛿𝑘−1
−−−−→ 𝐻𝑘dR(𝑀)

𝛼𝑘−−→ 𝐻𝑘dR(𝑈) ⊕ 𝐻
𝑘
dR(𝑉) → · · · .

The conclusion follows since

dim Im(𝛼𝑘) ≤ dim𝐻𝑘dR(𝑈) ⊕ 𝐻
𝑘
dR(𝑉) < ∞,

dim ker(𝛼𝑘) = dim Im(𝛿𝑘−1) ≤ dim𝐻𝑘−1
dR (𝑈 ∩𝑉) < ∞.

This completes the proof. □

Corollary 8.2.11. If𝑀 is a compact manifold (or𝑀 is homotopy equivalent to a compact manifold),
then dim𝐻𝑘dR(𝑀) < ∞ for all 𝑘 ∈ Z.

PROOF. This follows from Proposition 8.2.10. □

8.3. Compactly Supported de-Rham Cohomology
Let 𝑀 be an orientable smooth manifold. Integration is a pairing between compactly supported

forms and oriented manifolds. This observation motivates that 𝐻𝑛dR(𝑀) is important for studying
orientations on 𝑀 . Unfortunately, if 𝑀 is non-compact, the integration of a 𝑛-form is not nicely
defined unless the differential form is compactly supported. This observation motivates the study of
de-Rham cohomology with compact support.

Definition 8.3.1. Let 𝑀 be a smooth 𝑛-manifold and let 𝜔 ∈ Ω𝑘 (𝑀). The support of 𝜔 is

supp(𝜔) = {𝑝 ∈ 𝑀 | 𝜔𝑝 ≠ 0}.

𝜔 is compactly supported if supp(𝜔) is a compact set.

We set,
Ω𝑘𝑐 (𝑀) = {𝜔 ∈ Ω𝑘 (𝑀) | 𝜔 is compactly supported},

be the set of all compactly supported smooth 𝑘-forms. Clearly, the following facts are true:
(1) if 𝜔1, 𝜔2 are compactly supported 𝑘-forms, so is 𝑐1𝜔1 + 𝑐2𝜔2;
(2) if 𝜔 is compactly supported, then 𝑑𝜔 is also compactly supported.

So Ω𝑘𝑐 (𝑀) are real vector spaces for each 𝑘 ∈ Z, and the exterior derivative makes these vector
spaces a co-chain complex:

0→ Ω0
𝑐 (𝑀)

𝑑−→ Ω1
𝑐 (𝑀)

𝑑−→ Ω2
𝑐 (𝑀)

𝑑−→ Ω3
𝑐 (𝑀)

𝑑−→ · · · .

Definition 8.3.2. Let 𝑀 be a smooth manifold. The quotient vector space

𝐻𝑘dR,c(𝑀) =
ker(𝑑 : Ω𝑘𝑐 (𝑀) → Ω𝑘+1𝑐 (𝑀))
im(𝑑 : Ω𝑘−1

𝑐 (𝑀) → Ω𝑘𝑐 (𝑀))
=
{𝜔 ∈ Ω𝑘𝑐 (𝑀) : 𝑑𝜔 = 0}
{𝑑𝜔 : 𝜔 ∈ Ω𝑘−1

𝑐 (𝑀)}
is the 𝑘-th de Rham cohomology group with compact support of 𝑀 .

Example 8.3.3. Let 𝑀 be a smooth manifold. For 𝑘 = 0, by definition

𝐻𝑘dR,c(𝑀) = { 𝑓 ∈ 𝐶
∞(𝑀) | 𝑑𝑓 = 0 and supp( 𝑓 ) is compact}.
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But 𝑑𝑓 = 0 if and only if 𝑓 is locally constant, i.e., 𝑓 is constant on each connected component.
Moreover, a locally constant compactly supported function has to be zero on any non-compact con-
nected component. So we conclude

𝐻0
dR,c(𝑀) � R

𝑚𝑐 ,

where 𝑚𝑐 is the number of compact connected components of 𝑀 . In particular,

𝐻0
dR,c(pt) = R, and 𝐻0

dR,c(R
𝑛) = 0

for all 𝑛 ≥ 1.

Remark 8.3.4. Since R𝑛 is homotopy equivalent to {pt}, we conclude that 𝐻0
dR,c(𝑀) is no longer a

homotopy invariant.

We now discuss the analog of the Mayer-Vietoris sequence for the compactly supported case. If
𝐹 : 𝑀 → 𝑁 is a smooth map between smooth manifolds, note that by definition,

supp(𝐹∗𝜔) ⊆ 𝐹−1(supp(𝜔)).
So if 𝜔 ∈ Ω𝑘𝑐 (𝑁), in general we may have 𝐹∗𝜔 ∉ Ω𝑘𝑐 (𝑀). Hence, we cannot expect to pull back
compactly-supported cohomology classes on 𝑁 to compactly-supported cohomology classes on 𝑀!

Remark 8.3.5. If 𝐹 : 𝑀 → 𝑁 is proper map, then the pull-back 𝐹∗𝜔 of a compactly supported
differential form 𝜔 ∈ Ω𝑘𝑐 (𝑁) is still compactly supported. In this case, we have an induced map:

𝐹∗ : 𝐻𝑘dR,c(𝑁) → 𝐻𝑘dR,c(𝑀)
In this case, one can prove that if 𝐹0, 𝐹1 : 𝑀 → 𝑁 are proper smooth maps that are properly
homotopic, then the induced maps are equal:

𝐹∗1 = 𝐹∗2 : 𝐻𝑘dR,c(𝑁) → 𝐻𝑘dR,c(𝑀).
Note that any homeomorphism is proper. So, in particular, the compactly supported de Rham coho-
mology groups are still topological invariants up to homeomorphisms. That is, if 𝑀 � 𝑁 as smooth
manifolds, then

𝐻𝑘𝑐 (𝑀) = 𝐻𝑘𝑐 (𝑁)
for each 𝑘 ∈ Z. We have aready seen that compactly supported de Rham cohomology groups is not
a topological invariant up to homotopy equivalence.

So how do we prove an analog of the Mayer-Vietoris sequence for the compactly supported
case. Note that we can now instead pushforward compactly supported differential forms and hence
cohomology classes. If𝑈 ⊆ 𝑀 is an open set, the inclusion 𝑖 : 𝑈 ↩→ 𝑀 induces a map

𝑖∗ : Ω𝑛𝑐 (𝑈) → Ω𝑛𝑐 (𝑀)
that sends a compactly supported differential form on 𝑈 to the same differential form extended by
zero outside of𝑈.

Lemma 8.3.6. For each 𝑘 ∈ Z, the map 𝑖∗ commutes with the exterior derivative.

PROOF. For𝜔 ∈ Ω𝑛𝑐 (𝑈), we have 𝑑𝜔 ∈ Ω𝑛+1𝑐 (𝑈). Thus, applying (𝑖∗◦𝑑) to𝜔 results in 𝑑𝜔 extended
by zero outside of𝑈. If we first apply 𝑖∗, we obtain

𝑖∗(𝜔) =
{

0, on 𝑀 \𝑈,
𝜔, on𝑈.
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Taking the exterior derivative, we get

𝑑 (𝑖∗𝜔) =
{

0, on 𝑀 \𝑈,
𝑑𝜔, on𝑈.

Thus, 𝑖∗ commutes with 𝑑. That is, 𝑖∗ ◦ 𝑑 = 𝑑 ◦ 𝑖∗. □

Lemma 8.3.6 allows us to establish the following version of the Mayer-Vietoris sequence for the
compactly supported case.

Proposition 8.3.7. Let 𝑀 be a smooth 𝑛-manifold and let𝑈,𝑉 ⊆ 𝑀 be open sets such that𝑈 ∪𝑉 =
𝑀 . Then there exists linear maps 𝛿𝑐𝑘 : 𝐻𝑘𝑐 (𝑀) → 𝐻𝑘+1𝑐 (𝑈 ∩ 𝑉) so that the following sequence is
exact:

· · · → 𝐻𝑘𝑐 (𝑈 ∩𝑉) → 𝐻𝑘𝑐 (𝑈) ⊕ 𝐻𝑘𝑐 (𝑉) → 𝐻𝑘𝑐 (𝑀)
𝛿𝑐
𝑘−−→ 𝐻𝑘+1𝑐 (𝑈 ∩𝑉) → · · ·

PROOF. The proof is so much like the original Mayer-Vietoris proof, and it involves a diagram chase.
We omit details. □

Example 8.3.8. We compute 𝐻𝑘dR,c(R
𝑛) for 𝑘 < 𝑛. We have seen 𝐻0

dR,c(R
𝑛) = 0. Now we show

that
𝐻𝑘dR,c(R

𝑛) = 0

for 1 ≤ 𝑘 < 𝑛. We identify R𝑛 with then open set S𝑛 − {𝑁}. Then we get an inclusion map

𝜄 : R𝑛 → S𝑛,

(1) Let 𝑘 = 1. Let 𝜔 ∈ Ω1
𝑐 (R𝑛) such that 𝑑𝜔 = 0. Since 𝑑 commutes with 𝑖 as seen above, we

have that 𝜄∗𝜔 ∈ Ω1
𝑐 (S𝑛) such that 𝑑 (𝜄∗𝜔) = 0. Since²

𝐻1
dR,c(S

𝑛) = 𝐻1
dR(S

𝑛) = 0

there exists 𝜂 ∈ Ω0(S𝑛) = 𝐶∞𝑐 (S𝑛) such that 𝜄∗𝜔 = 𝑑𝜂. Noting that 𝜄∗𝜔 is supported in
S𝑛−𝑈 for open set𝑈 containing 𝑁 , we have 𝑑𝜂 = 𝜄∗𝜔 = 0 on𝑈. This implies that 𝜂 |𝑈 ≡ 𝑐
for some constant 𝑐 ∈ R. It follows that if we take 𝜂 = 𝜂 − 𝑐, then 𝜂 ∈ Ω0

𝑐 (S𝑛 − {𝑁}) =
Ω0
𝑐 (R𝑛) and 𝑑𝜂 = 𝜔.

(2) Let 𝑘 > 1. Let 𝜔 ∈ Ω𝑐𝑘 (R
𝑛) such that 𝑑𝜔 = 0. As above, 𝜄∗𝜔 ∈ Ω𝑐𝑘 (R

𝑛) such that
𝑑 (𝜄∗𝜔) = 0, and 𝜄∗𝜔 is supported in S𝑛 −𝑈 for open set𝑈 containing 𝑁 . Since³

𝐻𝑘dR,c(S
𝑛) = 𝐻𝑘dR(S

𝑛) = 0

there exists 𝜂 ∈ Ω𝑘−1(S𝑛) such that 𝜄∗𝜔 = 𝑑𝜂. By shrinking the neighborhood 𝑈 of 𝑁 ,
we can assume that 𝑈 is contractible. Then the fact that 𝑑𝜂 = 𝜄∗𝜔 = 0 in 𝑈 implies that
there exists a 𝜇 ∈ Ω𝑘−2

𝑐 (𝑈) such that 𝜂 |𝑈 = 𝑑𝜇. Now pick a bump function 𝜓 on S𝑛 which
compactly supported in𝑈 that equals 1 on 𝑁 . Then

𝜂 = 𝜂 − 𝑑 (𝜓𝜇) ∈ Ω𝑘−1
𝑐 (S𝑛)

and 𝜂 = 0 near 𝑁 . By construction, 𝑑𝜂 = 𝑑𝜂 = 𝜔.

²Note that 𝑘 = 1 < 𝑛
³Once again, note that 𝑘 < 1 < 𝑛
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8.3.1. Top Degree Cohomology. We now set up the machinery to argue that the degree 𝑘 de
Rham cohomology with compact support is related to the orientation of smooth manifolds. First, an
example:

Example 8.3.9. Let’s compute 𝐻1
dR,c(R). Consider the integration map∫
R

: Ω1
𝑐 (R) → R, 𝜔 ↦→

∫
R
𝜔.

This map is clearly linear and surjective. Moreover, if 𝜔 = 𝑑𝑓 is a compactly supported exact form,
then ∫ ∞

−∞
𝑑𝑓 𝑑𝑥 =

∫ 𝑅

−𝑅

𝑑𝑓

𝑑𝑥
𝑑𝑥 = 𝑓 (𝑅) − 𝑓 (−𝑅),

for each 𝑅 > 0. Since 𝑓 ∈ 𝐶∞𝑐 (R), 𝑓 (𝑅) = 𝑓 (−𝑅) = 0 for 𝑅 large enough. So it induces a surjective
linear map ∫

R
: 𝐻1

dR,c(R) → R.

Moreover, if
∫
R
𝑓 (𝑡) 𝑑𝑡 = 0, where 𝑓 ∈ 𝐶∞𝑐 (R), then consider the function

𝑔(𝑡) =
∫ 𝑡

−∞
𝑓 (𝜏) 𝑑𝜏

Clearly, 𝑔 is smooth. If we choose 𝑇 > 0 and 𝑅 < 0 large enough, we get

𝐹 (𝑇) =
∫ 𝑇

−∞
𝑓 (𝑡) 𝑑𝑡 =

∫ ∞

−∞
𝑓 (𝑡) 𝑑𝑡 = 0.

𝐹 (𝑅) =
∫ 𝑅

−∞
𝑓 (𝑡) 𝑑𝑡 =

∫ 𝑅

−∞
0 𝑑𝑡 = 0.

Hence, 𝑔 ∈ 𝐶∞𝑐 (R). Since 𝑑𝑔 = 𝑓 , we have [ 𝑓 (𝑡)𝑑𝑡] in 𝐻1
dR,c(R). Thus,

∫
R
is an isomorphism

between 𝐻1
𝑐 (R) and R, i.e.,

𝐻1
𝑐 (R) � R.

The same method as in Example 8.3.9 works generally. Let 𝑀 be a connected, oriented 𝑛-
manifold, and let 𝜔 ∈ Ω𝑛𝑐 (𝑀) be a compactly supported 𝑛-form. Then 𝜔 is closed, and we have
defined the integral

∫
𝑀
𝜔. So we get a map∫

𝑀
: Ω𝑛𝑐 (𝑀) → R, 𝜔 ↦→

∫
𝑀
𝜔.

Suppose𝜔 = 𝑑𝜂 for some 𝜂 ∈ Ω𝑛−1
𝑐 (𝑀). We can take a compact set 𝐾 ⊆ 𝑀 such that supp(𝜂) ⊆ 𝐾 .

By Stokes’ theorem, ∫
𝑀
𝜔 =

∫
𝑀
𝑑𝜂 =

∫
𝐾
𝑑𝜂 =

∫
𝜕𝐾
𝜂 = 0.

Thus,
∫
𝑀

induces a linear map∫
𝑀

: 𝐻𝑛dR,c(𝑀) → R, [𝜔] ↦→
∫
𝑀
𝜔

Proposition 8.3.10. Let 𝑀 be an oriented smooth 𝑛-manifold. Then the map
∫
𝑀

: 𝐻𝑛dR,c(𝑀) → R
is surjective.

PROOF. Fix a 𝑛-form (a volume form) 𝜔 on 𝑀 . For any 𝑐 ∈ R, one can find a smooth function 𝑓 that
is compactly supported in a coordinate chart𝑈, such that

∫
𝑈
𝑓 𝜔 = 𝑐. □
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We can prove the following corollary based on Proposition 8.3.10:
Corollary 8.3.11. The following statements are true:

(1) If 𝜔 ∈ Ω𝑛 (S𝑛) and
∫
S𝑛
𝜔 = 0, then 𝜔 is exact.

(2) We have

𝐻𝑘dR,c(R
𝑛) =

{
R, 𝑘 = 𝑛,

0, 𝑘 ≠ 𝑛.

(3) Let 𝑀 be a smootn 𝑛-manifold. if 𝑀 admits a finite good cover, then dim𝐻𝑘dR,c(𝑀) < ∞
for all 𝑘 ∈ Z.

PROOF. The proof is given below:
(1) Note that

𝐻𝑛dR(S
𝑛) = 𝐻𝑛dR,c(S

𝑛) � R
Hence, the map in Proposition 8.3.10 is in fact a linear isomorphism. In other words, if∫
S𝑛
𝜔 = 0, then [𝜔] = 0, i.e., 𝜔 is exact.

(2) Example 8.3.9 proves the case 𝑛 = 1 and Example 8.3.8 takes care of the case 1 ≤ 𝑘 < 𝑛
for 𝑛 ≥ 2. We discuss the case 𝑘 = 𝑛 ≥ 2. It suffices to show that the surjective linear map∫

R𝑛
: 𝐻𝑛dR,c(R

𝑛) → R, [𝜔] ↦→
∫
R𝑛
𝜔

is in fact an isomorphism. We show that the map is injective. Assume that
∫
R𝑛
𝜔 = 0 for

some 𝜔 ∈ Ω𝑛𝑐 (R𝑛). Automatically, we have 𝑑𝜔 = 0. As before, consider the inclusion map
𝜄 : R𝑛 → S𝑛. Then 𝜄∗𝜔 ∈ Ω𝑛 (𝑆𝑛). Since∫

S𝑛
𝜄∗𝜔 =

∫
R𝑛
𝜔 = 0,

by (1), we see 𝜄∗𝜔 = 𝑑𝜂 for some 𝜂 ∈ Ω𝑛−1(𝑆𝑛). The rest of the proof is similar to that of
Example 8.3.8(2).

(3) We can use Mayer-Vertoris sequence compactly supported de Rham cohomology and in-
duction and the number of open sets in a good cover. The same as the proof for the ordinary
de Rham cohomology.

This completes the proof. □

We now reach the punchline for this section. We argue that Proposition 8.3.10 is, in fact, a linear
isomorphism if the underlying smooth manifold is connected and orientable.
Proposition 8.3.12. Let 𝑀 be a smooth connected orientable 𝑛-manifold. The map in Proposi-
tion 8.3.10 is an isomorphism. In particular,

𝐻𝑛dR,c(𝑀) � R
PROOF. In Proposition 8.3.10, we have already checked that the map is a surjective linear isomor-
phism. We check that it is injective. Let 𝜔 ∈ Ω𝑐𝑐 (𝑀) such that

∫
𝑀
𝜔 = 0. Since 𝑀 is connected

and supp(𝜔) is compact, we can take a connected compact set supp(𝜔) ⊆ 𝐾𝜔 . If we can cover
𝐾𝜔 by a good cover which contains only one chart, then Corollary 8.3.11(2) implies that 𝜔 = 𝑑𝜇
for some 𝜇 ∈ Ω𝑛−1

𝑐 (𝑀). We can now proceed by induction. Suppose the claim is true if 𝐾𝜔 can be
covered by 𝑘−1 ‘good charts,’ and suppose𝜔 ∈ Ω𝑛𝑐 (𝑀) satisfies the property that 𝐾𝜔 admits a good
cover {𝑈1, . . . ,𝑈𝑘}. There exists one𝑈𝑖 , say𝑈𝑘 for simplicity, such that both𝑈 = 𝑈1 ∪ · · · ∪𝑈𝑘−1
and 𝑉 = 𝑈𝑘 are connected⁴. Pick a partition of unity {𝜌𝑈 , 𝜌𝑉 } of 𝑈 ∪ 𝑉 subordinate to the cover

⁴This needs proof.
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{𝑈,𝑉}, and let 𝜔|𝑈 = 𝜌𝑈𝜔, 𝜔 |𝑉 = 𝜌𝑉𝜔. Since 𝐾𝜔 is connected, 𝑈 ∩ 𝑉 ≠ ∅. We pick an 𝑛-form
𝜔0 compactly supported in𝑈 ∩𝑉 so that∫

𝑀
𝜔0 =

∫
𝑀
𝜔 |𝑈 .

Then 𝜔 |𝑈 − 𝜔0 is compactly supported in 𝑈, which is connected and admits a good cover of
𝑘 − 1 good charts, and ∫

𝑀
(𝜔 |𝑈 − 𝜔0) = 0.

So by the induction hypothesis,
𝜔𝑈 − 𝜔0 = 𝑑𝜂 |𝑈

for some 𝜂𝑈 ∈ Ω𝑛−1
𝑐 (𝑀). Similarly,∫

𝑀
(𝜔 |𝑉 + 𝜔0) = −

∫
𝑀
𝜔|𝑈 +

∫
𝑀
𝜔0 = 0

implies
𝜔𝑉 + 𝜔0 = 𝑑𝜂 |𝑉

for some 𝜂 |𝑉 ∈ Ω𝑛−1
𝑐 (𝑀). It follows that

𝜔 = 𝜔𝑈 + 𝜔𝑉 = 𝑑 (𝜂𝑈 + 𝜂𝑉 ),
where 𝜂 |𝑈 + 𝜂 |𝑉 ∈ Ω𝑛−1

𝑐 (𝑀). This completes the proof. □

8.4. de-Rham’s Theorem
8.4.1. Smooth Singular Homology.
8.4.2. Proof of De-Rham’s Theorem.
8.4.3. Applications.



CHAPTER 9

Products & Duality

9.1. Cup Product
Let’s revert back to singular cohomology. However, we will keep on referring to de Rham coho-

mology for some down-to-earth motivation. We have worked with coefficients 𝐺, where 𝐺 is some
abelian group. Cohomology groups with 𝐺-coefficients can be ‘summed up’ to yield a direct sum
decomposition:

𝐻∗(𝑋;𝐺) =
⊕
𝑛≥0

𝐻𝑛 (𝑋;𝐺)

We now show that if we take 𝐺 = 𝑅 to be a commutative ring 𝑅, then the singular cohomology with
coefficients in 𝑅 also forms a ring under the cup product operation. This suggests that cohomology
is a stronger topological invariant than homology. First, let’s define the algebraic object over which
we define the ring structure.

Definition 9.1.1. Let 𝑋 be a topological space, and let 𝑅 be a commutative ring. The total coho-
mology of 𝑋 with coefficients in 𝑅 is given by

𝐻•(𝑋; 𝑅) :=
⊕
𝑛≥0

𝐻𝑛 (𝑋; 𝑅).

Our aim is to make 𝐻•(𝑋; 𝑅) into a graded ring when 𝑅 is a commutative ring. We shall do this
by first making

𝐶•(𝑋; 𝑅) :=
⊕
𝑛≥0

𝐶𝑛 (𝑋; 𝑅)

into a graded ring, and then showing that the ring structure descends to cohomology. This will be
done by introducing a cup product structure on 𝐶•(𝑋; 𝑅).

Example 9.1.2. We first discuss the special case of de Rham cohomology. The advantage here is
that we can directly work at the de Rham cohomology groups. Let 𝑀 be a smooth manifold, and let
𝜔 ∈ Ω𝑘 (𝑀), 𝜂 ∈ Ω𝑙 (𝑀) be closed forms. If [𝜔] = [𝜔′] and [𝜂] = [𝜂′], we have

𝜔 = 𝜔′ + 𝑑𝛼, 𝜂 = 𝜂′ + 𝑑𝛽
for 𝛼 ∈ Ω𝑘−1(𝑀) and 𝛽 ∈ Ω𝑙−1(𝑀). Note that we have

𝜔 ∧ 𝜂 = (𝜔′ + 𝑑𝛼) ∧ (𝜂′ + 𝑑𝛽)
= 𝜔′ ∧ 𝜂′ + 𝜔′ ∧ 𝑑𝛽 + 𝑑𝛼 ∧ 𝜂′ + 𝑑 (𝛼 ∧ 𝛽)
= 𝜔′ ∧ 𝜂′ − 𝑑𝛽 ∧ 𝜔′ + 𝑑𝛼 ∧ 𝜂′ + 𝑑 (𝛼 ∧ 𝛽)
= 𝜔′ ∧ 𝜂′ − 𝑑 (𝛽 ∧ 𝜔′) + 𝑑 (𝛼 ∧ 𝜂′) + 𝑑 (𝛼 ∧ 𝛽)
= 𝜔′ ∧ 𝜂′ − 𝑑 (𝛽 ∧ 𝜔′ + 𝛼 ∧ 𝜂′ + 𝛼 ∧ 𝛽).

Hence, [𝜔 ∧ 𝜂] = [𝜔′ ∧ 𝜂′]. This shows that the wedge product

∧ : Ω𝑘 (𝑀) ×Ω𝑙 (𝑀) → Ω𝑘+𝑙 (𝑀)
170
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descends to a well-defined bilinear map

⌣: 𝐻𝑘dR(𝑀) × 𝐻
𝑙
dR(𝑀) → 𝐻𝑘+𝑙dR (𝑀),

[𝜔] ⌣ [𝜂] ↦→ [𝜔 ∧ 𝜂] .

This is called the cup product in de-Rham cohomology.

Let’s nowmove back to the singular cohomology case and define the cup product. We first define
it at the level of 𝐶•(𝑋; 𝑅).

Definition 9.1.3. Let 𝜙 ∈ 𝐶𝑘 (𝑋; 𝑅) and 𝜓 ∈ 𝐶𝑙 (𝑋; 𝑅). The cup product 𝜙 ⌣ 𝜓 ∈ 𝐶𝑘+𝑙 (𝑋; 𝑅) is
defined by:

(𝜙 ⌣ 𝜓) (𝜎 : Δ𝑘+𝑙 → 𝑋) = 𝜙(𝜎 | [𝑣0,...,𝑣𝑘 ]) · 𝜓(𝜎 | [𝑣𝑘 ,...,𝑣𝑘+𝑙 ])
where ‘·’ denotes the multiplication in the ring 𝑅.

Remark 9.1.4. Technically, these restricted maps in Definition 9.1.3 have the wrong domains; they
aren’t the standard 𝑘, 𝑙-simplices. But we just pre-composewith the ‘obvious’ maps from the standard
simplices. We shall not do this below.

The cup product extends by linearity to define a function 𝐶𝑘 (𝑋; 𝑅) × 𝐶𝑙 (𝑋; 𝑅) → 𝐶𝑘+𝑙 (𝑋; 𝑅)
by (∑

𝑖

𝜙𝑖

)
⌣

(∑
𝑗

𝜓 𝑗

)
:=

∑
𝑖, 𝑗

𝜙𝑖 ⌣ 𝜓 𝑗 .

Let us first check this gives us a ring structure.

Lemma 9.1.5. Let 𝑋 be a topological space and let 𝑅 be a commutative ring. Then 𝐶•(𝑋; 𝑅) is a
graded ring under the cup product. If 𝑅 has an identity then 𝐶•(𝑋; 𝑅) also has an identity.

PROOF. Suppose 𝜙 ∈ 𝐶𝑘 (𝑋; 𝑅) and 𝜓, 𝛾 ∈ 𝐶𝑙 (𝑋; 𝑅). We claim that 𝜙 ⌣ (𝜓+𝛾) = 𝜙 ⌣ 𝜓+𝜙 ⌣ 𝛾.
For this, take 𝜎 : Δ𝑘+𝑙 → 𝑋 . Then

(𝜙 ⌣ (𝜓 + 𝛾)) (𝜎) = 𝜙(𝜎[𝑣0,...,𝑣𝑘 ]) · (𝜓 + 𝛾) (𝜎[𝑣𝑘 ,...,𝑣𝑘+𝑙 ])
= 𝜙(𝜎[𝑣0,...,𝑣𝑘 ]) · 𝜓(𝜎[𝑣𝑘 ,...,𝑣𝑘+𝑙 ]) + 𝜙(𝜎[𝑣0,...,𝑣𝑘 ])) · 𝛾(𝜎[𝑣𝑘 ,...,𝑣𝑘+𝑙 ])
= 𝜙 ⌣ 𝜓(𝜎[𝑣𝑘 ,...,𝑣𝑘+𝑙 ]) + 𝜙 ⌣ 𝛾(𝜎[𝑣𝑘 ,...,𝑣𝑘+𝑙 ]).

A similar computation shows that (𝜙+𝜓) ⌣ 𝛾 = 𝜙 ⌣ 𝛾+𝜓 ⌣ 𝛾. Associativity follows by a similar
computation. Let 1𝑅 denote the identity in 𝑅. Define a cochain 𝜈 ∈ 𝐶0(𝑋; 𝑅) by 𝜈(𝑥) = 1𝑅 ∀𝑥 ∈ 𝑋
and extend by linearity. It is clear that

𝜈 ⌣ 𝜙 = 𝜙 = 𝜙 ⌣ 𝜈

for any 𝜙 ∈ 𝐶𝑛 (𝑋; 𝑅) and any 𝑛 ≥ 0. Thus, 𝐶•(𝑋; 𝑅) is indeed a graded ring. □

Unfortunately, the ring structure on 𝐶•(𝑋; 𝑅) is not very useful, as it is too “large” and almost
impossible to compute. However, as we will now see, the total cohomology 𝐻•(𝑋; 𝑅) also inherits
a ring structure, and this structure is much nicer. We need the following result:

Lemma 9.1.6. Let 𝜙 ∈ 𝐶𝑘 (𝑋; 𝑅) and 𝜓 ∈ 𝐶𝑙 (𝑋; 𝑅)

𝛿𝑘+𝑙 (𝜙 ⌣ 𝜓) = 𝛿𝑘𝜙 ⌣ 𝜓 + (−1)𝑘𝜙 ⌣ 𝛿𝑙𝜓
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PROOF. For 𝜎 : Δ𝑘+𝑙+1 → 𝑋 , we have

(𝛿𝑘𝜙 ⌣ 𝜓) (𝜎) =
𝑘∑
𝑖=0
(−1)𝑖𝜙(𝜎[𝑣0,...,𝑣𝑖 ,...,𝑣𝑘+1 ]) · 𝜓(𝜎[𝑣𝑘+1,...,𝑣𝑘+𝑙+1 ]),

(−1)𝑘 (𝜙 ⌣ 𝛿𝜓) (𝜎) =
𝑘+𝑙+1∑
𝑖=𝑘

(−1)𝑖𝜙(𝜎[𝑣0,...,𝑣𝑘 ]) · 𝜓(𝜎[𝑣𝑘 ,...,𝑣𝑖 ,...,𝑣𝑘+𝑙+1 ]).

When we add these two expressions, the last term of the first sum cancels with the first term of the
second sum, and the remaining terms are exactly 𝛿𝑘+𝑙 (𝜙 ⌣ 𝜓) (𝜎) = (𝜙 ⌣ 𝜓) (𝜕𝑘+𝑙+1𝜎) since

𝜕𝑘+𝑙+1𝜎 =
𝑘+𝑙+1∑
𝑖=0
(−1)𝑖𝜎[𝑣0,...,�̂�𝑖 ,...,𝑣𝑘+𝑙+1 ] .

This completes the proof. □

Corollary 9.1.7. The following statements are true:
(1) If 𝜙 ∈ 𝐶𝑘 (𝑋; 𝑅) and 𝜓 ∈ 𝐶𝑙 (𝑋; 𝑅) are cocycles, then 𝛿𝑘+𝑙 (𝜙 ⌣ 𝜓) = 0.
(2) If 𝜙 ∈ 𝐶𝑘 (𝑋; 𝑅) and 𝜓 ∈ 𝐶𝑙 (𝑋; 𝑅) are such that one of 𝜙 or 𝜓 is a cocycle and the other

a coboundary, then 𝜙 ⌣ 𝜓 is a coboundary.

PROOF. The proof is given below:
(1) Since 𝛿𝑘𝜙 = 0 and 𝛿𝑙𝜓 = 0, we have that that

𝛿𝑘+𝑙 (𝜙 ⌣ 𝜓) = 𝛿𝑘𝜙 ⌣ 𝜓 + (−1)𝑘𝜙 ⌣ 𝛿𝑙𝜓 = 0
(2) Say 𝛿𝑘𝜙 = 0 and 𝜓 = 𝛿𝑙−1𝜂. Then

𝛿𝑘+𝑙−1(𝜙 ⌣ 𝜂) = (−1)𝑘𝜙 ⌣ 𝛿𝑙−1𝜂 = (−1)𝑘𝜙 ⌣ 𝜓

The other case is similar.
This completes the proof □

It follows that we get an induced cup product on cohomology:

⌣ : 𝐻𝑘 (𝑋; 𝑅) × 𝐻𝑙 (𝑋; 𝑅) → 𝐻𝑘+𝑙 (𝑋; 𝑅)
[𝜙] × [𝜓] ↦→ [𝜙 ⌣ 𝜓]

Well-definedness follows from Corollary 9.1.7. Indeed, if [𝜙] = [𝜙′] and [𝜓] = [𝜓′], then
𝜙 = 𝜙′ + 𝛼, 𝜓 = 𝜓′ + 𝛽

where 𝛼, 𝛽 are co-chains. We have

𝜙 ⌣ 𝜓 = (𝜙′ + 𝛼) ⌣ (𝜓′ + 𝛽)
= 𝜙′ ⌣ 𝜓′ + (𝜙′ ⌣ 𝛽 + 𝛼 ⌣ 𝜓′ + 𝛼 ⌣ 𝛽)

Corollary 9.1.7 implies that the term in paranthesis is a coboundary. Hence,

[𝜙 ⌣ 𝜓] = [𝜙′ ⌣ 𝜓′]
The operation is distributive and associative since it is so on the co-chain level. If 𝑅 has an identity
element, then there is an identity element for the cup product, namely the class [1] ∈ 𝐻0(𝑋; 𝑅)
defined by the 0-cocycle taking the value 1𝑅 on each singular 0-simplex. Considering the cup product
as an operation on the direct sum of all cohomology groups, we get a (graded) ring structure on
𝐻•(𝑋; 𝑅).
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Definition 9.1.8. Let 𝑋 be a topological space and let 𝑅 be a commutative ring. The cohomology
ring of 𝑋 is the graded ring

𝐻•(𝑋; 𝑅) :=
(⊕
𝑛≥0

𝐻𝑛 (𝑋; 𝑅),⌣
)

with respect to the cup product operation. If 𝑅 has an identity, then so does 𝐻•(𝑋; 𝑅).

Remark 9.1.9. We can also define the relative cup product. The cup product on cochains

𝐶𝑘 (𝑋; 𝑅) × 𝐶𝑙 (𝑋; 𝑅) → 𝐶𝑘+𝑙 (𝑋; 𝑅)
restricts to cup products

𝐶𝑘 (𝑋, 𝐴; 𝑅) × 𝐶𝑙 (𝑋; 𝑅) → 𝐶𝑘+𝑙 (𝑋, 𝐴; 𝑅),
𝐶𝑘 (𝑋, 𝐴; 𝑅) × 𝐶𝑙 (𝑋, 𝐴; 𝑅) → 𝐶𝑘+𝑙 (𝑋, 𝐴; 𝑅),
𝐶𝑘 (𝑋; 𝑅) × 𝐶𝑙 (𝑋, 𝐴; 𝑅) → 𝐶𝑘+𝑙 (𝑋, 𝐴; 𝑅).

since 𝐶𝑖 (𝑋, 𝐴; 𝑅) can be regarded as the set of cochains vanishing on chains in 𝐴, and if 𝜑 or 𝜓
vanishes on chains in 𝐴, then so does 𝜑 ⌣ 𝜓. So there exist relative cup products:

𝐻𝑘 (𝑋, 𝐴; 𝑅) × 𝐻𝑙 (𝑋; 𝑅) → 𝐻𝑘+𝑙 (𝑋, 𝐴; 𝑅),
𝐻𝑘 (𝑋, 𝐴; 𝑅) × 𝐻𝑙 (𝑋, 𝐴; 𝑅) → 𝐻𝑘+𝑙 (𝑋, 𝐴; 𝑅),
𝐻𝑘 (𝑋; 𝑅) × 𝐻𝑙 (𝑋, 𝐴; 𝑅) → 𝐻𝑘+𝑙 (𝑋, 𝐴; 𝑅).

In particular, if 𝐴 is a point, we get a cup product on the reduced cohomology 𝐻∗(𝑋; 𝑅). More
generally, we can define

𝐻𝑘 (𝑋, 𝐴; 𝑅) × 𝐻ℓ (𝑋, 𝐵; 𝑅) → 𝐻𝑘+ℓ (𝑋, 𝐴 ∪ 𝐵; 𝑅)
when 𝐴 and 𝐵 are open subsets of 𝑋 or sub-complexes of the CW complex 𝑋 .

Normally, no one computes cohomology rings using the definition of the cup product, as this
can be quite tedious for the most part. However, we compute a couple of basic examples:

Example 9.1.10. (Spheres) Let 𝑋 = S𝑛 for 𝑛 ≥ 1 and 𝑅 = Z. We have

𝐻𝑘 (S𝑛;Z) �
{
Z, if 𝑘 = 0, 𝑛
0, otherwise

.

The generating element in 𝐻0(S𝑛;Z) is the identity element. We label the generators of 𝐻0(S𝑛;Z))
and 𝐻𝑛 (S𝑛;Z) as 1 and 𝑥 respectively. We have the following relations

1 ⌣ 1 = 1, 1 ⌣ 𝑥 = 𝑥, 𝑥 ⌣ 1 = 𝑥, 𝑥 ⌣ 𝑥 = 0

The last relation is true since 𝐻2𝑛 (S𝑛;Z) = 0. Hence, we have

𝐻∗(S𝑛;Z) � Z[𝑥]⟨𝑥2⟩ = Z[𝑥]/(𝑥2) � ΛZ [𝑥]

Here ΛZ [𝑥] is the exterior algebra on two generator over Z.

Remark 9.1.11. We can define a cup product for simplicial cohomology by the same formula as for
singular cohomology. It can be checked that the isomorphism between simplicial and singular coho-
mology respects cup products. Hence, we can compute cup products using simplicial cohomology.
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Example 9.1.12. (Real Projective Plane) Let 𝑋 = RP2 and 𝑅 = Z2. We have

𝐻𝑘 (RP2;Z2) �
{
Z2 𝑘 = 0, 1, 2,
0 otherwise.

Let 𝛼 be the generator of 𝐻1(RP2;Z2). Consider
𝛼2 := 𝛼 ⌣ 𝛼 ∈ 𝐻2(RP2;Z2).

We claim that 𝛼2 ≠ 0, so 𝛼2 is in fact the generator of 𝐻2(RP2;Z2) � Z2. Consider the cell structure
on RP2 shown in the figure below. The 2-cell 𝑇1 is attached by the word 𝑒1𝑒

−1
2 𝑒−1, and the 2-cell 𝑇2

is attached by the word 𝑒2𝑒
−1
1 𝑒−1.

𝑣 𝑤

𝑣𝑤

𝑒2

𝑒1

𝑒2

𝑒1 𝑒

𝑇1

𝑇2

Since 𝛼 is a generator of 𝐻1(RP2;Z/2Z) � HomZ(𝐻1(RP2;Z),Z/2Z), it is represented by a cocycle
𝜑 : 𝐶1(RP2) → Z/2Z

with 𝜑(𝑒) = 1, where 𝑒 represents the generator of 𝐻1(RP2;Z) � Z2. The co-cycle condition for 𝜑
translates into the identities:

0 = (𝛿𝜑)(𝑇1) = 𝜑(𝜕𝑇1) = 𝜑(𝑒1) − 𝜑(𝑒2) − 𝜑(𝑒),
0 = (𝛿𝜑)(𝑇2) = 𝜑(𝜕𝑇2) = 𝜑(𝑒2) − 𝜑(𝑒1) − 𝜑(𝑒1).

As 𝜑(𝑒) = 1, we may WLOG take 𝜑(𝑒1) = 1 and 𝜑(𝑒2) = 0. Note that 𝛼2 is represented by 𝜑 ⌣ 𝜑,
and we have:

(𝜑 ⌣ 𝜑)(𝑇1) = 𝜑(𝑒1) · 𝜑(𝑒) = 1.
Similarly,

(𝜑 ⌣ 𝜑)(𝑇2) = 𝜑(𝑒2) · 𝜑(𝑒) = 0.
Since the generator of 𝐶2(RP2) is 𝑇1 + 𝑇2, and we have

(𝜑 ⌣ 𝜑) (𝑇1 + 𝑇2) = (𝜑 ⌣ 𝜑) (𝑇1) + (𝜑 ⌣ 𝜑) (𝑇2) = 1 + 0 = 1,
it follows that 𝛼2 = [𝜑 ⌣ 𝜑] is the generator of 𝐻2(RP2;Z/2Z). Let 𝐼 denote the ideal generated
by the relations. Hence, we have

𝐻∗(RP𝑛;Z2) =
Z2 [𝑥]
𝐼
� Z2 [𝑥]/(𝑥3)

Let’s prove some important facts about the cup product.

Proposition 9.1.13. Let 𝑋,𝑌 be topological spaces and let let 𝑓 : 𝑋 → 𝑌 be a continuous map. For
each 𝑛 ∈ Z, the induced maps

𝑓 ∗𝑛 = 𝐻𝑛 (𝑌 ; 𝑅) → 𝐻𝑛 (𝑋; 𝑅)
are ring homomorphisms. That is,

𝑓 ∗𝑛 (𝛼 ⌣ 𝛽) = 𝑓 ∗(𝛼) ⌣ 𝑓 ∗(𝛽)
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for each 𝛼, 𝛽 ∈ 𝐻𝑘 (𝑌 ; 𝑅).

PROOF. It suffices to show the following co-chain formula:

𝑓#(𝜑 ⌣ 𝜓) = 𝑓#(𝜑) ⌣ 𝑓#(𝜓).

For 𝜑 ∈ 𝐶𝑘 (𝑌 ;R) and 𝜓 ∈ 𝐶𝑙 (𝑌 ;R), we have:

( 𝑓#𝜑 ⌣ 𝑓#𝜓)(𝜎 : Δ𝑘+𝑙 → 𝑋) = ( 𝑓#𝜑)(𝜎 | [𝑣0,...,𝑣𝑘 ]) · ( 𝑓#𝜓) (𝜎 | [𝑣𝑘 ,...,𝑣𝑘+𝑙 ])
= 𝜑(( 𝑓#𝜎) | [𝑣0,...,𝑣𝑘 ]) · 𝜓(( 𝑓#𝜎) | [𝑣𝑘 ,...,𝑣𝑘+𝑙 ])
= (𝜑 ⌣ 𝜓) ( 𝑓#𝜎)
= ( 𝑓#(𝜑 ⌣ 𝜓)) (𝜎).

This completes the proof. □

Corollary 9.1.14. If 𝑓 : 𝑋 → 𝑌 is a continuous map, then there is a ring homomorphism

𝑓 ∗ : 𝐻∗(𝑌 ; 𝑅) → 𝐻∗(𝑋; 𝑅).

PROOF. We have

𝐻∗(𝑌 ; 𝑅) =
⊕
𝑛≥0

𝐻𝑛 (𝑌 ; 𝑅), 𝐻∗(𝑋; 𝑅) =
⊕
𝑛≥0

𝐻𝑛 (𝑋; 𝑅)

If we define 𝑓 ∗ such that 𝑓 ∗ |𝐻𝑛 (𝑌 ;𝑅) = 𝑓𝑛, the claim follows via Proposition 9.1.13. □

Remark 9.1.15. The discussion above implies that the operation of taking the cohomology ring is a
(contravariant) functor from Top to CRing.

Example 9.1.16. The isomorphisms

𝐻∗
(∐
𝛼

𝑋𝛼; 𝑅
)
�

∏
𝛼

𝐻∗(𝑋𝛼; 𝑅)

whose coordinates are induced by the inclusions 𝑖𝛼 : 𝑋𝛼 ↩→
∐
𝛼 𝑋𝛼, is a ring isomorphism with

respect to the coordinatewise multiplication in a ring product, since each coordinate function 𝑖∗𝛼 is a
ring homomorphism. Similarly, the group isomorphism

𝐻∗(
∨
𝛼

𝑋𝛼; 𝑅) �
∏
𝛼

𝐻∗(𝑋𝛼; 𝑅)

is a ring isomorphism.

We now show that the cup product is graded anti-commutative.

Proposition 9.1.17. Let 𝑋 be a topological space and let 𝑅 be a commutative ring. Let𝛼 ∈ 𝐻𝑘 (𝑋; 𝑅)
and 𝛽 ∈ 𝐻𝑙 (𝑋; 𝑅). We have

𝛼 ⌣ 𝛽 = (−1)𝑘𝑙𝛽 ⌣ 𝛼

PROOF. See [Hat02]. □
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Example 9.1.18. Let 𝑋 = S1 × S1 = 𝑇2. We can use Proposition 9.1.17 to compute 𝐻∗(𝑇2; 𝑅).
Consider the following simplicial complex structure on 𝑇2:

𝑣 𝑣

𝑣𝑣

𝑎

𝑏

𝑎

𝑏 𝑐

𝑋

𝑌

The generator 1 ∈ 𝐻0(𝑇2;Z) is the unit. By examining the dimensions of the other generators,
the only non-identity generators which could multiply together and give something non-zero are the
generators of 𝐻1(𝑇2;Z). Let 𝛼, 𝛽 ∈ 𝐻1(𝑇2;Z) be generators of 𝐻1(𝑇2;Z). We compute

𝛼 ⌣ 𝛼, 𝛼 ⌣ 𝛽, 𝛽 ⌣ 𝛼, 𝛽 ⌣ 𝛽.

By Proposition 9.1.17, we must have 𝛼 ⌣ 𝛼 = 𝛽 ⌣ 𝛽 = 0. But let’s verify it explicitly. 𝛼 is
represented by a cocycle

𝜑𝛼 : 𝐶1(𝑇2) → Z
with 𝜑𝛼 (𝑎) = 1, 𝜑𝛼 (𝑏) = 0 . Here 𝑎, 𝑏 are generators of 𝐻1(𝑇2;Z). The co-cycle condition for 𝜑
translates into the identities:

0 = (𝛿𝜑𝛼)(𝑋) = 𝜑𝛼 (𝑋) = 𝜑𝛼 (𝑎) − 𝜑𝛼 (𝑐) + 𝜑𝛼 (𝑏),

0 = (𝛿𝜑𝛼)(𝑌 ) = 𝜑𝛼 (𝑌 ) = 𝜑𝛼 (𝑏) − 𝜑𝛼 (𝑐) + 𝜑𝛼 (𝑎).
As 𝜑𝛼 (𝑎) = 1, 𝜑𝛼 (𝑏) = 0 , we must have 𝜑𝛼 (𝑐) = 1. Note that 𝛼2 is represented by 𝜑 ⌣ 𝜑, and we
have:

(𝜑𝛼 ⌣ 𝜑𝛼) (𝑋) = 𝜑𝛼 (𝑏) · 𝜑𝛼 (𝑎) = 1.

(𝜑𝛼 ⌣ 𝜑𝛼)(𝑌 ) = 𝜑𝛼 (𝑎) · 𝜑𝛼 (𝑏) = 1.
Hence, 𝜑𝛼 ⌣ 𝜑𝛼 = 0. This shows that 𝛼 ⌣ 𝛼 = 0. If we choose 𝛽 to be represented by a cocycle

𝜑𝛽 : 𝐶1(𝑇2) → Z

with 𝜑𝛽 (𝑏) = 1, 𝜑𝛽 (𝑎) = 0 , we similarly have 𝛽 ⌣ 𝛽 = 0. We now compute 𝛼 ⌣ 𝛽. Note that
𝛼 ⌣ 𝛽 is represented by 𝜑𝛼 ⌣ 𝜑𝛽 . We have

(𝜑𝛼 ⌣ 𝜑𝛽)(𝑋) = 𝜑𝛼 (𝑏) · 𝜑𝛼 (𝑎) = 0.

(𝜑𝛼 ⌣ 𝜑𝛽)(𝑌 ) = 𝜑𝛼 (𝑎) · 𝜑𝛼 (𝑏) = 1.

Since the generator of 𝐶2(𝑇2) is 𝑋 + 𝑌 , and (𝜑𝛼 ⌣ 𝜑𝛽) (𝑋 + 𝑌 ) = 1, it follows that 𝛼 ⌣ 𝛽 is the
generator of 𝐻2(𝑇2;Z). By Proposition 9.1.17, we have 𝛽 ⌣ 𝛼 = −𝛼 ⌣ 𝛽. Hence, we have

𝐻∗(𝑇2;Z) � Z[𝑥, 𝑦]
⟨𝑥2, 𝑦2, 𝑥𝑦 + 𝑦𝑥⟩ � ΛZ [𝑥, 𝑦]

Here ΛZ [𝑥, 𝑦] is the exterior algebra on two generator over Z.
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9.2. Poincaré Duality for Smooth Manifolds
We discuss Poincaré duality for smooth, oriented, 𝑛-manifolds in this section. We can prove

this special case by leveraging de Rham cohomology. Using Stokes’ theorem, Poincaré duality for
smooth, oriented 𝑛-manifolds asserts that there is a non-degenerate pairing between de Rham coho-
mology groups:

𝐻𝑘dR(𝑀) × 𝐻
𝑛−𝑘
dR,c (𝑀) → R, ([𝛼], [𝛽]) ↦→

∫
𝑀
𝛼 ∧ 𝛽.

It is easily checked that the pairing defined above is well-defined. The pairing above can be equiv-
alently defined as a linear map from 𝐻𝑘dR(𝑀) to (𝐻

𝑛−𝑘
dR,c (𝑀))

∗. We show that this linear map is an
isomorphism.

Proposition 9.2.1. Let 𝑀 be a smooth, oriented, 𝑛-manifold that admits a good finite cover. Then
𝐻𝑘dR(𝑀) � (𝐻

𝑛−𝑘
dR,c (𝑀))

∗

for each 0 ≤ 𝑘 ≤ 𝑛.

9.3. Poincaré Duality
Poincaré duality is a fundamental result in algebraic topology that relates the homology and

cohomology groups of an orientable closed manifold. It states that for an 𝑛-dimensional orientable
manifold 𝑀 , there exists an isomorphism

𝐻𝑘 (𝑀;Z) � 𝐻𝑛−𝑘𝑐 (𝑀;Z)
This duality provides deep insights into the topology of manifolds, constraining their possible ho-
mology groups and aiding in the computation of topological invariants. It also plays a crucial role in
intersection theory. Before defining Poincaré duality, we need to define the notation of a fundamen-
tal class. In order to define a fundamental class, we need to define the notation of an orientation.
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CHAPTER 10

Categorical Nuances

The category hTop is the appropriate framework for studying homotopy theory. However, not
all concepts from the category Top carry over directly to hTop. For instance, we have the following
pushout diagram in Top:

S𝑛−1 {∗}

D𝑛 S𝑛

On the other hand, we also have the pushout diagram in Top:

S𝑛−1 {∗}

{∗} {∗}

Therefore, even thoughD𝑛 is homotopy equivalent to {∗}, the two pushouts are not homotopy equiv-
alent. Therefore, contrary to expectation, the pushout diagrams in hTop are not the same. This
example suggests that further analysis and applications of the homotopy notion require a certain
amount of formal (categorical) considerations. In this section, we discuss some basic constructions
of a categorical nature. More advanced constructions such as homotopy pullbacks and homotopy
pushouts will be discussed as necessary later on.

10.1. Cones & Suspensions
In this section, we discuss the the categorical constructions of cones and suspensions.

10.1.1. Cone & Suspension. Let 𝐼 = [0, 1] ⊆ R. The space 𝑋 × 𝐼 is called a cylinder over 𝑋 ,
and the subspaces 𝑋 × {0}, 𝑋 × {1} are the bottom and top “bases”. Now we will construct new
spaces out of the cylinder 𝑋 × 𝐼.

Definition 10.1.1. Let 𝑋 be a topological space. The cone of 𝑋 is the quotient space:

𝐶𝑋 = 𝑋 × 𝐼/(𝑋 × {0})

Remark 10.1.2. 𝐶𝑋 has a natural basepoint given by the collaposed space 𝑋 × {0}. Hence, we
have a functor

𝐶 : Top→ Top∗
Indeed, if 𝑓 : 𝑋 → 𝑌 is a continuous map, we have a continuous map 𝑓 × id𝐼 : 𝑋 × 𝐼 → 𝑌 ×𝑌 and
if we define 𝐶 ( 𝑓 ) to be the map

𝐶 ( 𝑓 ) : 𝐶𝑋 → 𝐶𝑌,

[𝑥, 𝑡] ↦→ [ 𝑓 (𝑥), 𝑡],

179
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We have 𝐶 𝑓 ◦ 𝑞𝑋 = 𝑞𝑌 ◦ ( 𝑓 × id𝐼 ) where 𝑞𝑋, 𝑞𝑌 are quotient maps defining 𝐶𝑋 and 𝐶𝑌 .

𝑋 × 𝐼 𝑌 × 𝐼

𝐶𝑋 𝐶𝑌

𝑞𝑋

𝑓 ×id𝐼

𝑞𝑌

𝐶 ( 𝑓 )

The universal property of quotient topology implies that 𝐶 𝑓 is continuous.

The cone of a topological space is always a contractible space.

Proposition 10.1.3. Let 𝑋 ∈ Top. Then 𝐶𝑋 is contractible.

PROOF. A homotopy between the identity on 𝐶𝑋 and the map to the basepoint is given by:

𝐹 : 𝐶𝑋 × 𝐼 → 𝐶𝑋,

( [𝑥, 𝑡], 𝑠) ↦→ [𝑥, (1 − 𝑠)𝑡]

This completes the proof. □

The motivation for introducing the cone of a topological space is given by the following propo-
sition:

Proposition 10.1.4. Let 𝑋,𝑌 ∈ Top. A map 𝑓 : 𝑋 → 𝑌 is nullhomotopic if and only if it extends to
a map 𝑓 : 𝐶𝑋 → 𝑌 .

PROOF. Consider a continuous map 𝐻 : 𝑋 × [0, 1] → 𝑌 with 𝐻 (·, 0) = 𝑓 (·). Note that 𝐻 (𝑥, 1)
is constant for all 𝑥 ∈ 𝑋 if and only if 𝑋 × {1} is contained in a fiber of 𝐻, which in turn, by the
universal property of quotient spaces, says that 𝐻 factors uniquely through the canonical quotient
map 𝑋 × [0, 1] → 𝐶𝑋 . This proves the claim. □

Remark 10.1.5. Proposition 10.1.4 implies that a continuous map 𝑓 : S𝑛 → 𝑋 is null-homotopic if
and only if 𝑓 extends to a continuous map 𝑓 : D𝑛+1 → 𝑋 . This is because 𝐶S𝑛 � D𝑛+1

We now define the suspension of a topological space.

Definition 10.1.6. Let 𝑋 ∈ Top. The suspension of 𝑋 is the quotient space:

𝑆𝑋 = 𝑋 × 𝐼/(𝑋 × {0}, 𝑋 × {1})

Remark 10.1.7. 𝑆 defines a a functor 𝑆 : Top→ Top This follows by a similar reasoning that cone
is a functor.

Example 10.1.8. The suspension of S0 = {𝑥, 𝑥1} consists of two lines (one over each point in S0)
joined at 0 and 1, giving S1. In fact,

S𝑛+1 � 𝑆S𝑛

in general. To see this, WLOG, replace 𝐼 = [0, 1] by 𝐼 = [−1, 1]. Define

𝑓 : S𝑛 × [−1, 1] → S𝑛+1

by

𝑓 ((𝑥, . . . , 𝑥𝑛), 𝑡) = (𝑥 ·
√

1 − 𝑡2, . . . , 𝑥𝑛 ·
√

1 − 𝑡2, 𝑡)
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It is clear that 𝑓 is continuous and surjective. Moreover, 𝑓 agrees on the fibers of 𝑆S𝑛. Hence, 𝑓
descends to a continuous bijection �̃� from 𝑆S𝑛 to S𝑛+1. Since 𝑆S𝑛 is compact and S𝑛+1 is Hausdorff,
�̃� is a homemorphism.

S𝑛 × [−1, 1]

𝑆S𝑛 S𝑛+1

𝑓
𝑞

�̃�

10.2. Compact Open Topology, Path & Loop Spaces
10.2.1. Compact Open Topology. If (𝑋, 𝑥0) ∈ Top∗ , note that 𝜋1(𝑋, 𝑥0) is, in particular, a

space of continuous functions. Hence, we would like to discuss what appropriate topology to put on
the function space of continuous maps between topological spaces.

Definition 10.2.1. Let 𝑋,𝑌 ∈ Top and let C(𝑋,𝑌 ) denote the set of of continuous maps 𝑋 →
𝑌 . C(𝑋,𝑌 ) carries a natural topology, called the compact-open topology, generated by a subbasis
formed by the sets of the form

𝐵(𝐾,𝑈) = { 𝑓 : 𝑋 → 𝑌 | 𝑓 (𝐾) ⊆ 𝑈}
where 𝐾 ⊆ 𝑋 is a compact set and𝑈 ⊆ 𝑌 is an open set.

Remark 10.2.2. The topological space given by this compact-open topology will be denoted by
Maps(𝑋,𝑌 ).

Remark 10.2.3. For a map 𝑓 : 𝑋 → 𝑌 , one can form a typical basis open neighborhood by choosing
compact subsets𝐾1, . . . , 𝐾𝑛 ⊆ 𝑋 and small open sets𝑈𝑖 ⊆ 𝑋 with 𝑓 (𝐾𝑖) ⊆ 𝑈𝑖 to get a neighborhood
𝑂 𝑓 of 𝑓 ,

𝑂 𝑓 = 𝐵(𝐾1,𝑈1) ∩ · · · ∩ 𝐵(𝐾𝑛,𝑈𝑛).
The collection of all such sets forms a basis for the compact-open topology.

What is the motivation behind the definition of the compact-open topology? If 𝑋 is compact
Hausdorff and 𝑌 a metric space, then one can consider the supremum norm on (𝐶 (𝑋,𝑌 ), ∥ · ∥∞). It
can be checked that in this case Maps(𝑋,𝑌 ) = (𝐶 (𝑋,𝑌 ), ∥ · ∥∞). We prove a slightly more genral
claim:

Proposition 10.2.4. Let 𝑋,𝑌 ∈ Top such that (𝑌, 𝑑) is a metric space. The compact-open topology
and the topology of uniform convergence on compact sets coincide on 𝐶 (𝑋,𝑌 ).

PROOF. We first prove that the topology of compact convergence is finer than the compact-open
topology. Let 𝐵(𝐾,𝑈) be a subbasis element for the compact-open topology, and let 𝑓 ∈ 𝐵(𝐾,𝑈).
Because 𝑓 is continuous, 𝑓 (𝐾) is a compact subset of 𝑈. Therefore, we can choose 𝜀 > 0 so that
the 𝜀-neighborhood of 𝑓 (𝐾) is contained in𝑈. Then, as desired,

𝐸𝐾 ( 𝑓 , 𝜀) ⊆ 𝐵(𝐶,𝑈).
Here

𝐸𝐾 ( 𝑓 , 𝜀) = {𝑔 ∈ 𝐶 (𝑋,𝑌 ) | ∥ 𝑓 − 𝑔∥∞,𝐾 < 𝜀}
is a basis element of the topology of compact convergence. We now prove that the compact-open
topology is finer than the topology of compact convergence. Let 𝑓 ∈ 𝐶 (𝑋,𝑌 ) and consider 𝐸𝐾 ( 𝑓 , 𝜀)
for some 𝜀 > 0. Every 𝑥 ∈ 𝑋 has a neighborhood 𝑉𝑥 such that 𝑓 (𝑉𝑥) lies in an open set 𝑈 𝑓 (𝑥 ) of 𝑌
having diameter less than 𝜀. For example, choose 𝑉𝑥 so that 𝑓 (𝑉𝑥) lies in the 𝜀/4-neighborhood of
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𝑓 (𝑥). Then 𝑓 (𝑉𝑥) lies in the 𝜀/3-neighborhood of 𝑓 (𝑥), which has diameter at most 2𝜀/3. Cover
𝐾 by finitely many such sets 𝑉𝑥 , say for 𝑥 = 𝑥1, . . . , 𝑥𝑛. Let 𝐾𝑥 = 𝑉𝑥 ∩ 𝐾 . Then 𝐾𝑥 is compact, and
the basis element

𝐵(𝐾𝑥1 ,𝑈𝑥1) ∩ · · · ∩ 𝐵(𝐾𝑥𝑛 ,𝑈𝑥𝑛)
contains 𝑓 and lies in 𝐸𝐾 ( 𝑓 , 𝜀), as desired. □

Remark 10.2.5. If𝑌 is not a metric space, we need to redefine the notion of proximity between maps.
Suppose 𝑓 , 𝑔 ∈ Maps(𝑋,𝑌 ) are two continuous maps. Let 𝐾 ⊆ 𝑋 be a compact subset and 𝑈 ⊆ 𝑌
be an open subset such that 𝑓 (𝐾) ⊆ 𝑈. Assume that 𝑌 is Hausdorff, which ensures that closed
sets in 𝑌 behave well under continuous maps. Since 𝑓 (𝐾) is compact and 𝑌 is Hausdorff, 𝑓 (𝐾) is
closed in𝑌 , and intuitively, small perturbations of 𝑓 (𝐾) should remain within𝑈. Thus, to define the
topology on Maps(𝑋,𝑌 ), we say that a neighborhood of 𝑓 is the set of maps 𝑔 ∈ Maps(𝑋,𝑌 ) such
that 𝑔(𝐾) ⊆ 𝑈. This formalizes the notion that 𝑔 is ‘close’ to 𝑓 if it maps the compact set 𝐾 into the
same open set𝑈 that contains 𝑓 (𝐾).

Proposition 10.2.6. (Exponential Law) Let 𝑋,𝑌, 𝑍 ∈ Top. If 𝑋 is Hausdorff and 𝑌 is locally
compact, then

𝜑 : Maps(𝑋 × 𝑌, 𝑍) → Maps(𝑋,Maps(𝑌, 𝑍)), 𝜑(𝑔) (𝑥) (𝑦) = 𝑔(𝑥, 𝑦)

is a continuous bijection.

PROOF. We first show that 𝜑 is well-defined. Suppose 𝑔 is continuous, and choose an arbitrary sub-
basis open set 𝐵(𝐾,𝑈) in Maps(𝑌, 𝑍). Choose 𝑥 ∈ 𝜑(𝑔)−1(𝐵(𝐾,𝑈)), so 𝑔({𝑥} ×𝐾) ⊆ 𝑈. Since 𝐾
is compact and 𝑔 is continuous, there are open sets𝑉 ∋ 𝑥 and𝑊 ⊇ 𝐾 such that 𝑔(𝑉 ×𝑊) ⊆ 𝑈. Then
𝑉 is a neighborhood of 𝑥 with 𝜑(𝑔)(𝑉) ⊆ 𝐵(𝐾,𝑈), showing that 𝜑(𝑔)−1(𝐵(𝐾,𝑈)) is open. Hence,
𝜑 is well-defined. 𝜑 is obviously an injection. We now show that 𝜑 is continuous and surjective.

We first show that 𝜑 is continuous. Let 𝑔 : 𝑋 × 𝑌 → 𝑍 be a continuous map. Let 𝐾1 ⊆ 𝑋 and
𝐾2 ⊆ 𝑌 be compact subsets,𝑈 ⊆ 𝑍 be an open set. Let

𝐵(𝐾1, 𝐵(𝐾2,𝑈)) = {𝑔 : 𝑋 → Maps(𝑌, 𝑍) | 𝑔(𝐾1) (𝐾2) ⊆ 𝑈}

be an open neighborhood of 𝜑(𝑔). Then [𝐾1 × 𝐾2,𝑈] is an open neighborhood of 𝑔 in Maps(𝑋 ×
𝑌, 𝑍)¹ such that

𝜑(𝐵(𝐾1 × 𝐾2,𝑈)) ⊆ 𝐵(𝐾1, 𝐵(𝐾2,𝑈))
This shows that 𝜑 is continuous. We now show that 𝜑 is surjective. Let 𝑓 : 𝑋 → Maps(𝑌, 𝑍) be a
continuous map. Let (𝑥, 𝑦) ∈ 𝑋 ×𝑌 and𝑊 be an open neighborhood of 𝜑−1( 𝑓 )(𝑥, 𝑦) in 𝑍 . We find
neighborhoods 𝑥 ∈ 𝑈 ⊆ 𝑋 and 𝑦 ∈ 𝑉 ⊆ 𝑌 such that 𝜑−1( 𝑓 )(𝑈 × 𝑉) ⊆ 𝑊 . Since 𝑓 (𝑥) : 𝑌 → 𝑍 is
continuous, 𝑓 (𝑥)−1(𝑊) is an open neighborhood of 𝑦 in 𝑌 . Since 𝑌 is locally compact, there exists
a compact set 𝐾 ⊆ 𝑓 (𝑥)−1(𝑊) such that 𝑦 ∈ Int(𝐾) ⊆ 𝐾 . Then [𝐾,𝑊] is an open neighborhood
of 𝑓 (𝑦), and since 𝑓 : 𝑋 → Maps(𝑌, 𝑍) is continuous at 𝑥, there exists an open neighborhood
𝑥 ∈ 𝑈 ⊆ 𝑋 such that 𝑓 (𝑈) ⊆ [𝐾,𝑊]. This implies that 𝐹 (𝑈 × 𝐾) ⊆ 𝑊 . We can take 𝑉 = Int(𝐾),
and thus we have 𝐹 (𝑈 ×𝑉) ⊆ 𝑊 . □

Remark 10.2.7. If 𝑋 is locally compact Hausdorff, the continuous bijection in Proposition 10.2.6
is in fact a homeomorphism.

¹We need that 𝑋 is Hausdorff here. See Lemma XII.5.1 (a) of Dugundji’s Topology.
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Corollary 10.2.8. Let 𝑋,𝑌 ∈ Top such that 𝑋 is locally compact and𝑌 is Hausdorff. The evaluation
map

Ev𝑋,𝑌 : 𝑋 ×Maps(𝑋,𝑌 ) → 𝑌,

(𝑥, 𝑓 ) ↦→ 𝑓 (𝑥).
is continuous.

PROOF. We take for granted the statement that 𝑌 is Hausdorff implies that Maps(𝑋,𝑌 ) is Hausdorff.
Proposition 10.2.6 implies there is a continuous bijection:

Maps(Maps(𝑋,𝑌 ) × 𝑋,𝑌 ) � Maps(Maps(𝑋,𝑌 ),Maps(𝑋,𝑌 ))
The inverse image of IdMaps(𝑋,𝑌 ) is Ev𝑋,𝑌 . □

Remark 10.2.9. Here is an important observation. If 𝑋,𝑌 ∈ Top, then a homotopy between two
maps 𝑓 , 𝑔 : 𝑋 → 𝑌 as an element of Maps(𝑋 × 𝐼,𝑌 ). Based on Proposition 10.2.6, it is possible to
reinterpret a homotopy between two maps 𝑓 , 𝑔 : 𝑋 → 𝑌 as an element of Maps(𝑋,Maps(𝐼,𝑌 )) or
Maps(𝐼,Maps(𝑋,𝑌 )). The latter says that a homotopy is a path in Maps(𝑋,𝑌 ).

Proposition 10.2.10. If 𝑋,𝑌 ∈ Top are locally compact Hausdorff spaces, then the function
Φ𝑋,𝑌 ,𝑍 : Maps(𝑋,𝑌 ) ×Maps(𝑌, 𝑍) → Maps(𝑋, 𝑍)

given by composition is continuous.

PROOF. By Proposition 10.2.6 we have the bijection

Maps(Maps(𝑋,𝑌 ) ×Maps(𝑌, 𝑍),Maps(𝑋, 𝑍)) � Maps(Maps(𝑋,𝑌 ) ×Maps(𝑌, 𝑍),×𝑋, 𝑍)
Hence, Φ𝑋,𝑌 ,𝑍 is continuous if and only if the image of Φ𝑋,𝑌 ,𝑍 , denoted Φ′𝑋,𝑌 ,𝑍 , under the expo-
nential law is continuous. Let ( 𝑓 , 𝑔) ∈ Maps(𝑋,𝑌 ) ×Maps(𝑌, 𝑍) and 𝑥 ∈ 𝑋 . We have

Φ′𝑋,𝑌 ,𝑍 (( 𝑓 , 𝑔), 𝑥) = (𝑇 ( 𝑓 , 𝑔)) (𝑥) = 𝑓 (𝑔(𝑥)).
We can decompose Φ′𝑋,𝑌 ,𝑍 as the following composition:

Maps(𝑌, 𝑍) ×Maps(𝑋,𝑌 ) × 𝑋 ( 𝑓 ,𝑔,𝑥 ) ↦→( 𝑓 ,𝑔 (𝑥 ) )−−−−−−−−−−−−−−−→ Maps(𝑌, 𝑍) × 𝑌 (𝑔,𝑦) ↦→𝑔 (𝑦)−−−−−−−−−−→ 𝑍.

The first map is just IdMaps(𝑌,𝑍 ) ×Ev𝑋,𝑌 and the second map is Ev𝑌,𝑍 . Both these maps are con-
tinuous by Corollary 10.2.8. The claim follows. □

10.2.2. Path&Loop Spaces. We can consider special instances of the function space discussed
above to define loop spaces. For instance, if 𝑋 ∈ Top, the space Λ(𝑋) = Maps(S1, 𝑋) ∈ Top is the
free loop space of 𝑋 . Similarly, the space 𝑃(𝑋) = Maps(𝐼, 𝑋) ∈ Top is the free path space of 𝑋 .

Remark 10.2.11. If 𝑋 = 𝐼 = [0, 1], 𝑌 is locally compact and 𝑍 is a topological space, then Propo-
sition 10.2.6 reads

Maps(𝑌,Maps(𝐼, 𝑍)) � Maps(𝐼 × 𝑌, 𝑍)
� Maps(𝐼,Maps(𝑌, 𝑍))

This is called the cylinder-free path adjunction. This is because 𝐼 × 𝑌 is a cylinder on 𝑌 and
(Maps(𝐼, 𝑍))) is the path space on 𝑍 . Note that Maps(𝐼 × 𝑌, 𝑍) = [𝑌, 𝑍].

We now make the following definition:

Definition 10.2.12. Let (𝑋, 𝑥0) ∈ Top∗.
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(1) The path space 𝑃(𝑋, 𝑥0) ∈ Top∗ of (𝑋, 𝑥0) is the pointed space given by
𝑃(𝑋, 𝑥0) = {𝛾 ∈ 𝑃(𝑋) | 𝛾(0) = 𝑥0}.

with the constant path 𝑐𝑥 at 𝑥 as the base point.
(2) The loop space Ω(𝑋, 𝑥0) ∈ Top∗ of (𝑋, 𝑥0) is the pointed space

Ω(𝑋, 𝑥0) = {𝛾 ∈ 𝑃(𝑋) | 𝛾(0) = 𝑥0 = 𝛾(1)}
with the constant loop 𝑐𝑥 at 𝑥 as the base point.

Remark 10.2.13. Note that Ω(𝑋, 𝑥0) consists of pointed loops (S1, ∗) → (𝑋, 𝑥0). Moreover, note
that 𝑃(𝑋, 𝑥0) can be thought of as a pullback:

𝑃(𝑋, 𝑥0) 𝑋 𝐼

{𝑥0} 𝑋

Ev0

Proposition 10.2.14. Let 𝑋 ∈ Top. The path space, 𝑃(𝑋, 𝑥0), is contractible.

PROOF. A homotopy between the identity on 𝑃(𝑋, 𝑥0) and the map to the basepoint (the constant
path) is given by:

𝐹 : 𝑃(𝑋, 𝑥0) × 𝐼 → 𝑃(𝑋, 𝑥0),
(𝛾, 𝑠) ↦→ (𝑡 ↦→ 𝛾((1 − 𝑠)𝑡)) .

This completes the proof. □

Remark 10.2.15. We discuss some applications of function space Maps(𝑋,𝑌 ) to establish some
basic facts:

(1) A point in 𝑋 can be identified with a map 𝑥 : ∗ → 𝑋 sending the unique point ∗ to 𝑥.
Hence, we have a bijective correspondence

𝑋 � Maps(∗, 𝑋).
(2) In the case of a pointed space, we have a bijective correspondence

(𝑋, 𝑥0) � Maps
(
({∗, ∗′}, ∗′), (𝑋, 𝑥0)

)
� Maps

(
(S0, 1), (𝑋, 𝑥0)

)
.

(3) Note that we have
[𝑋,𝑌 ] � 𝜋0(Maps(𝑋,𝑌 ))

(4) Let 𝑋,𝑌 be locally compact Hausdorff spaces. Consider the continuous function
𝑇 : Maps(𝑋,𝑌 ) ×Maps(𝑌, 𝑍) → Maps(𝑋, 𝑍)

Hence, 𝑇 induces a map
[𝑋,𝑌 ] × [𝑌, 𝑍] = 𝜋0(Maps(𝑋,𝑌 )) × 𝜋0(Maps(𝑌, 𝑍))

= 𝜋0(Maps(𝑋,𝑌 ) ×Maps(𝑌, 𝑍))
→ 𝜋0(Maps(𝑋, 𝑍))
= [𝑋, 𝑍]

In particular, a continuous function 𝑓 : 𝑋 → 𝑌 induces a map
𝑓# : [𝑌, 𝑍] → [𝑋, 𝑍]
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and a continuous function 𝑔 : 𝑌 → 𝑍 induces a map
𝑔# : [𝑋,𝑌 ] → [𝑋, 𝑍] .

(5) Let 𝑓 : 𝑋 → 𝑌 be a homotopy equivalence with homotopy inverse and 𝑔 : 𝑌 → 𝑋 . Using
(3), we have two induced maps

𝑓# : [𝑌, 𝑍] → [𝑋, 𝑍] 𝑓# : [𝑍, 𝑋] → [𝑍,𝑌 ]
The maps 𝑔# and 𝑔# are inverses of 𝑓 ∗ and 𝑓# respectively. Hence, we have a bijection
of sets

[𝑌, 𝑍] � [𝑋, 𝑍], [𝑍, 𝑋] � [𝑍,𝑌 ]

10.3. Smash Products
We introduce the notion of a smash product that forces us to take basepoints seriously. The need

for the smash product arises based on the need to consider the pointed analog of Maps(·, ·).
Definition 10.3.1. Let (𝑋, 𝑥0), (𝑌, 𝑦0) ∈ Top∗. The pointed space Maps((𝑋, 𝑥0), (𝑌, 𝑦0)) is defined
to be subspace of Maps(𝑥0, 𝑦0) consisting of pointed maps, along with the natural basepoint given
by constant map 𝑋 → 𝑦0.
Remark 10.3.2. We have [(𝑋, 𝑥0), (𝑌, 𝑦0)] = 𝜋0(Maps((𝑋, 𝑥0), (𝑌, 𝑦0))).

We now define the smash product:
Definition 10.3.3. Let (𝑋, 𝑥0), (𝑌, 𝑦0) ∈ Top∗. The smash product is defined as the quotient space

(𝑋, 𝑥0) ∧ (𝑌, 𝑦0) = (𝑋 × 𝑌, (𝑥0, 𝑦0))/(𝑋 ∨ 𝑌 )
Remark 10.3.4. The wedge sum 𝑋 ∨ 𝑌 of two pointed spaces is naturally a pointed subspace of
(𝑋, 𝑥0) × (𝑌, 𝑦0). For pointed spaces (𝑋, 𝑥0) and (𝑌, 𝑦0), the pointed product (𝑋 × 𝑌, (𝑥0, 𝑦0))
comes naturally with an inclusion map of (𝑋, 𝑥0) given by

(𝑋, 𝑥0) → (𝑋 × 𝑌, (𝑥0, 𝑦0)),
𝑥 ↦→ (𝑥, 𝑦0).

There is a similar map (𝑌, 𝑦0) → (𝑋 × 𝑌, (𝑥0, 𝑦0)). Since 𝑋 ∨ 𝑌 is a pushout in Top∗, we obtain a
pointed map 𝑋 ∨ 𝑌 → (𝑋 × 𝑌, (𝑥0, 𝑦0)) which yields the desired inclusion.
Remark 10.3.5. It can be checked that the smash product defines a functor

∧ : Top∗ → Top∗
The motivation behind the definition of a smash product is to extend Proposition 10.2.6 to Top∗.

Let (𝑋, 𝑥0), (𝑌, 𝑦0), (𝑍, 𝑧0) ∈ Top∗. Since 𝑦0 and 𝑧0 are basepoints in 𝑌 and 𝑍 , respectively, then
Maps((𝑌, 𝑦0), (𝑋, 𝑥0)) has a basepoint given by the constant function 𝑋 → 𝑧0. We want a map
𝑓 : (𝑋, 𝑥0) → Maps((𝑌, 𝑦0), (𝑍, 𝑧0)) to preserve basepoints, meaning that it must satisfy

𝑓 (𝑥0) (𝑦) = 𝑧0 for all 𝑦 ∈ 𝑌 .
Additionally, for any 𝑥 ∈ 𝑋 , the map 𝑓 (𝑥) : 𝑌 → 𝑍 must also preserve basepoints, i.e.,

𝑓 (𝑥) (𝑦0) = 𝑧0 for all 𝑥 ∈ 𝑋.
Therefore, if Proposition 10.2.6 is to be extend to Top∗, then a a map 𝑓 : 𝑋 × 𝑌 → 𝑍 𝑓 must be
constant on

({𝑥0} × 𝑌 ) ∪ (𝑋 × {𝑦0}),
sending it to 𝑧0. This is exactly how we have defined the smash product, which yields the following
result:
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Proposition 10.3.6. Let (𝑋, 𝑥0), (𝑌, 𝑦0), (𝑍, 𝑧0) ∈ Top∗. If 𝑌 is locally compact and 𝑋 is Haus-
dorff, then the smash product satsifes the pointed version of the exponential law. That is we have a
continuous bijection:

Maps∗((𝑋, 𝑥0) ∧ (𝑌, 𝑦0), (𝑍, 𝑧)) � Maps∗((𝑋, 𝑥0),Maps((𝑌, 𝑦0), (𝑍, 𝑧)))
PROOF. Clear. Invoke the discussion above, and note that Proposition 10.2.6 descends to yield the
desired result. □

Remark 10.3.7. If 𝑋 is locally compact Hausdorff, the continuous bijection in Proposition 10.3.6
is in fact a homeomorphism.

Remark 10.3.8. Let 𝑀, 𝑁 be locally compact Hausdorff spaces. Then their one-point compactifi-
cations 𝑀∞, 𝑁∞ are compact Hausdorff spaces, and each is equipped with a canonical basepoint.
We continue to write (𝑀∞,∞𝑀 ) as 𝑀∞. The product 𝑀 × 𝑁 is locally compact Hausdorff and we
have the basic relation

(𝑀 × 𝑁)∞ � 𝑀∞ ∧ 𝑁∞.
Indeed, there is canonical continuous map

𝑢 : 𝑀∞ × 𝑁∞ → (𝑀 × 𝑁)∞
which maps 𝑀 × 𝑁 ⊆ 𝑀∞ × 𝑁∞ via the identity onto 𝑀 × 𝑁 ⊆ (𝑀 ×𝑌 )∞ and maps 𝑀∞ × {∞𝑁 } ∪
{∞𝑀 } × 𝑁∞ to {∞𝑀×𝑁 }. Therefore it induces a continuous bijection

𝑢′ : 𝑀∞ ∧ 𝑁∞ → (𝑀 × 𝑌 )∞
on the quotient space𝑀∞∧𝑁∞ of𝑀∞×𝑁∞. This space is comapct, therefore 𝑢′ is a homeomorphism.
Example 10.3.9. Each (S𝑛, ∗) is a pointed topological space. We have

(S𝑛, ∗) = (S1, ∗) ∧ (S1, ∗)
Note that (S1, ∗) × (S1, ∗) is a torus. Visualizing the torus as quotient of a square with endpoints
identified appropriately, S1∨S1 corresponds to the to the boundary of the square. The smash product
identifies all these boundary points to a single point, yielding (S2, ∗). More generally, we have

(S𝑛, ∗) = (S1, ∗) ∧ · · · ∧ (S1, ∗)
Indeed,

(S𝑚+𝑛, ∗) � (R𝑚+𝑛)∞
= (R𝑚 × R𝑛)∞
� (R𝑚)∞ ∧ (R𝑛)∞ � (S𝑚, ∗) ∧ (S𝑛, ∗).

Example 10.3.10. Let (𝑋, 𝑥0) ∈ Top∗. We can define the reduced cone of (𝑋, 𝑥0) as
𝐶 (𝑋, 𝑥0) = (𝑋, 𝑥0) × (𝐼, 0)/((𝑋, 𝑥0) × {𝑥0} ∪ {∗} × (𝐼, 0)).

Essentially by definition,
𝐶 (𝑋, 𝑥0) � (𝑋, 𝑥0) ∧ (𝐼, 0)

We can also define the notion of a reduced suspension.

Definition 10.3.11. Let (𝑋, 𝑥0) ∈ Top∗. The reduced suspension Σ(𝑋, 𝑥0) ∈ Top∗ is the pointed
space

Σ(𝑋, 𝑥0) = ((𝑋, 𝑥0) × (S1, ∗))/
(
{𝑥0} × (S1, ∗) ∪ (𝑋, 𝑥0) × {∗}

)
,

where the base point is given by the collapsed subspace.
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Remark 10.3.12. Using the quotient map 𝐼 → 𝐼/𝜕𝐼 � S1, an alternative description of the reduced
suspension Σ(𝑋, 𝑥0) is given by

Σ(𝑋, 𝑥0) = ((𝑋, 𝑥0) × (𝐼, 0))/({𝑥0} × 𝐼 ∪ 𝑋 × {0, 1}) ,
Example 10.3.13. Let (𝑋, 𝑥0) ∈ Top∗. We have

Σ(𝑋, 𝑥0) = (𝑋, 𝑥0) ∧ (S1, ∗)
Indeed, consider the quotient map 𝑓 : (𝐼, 0) → (S1, ∗) given by 𝑓 (𝑡) = 𝑒2𝜋𝑖𝑡 , and the diagram:

(𝑋, 𝑥0) × (𝐼, 0) (𝑋, 𝑥0) × (S1, ∗)

Σ(𝑋, 𝑥0) (𝑋, 𝑥0) ∧ (S1, ∗)

1× 𝑓

𝑝 𝑞

It can be checked that We show that 1 × 𝑓 is a quotient map. The characteristic property of the
quotient topology now implies that

Σ(𝑋, 𝑥0) � (𝑋, 𝑥0) ∧ (S1, ∗)
Remark 10.3.14. Along with Example 10.3.9, the previous examples readily implies that we have

Σ(S𝑛, ∗) = (S𝑛+1, ∗)
Corollary 10.3.15. Let (𝑋, 𝑥0), (𝑌, 𝑦0) ∈ Top∗ such that 𝑋 is Hausdorff. Then there is a continuous
bijective correspondence

Maps∗(Σ(𝑋, 𝑥0), (𝑌, 𝑦0)) � Maps∗((𝑋, 𝑥0),Ω(𝑌, 𝑦0))
Passing to 𝜋0, we have

[Σ(𝑋, 𝑥0), (𝑌, 𝑦0)] � [(𝑋, 𝑥0),Ω(𝑌, 𝑦0)] .
PROOF. This follows from Proposition 10.3.6 and that Remark 10.3.14. □

10.4. Compactly Generated Spaces
The bijection in Proposition 10.2.6 relies on the fact that 𝑌 is locally compact. A number of

topological spaces in homotopy theory are non-locally finite CW complexes. Fundamental examples
include RP∞ and CP∞. We now look at a category of topological spaces where we expect homotopy
theoretic propositions to be true without additional assumptions.

10.4.1. Compactly Generated Spaces. Informally, a compactly generated space is a topolog-
ical space whose topology is determined by all continuous maps from arbitrary compact spaces.

Definition 10.4.1. Let 𝑋 ∈ Top. A subset 𝐴 ⊆ 𝑋 is called 𝑘-closed in 𝑋 if, for any compact
Hausdorff space 𝐾 and continuous map 𝑓 : 𝐾 → 𝑋 , the preimage 𝑓 −1(𝐴) ⊆ 𝐾 is closed in 𝐾 .

The collection of 𝑘-closed subsets of 𝑋 forms a topology, which contains the original topology
of 𝑋 . Let 𝑘𝑋 denote the topological space whose underlying set is that of 𝑋 , but equipped with the
topology of 𝑘-closed subsets of 𝑋 . Because the 𝑘-topology contains the original topology on 𝑋 , the
identity function Id : 𝑘𝑋 → 𝑋 is continuous.

Definition 10.4.2. Let 𝑋 ∈ Top. 𝑋 is compactly generated (CG) if Id : 𝑘𝑋 → 𝑋 is a homeomor-
phism.

Let CG denote the full subcategory of Top consisting of compactly generated spaces. Let’s
discuss categorical properties:
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Proposition 10.4.3. Let 𝑋 ∈ Top.
(1) The 𝑘-ification is a functor.
(2) For any space 𝑋 , the map 𝑘2𝑋 → 𝑘𝑋 is a homeomorphism. Hence, 𝑘2𝑋 � 𝑘𝑋 .
(3) The 𝑘-ification functor is right adjoint to the forgetful functor. That is,

HomCG(𝑋, 𝑘𝑌 ) = HomTop(𝑋,𝑌 )
for all 𝑋 ∈ CG and 𝑌 ∈ Top.

(4) The 𝑘-ification functor commutes with limits. Hence, limits exist in CG.
(5) Disjoint unions of compactly generated spaces are compactly generated. Quotients of com-

pactly generated spaces by equivalence relations are compactly generated.
(6) Colimits exist in CG and can simply be computed in Top.

PROOF. The proof is given below:
(1) Suppose 𝑓 : 𝑋 → 𝑌 is any continuous map and 𝐴 ⊆ 𝑌 is compactly closed. For any map

𝑢 : 𝐾 → 𝑋 , the set 𝑢−1( 𝑓 −1(𝐴)) is closed in 𝐾 . Thus, 𝑓 −1(𝐴) is compactly closed in 𝑋 .
This means that 𝑓 : 𝑘𝑋 → 𝑘𝑌 is continuous.

(2) Given a compact Hausdorff space 𝑋 and a (set) map 𝑓 : 𝐾 → 𝑋 , the map 𝑓 is continuous
if and only if 𝑓 : 𝑋 → 𝑘𝑋 is continuous. So the compactly closed sets of 𝑋 are the same
as the compactly closed sets of 𝑘𝑋 . In other words, 𝑘𝑥 � 𝑘2𝑋 .

(3) It suffices to show that 𝑓 : 𝑋 → 𝑌 is continuous if and only if 𝑓 : 𝑋 → 𝑘𝑌 is continuous.
Since the 𝑘-ification topology is finer, we assume that 𝑓 is continuous and show that 𝑓 is
continuous. But 𝑘 ( 𝑓 ) : 𝑘𝑋 → 𝑘𝑌 is continuous and 𝑘𝑋 � 𝑋 .

(4) This follows from (3) and categorical arguments. Indeed, we have:
HomCG(𝑋, 𝑘 (lim←−−

𝑖

𝑌𝑖)) � HomTop(𝑋, lim←−−
𝑖

𝑌𝑖)

� lim←−−
𝑖

HomTop(𝑋,𝑌𝑖)

= lim←−−
𝑖

HomCG(𝑋, 𝑘𝑌𝑖) = HomCG(𝑋, lim←−−
𝑖

𝑘𝑌𝑖)

for all 𝑋 ∈ CG and 𝑌 ∈ Top. Hence,
𝑘 (lim←−−

𝑖

𝑌𝑖) = lim←−−
𝑖

𝑘𝑌𝑖

(5) Let 𝑋 =
∐
𝑖 𝑋𝑖 such that each 𝑋𝑖 is compactly generated. Let 𝐴 ⊆ 𝑋 be 𝑘-closed. Then 𝐴

has the form
∐
𝑖 𝐴𝑖 , where 𝐴𝑖 = 𝐴 ∩ 𝑋𝑖 , and it is sufficient to check that 𝐴𝑖 is closed in 𝑋𝑖 .

As 𝑋𝑖 is CG, it is enough to check that 𝐴𝑖 is 𝑘-closed in 𝑋𝑖 . Consider a map 𝑓 : 𝐾 → 𝑋𝑖 .
Then the composite 𝑖 ◦ 𝑓 : 𝐾 → 𝑋𝑖 ↩→ 𝑋) is continuous and

𝑓 −1(𝐴𝑖) = (𝑖 ◦ 𝑓 ′)−1(𝐴),
which is closed because 𝐴 is 𝑘-closed in 𝑋 . Now let 𝑋 be compactly generated and let
𝑞 : 𝑋 → 𝑌 a quotient map. Since 𝑋 is compactly generated, 𝑞 induces a continuous map
𝑞 : 𝑋 → 𝑘𝑌 as shown below:

𝑋 𝑘𝑌 𝑌
𝑞

𝑞

Id

Let 𝐴 ⊆ 𝑌 be a 𝑘-open subset of 𝑌 . Hence, Id−1(𝐴) ⊆ 𝑘𝑌 is open in 𝑘𝑌 . Then the
preimage

𝑞−1(𝐴) = (Id ◦𝑞)−1(𝐴) = 𝑞−1(Id−1(𝐴)) ⊆ 𝑋
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is open in 𝑋 since 𝑞 : 𝑋 → 𝑘𝑌 is continuous. Therefore, 𝐴 ⊆ 𝑌 is open in 𝑌 since 𝑞 is a
quotient map.

(6) Colimits in Top can be constructed by taking disjoint unions and quotients. The colimit of
compactly generated spaces in the category Top is a compactly generated space. Thus, it
is also the colimit in CG.

This completes the proof. □

Remark 10.4.4. In Proposition 10.4.3(3) we have shown that 𝑓 : 𝑋 → 𝑌 is continuous if and only
if 𝑓 : 𝑋 → 𝑘𝑌 is continuous for all 𝑋 ∈ CG and 𝑌 ∈ Top. This can be summarized such that
following diagram commutes:

𝑘𝑌 𝑌

𝑋

Id

𝑓
𝑓

Note that 𝑓 has the same underlying function as 𝑓 . This exhibits 𝑘𝑌 → 𝑌 as the ‘closest approxi-
mation’ of 𝑌 by a CG space.

Proposition 10.4.5. Every locally compact Hausdorff space and CW-complex is CG.

PROOF. Let 𝑋 be a locally compact space assume 𝑓 −1(𝐴) ⊆ 𝐾 is closed for every compact Hausdorff
space, 𝐾 . We show 𝐴 is closed by showing that 𝐴𝑐 is open. Let 𝑥 ∈ 𝐴𝑐. By local compactness,
there exists a compact neighbourhood of 𝑥, say 𝐾𝑥 . Let𝑈𝑥 be an open neighbourhood of 𝑥 such that
𝑥 ∈ 𝑈𝑥 ⊆ 𝐾𝑥 . Because 𝐾𝑥 ∩ 𝐴 is closed by hypothesis (consider the inclusion map 𝑖𝑥 : 𝐾𝑥 → 𝑋),
we have that (𝐾𝑥 ∩ 𝐴)𝑐 is open. Therefore,

(𝐾𝑥 ∩ 𝐴)𝑐 ∩𝑈𝑥 = 𝑈𝑐𝑥 := 𝑉𝑥
is an open neighbourhood of 𝑥 not intersecting 𝐴. We have

𝐴𝑐 =
⋃
𝑥∈𝐴𝑐

𝑉𝑥 ,

and therefore 𝐴𝑐 is open. A CW complex is a colimit constructed by consideting closed disks. Since
closed disks are in CG and CG is closed under taking colimits, every CW complex is in CG. □

Corollary 10.4.6. Let 𝑋 ∈ Top. Then 𝑋 ∈ CG if and only if 𝑋 is a quotient space of a locally
compact space.

PROOF. Let 𝑋 ∈ CG. The converse follows from Proposition 10.4.3. Consider the following collec-
tion:

K = { 𝑓𝐾 (𝐾) | 𝑓𝐾 : 𝐾 → 𝑋 is continuous and 𝐾 compact Hausdorff}
Let 𝑌 =

⊕
𝑓𝐾 (𝐾 ) ∈K 𝑓𝐾 (𝐾) where each 𝑓𝐾 (𝐾) ∈ K has the subspace topology inherited from 𝑋 .

Then 𝑌 is a locally compact space. Let
𝑞 : 𝑌 → 𝑋

be the map maps each 𝑓𝐾 (𝐾) onto the corresponding compact subset 𝑓𝐾 (𝐾) ⊆ 𝑋 by the identity
map. We claim that the quotient topology, 𝜏𝑞, generated by this mapping coincides with the original
topology, 𝜏, on 𝑋 . Clearly, 𝜏 ⊆ 𝜏𝑞 since 𝑞 is a continuous map. Let 𝑈 ∈ 𝜏𝑞. Let 𝑔 : 𝐿 → 𝑋 be
continuous such that 𝐿 is compact. Since 𝑈 ∈ 𝜏𝑞, we have that 𝑞−1(𝑈) is open in 𝑌 . Since 𝑔(𝐿) is
open in 𝑌 , it follows that 𝑞−1(𝑈) ∩ 𝑔(𝐿) is open in 𝑌 . But 𝑞−1(𝑈) ∩ 𝑔(𝐿) = 𝑔−1(𝑈). Thus, 𝑔−1(𝑈)
is open in 𝐿 and consequently,𝑈 ∈ 𝜏. □
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Remark 10.4.7. Limits in CG need not coincide with limits in Top. Let 𝑋,𝑌 ∈ CG such that
𝑋 = R \ {1, 1/2, 1/3, . . . } with the subspace topology, and let 𝑌 = R/Z with the quotient topology.
𝑋 ∈ CG since 𝑋 is a CW complex² and𝑌 ∈ CG by Corollary 10.4.6. In fact,𝑌 is also a CW complex
since 𝑌 is an infinite bouqet of circles. However, 𝑋 × 𝑌 is not compactly generated. Let

𝐴 =
∞⋃
𝑖=1

𝐴𝑖 =
∞⋃
𝑖, 𝑗=1

{(
1
𝑖
+ 𝑎𝑖
𝑗
, 𝑖 + 0.5

𝑗

)
∈ 𝑋 × 𝑌 : 𝑗 ∈ N

}
, 𝑎𝑖 =

(
1
𝑖
− 1
𝑖 + 1

)
10−𝑖 .

The closure of 𝐴 closure contains (0, 0). Hence, 𝐴 is not closed. But for any compact subset 𝐾 ⊆
𝑋 × 𝑌 , the set 𝐴 ∩ 𝐾 has only finitely many points. This is because for fixed 𝑖 ∈ N, there are only
finitely many 𝑗 ∈ N, and also there can be only finitely many 𝑖. Hence 𝐴 𝑘-closed. This shows that
𝑋 × 𝑌 is not in CG. See [Eng89] for details.

Remark 10.4.8. We have
CW ⊊ CG ⊊ Top

as inclusion of categories. The inclusions are in general strict. Indeed, the Hawaiian earring is in
CG since it is compact and hence locally compact. However, we have already seen that it admits no
CW decomposition. For the inclusion CG ⊊ Top, consider the example in Remark 10.4.7.

We can now discuss the mapping spaces with the notion of a compactly generated space in place.
We need to modify the definition given in the previous section a bit since we deal with compact
Hausdorff spaces in this section.

Definition 10.4.9. Let 𝐶0(𝑋,𝑌 ) be the set of continuous functions from 𝑋 to 𝑌 with the compact-
open topology that is generated by a subbasis formed by the sets of the form

𝐵(𝑢, 𝐾,𝑈) = { 𝑓 : 𝐾 → 𝑌 | 𝑓 (𝑢(𝐾)) ⊆ 𝑈, 𝑢 : 𝐾 → 𝑋 is cts. s.t 𝐾 is cpt. Hausdorff}
We define 𝐶 (𝑋,𝑌 ) = 𝑘𝐶0(𝑋,𝑌 ).
Remark 10.4.10. If 𝑋,𝑌 ∈ CG, then 𝑋 × 𝑌 might not be in CG. See Remark 10.4.7. In this case,
we can consider 𝑘 (𝑋 × 𝑌 ). Below, we write 𝑘 (𝑋 × 𝑌 ) as 𝑋 ×𝑘 𝑌 .
Remark 10.4.11. If 𝑋 ∈ CG and 𝑌 ∈ Top is locally compact, it turns our that 𝑋 × 𝑌 ∈ CG. Since
𝑋 ∈ CG, we have 𝑋 = 𝑍/∼ such that 𝑍 is locally compact by Corollary 10.4.6. In other words, we
have a quotient map 𝑞 : 𝑍 → 𝑋 . Consider the map

𝑞 × Id𝑌 : 𝑍 × 𝑌 → 𝑋 × 𝑌
It is a standard fact that 𝑞 × Id𝑌 is a quotient map since 𝑌 is assumed to be locally compact. It is
clear that

𝑋 × 𝑌 =
𝑍

∼ × 𝑌 =
𝑍 × 𝑌
∼′ ,

where (𝑧, 𝑦) ∼′ (𝑧′, 𝑦′) if and only if 𝑧 ∼ 𝑧′. In other words, we have “ ∼′=∼ × Id′′. Here we have
implicitly used the fact that the bijection of sets

𝑋 × 𝑌 � 𝑍

∼ × 𝑌 �
𝑍 × 𝑌
∼′

is in fact a homeomorphism in Top essentially because the product topology (left hand side) and the
quotient topology (right hand side) are the same. Since 𝑍 × 𝑌 is locally compact, the claim follows
from Corollary 10.4.6.

Proposition 10.4.12. Let 𝑋,𝑌, 𝑍 ∈ CG.

²Right?
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(1) For 𝑋,𝑌 ∈ CG, 𝐶 (𝑋, ·) is a covariant functor from CG to Sets. Similarly, 𝐶 (·, 𝑌 ) is a
contravariant functor from CG to Sets.

(2) The evaluation map
Ev𝑋,𝑌 : 𝑋 × 𝐶 (𝑋,𝑌 ) → 𝑌

and the injection map
𝑖𝑋,𝑌 : 𝑌 → 𝐶 (𝑋 ×𝑘 𝐶 (𝑋,𝑌 ))

are continuous.
(3) (Exponential Law) The map

𝜑 : 𝐶 (𝑋 ×𝑘 𝑌, 𝑍) → 𝐶 (𝑋,𝐶 (𝑌, 𝑍)),
as discussed in Proposition 10.2.6 is a homeomorphism.

(4) The composition map
Φ𝑋,𝑌 ,𝑍 : 𝐶 (𝑋,𝑌 ) ×𝑘 𝐶 (𝑌, 𝑍) → 𝐶 (𝑋, 𝑍)

is continuous.

PROOF. The proof is given below:
(1) We prove the the covariant case. It suffices to check that 𝐶0(𝑋, ·) is a covariant functor.

We have to check that if 𝑔 : 𝑌 → 𝑍 is a continuous map, then 𝑔∗ = 𝐶0(𝑋,𝑌 ) → 𝐶0(𝑋, 𝑍)
is continuous. But we have

(𝑔∗)−1𝐵(𝑢, 𝐾,𝑈) = 𝐵(𝑢, 𝐾, 𝑔−1(𝑈))
The claim follows.

(2) It suffices to show that𝑌 → 𝐶0(𝑋, 𝑋 ×𝑘𝑌 ) or equivalently that 𝑖−1𝐵(𝑢, 𝐾,𝑈) is open in𝑌 .
As 𝑌 ∈ CG, it is equivalent to check that 𝑣−1𝑖−1𝐵(𝑢, 𝐾,𝑈) is open in 𝐿 for every test map
𝑣 : 𝐿 → 𝑌 , where 𝐿 is a compact Hausdorff space. Note that 𝑢 × 𝑣 : 𝐾 ×𝑘 𝐿 → 𝑋 ×𝑘 𝑌 is
a test map, so (𝑢 × 𝑣)−1(𝑈) is open in 𝐾 ×𝑘 𝐿. By the Tube Lemma, the set

{𝑏 ∈ 𝐿 : 𝐾 × {𝑏} ⊆ (𝑢 × 𝑣)−1(𝑈)}
is open in 𝐿. It is easy to check that this set is the same as 𝑣−1inj−1𝐵(𝑢, 𝐾,𝑈), which
completes the proof.

Consider an open set 𝑈 ⊆ 𝑌 , and a map 𝑢 : 𝐾 → 𝑋 ×𝑘 𝐶 (𝑋,𝑌 ). We show that
𝑉 = 𝑢−1Ev−1(𝑈) is open in 𝐾 . Let 𝑣 : 𝐾 → 𝑋 and 𝑤 : 𝐾 → 𝐶 (𝑋,𝑌 ) be the two
components of 𝑢, so

𝑉 = {𝑎 ∈ 𝐾 : 𝑤(𝑎) (𝑣(𝑎)) ∈ 𝑈}.
Suppose that 𝑎 ∈ 𝑉 . As 𝑤(𝑎) ◦ 𝑣 : 𝐾 → 𝑌 is continuous, we can choose a compact neigh-
bourhood 𝐿 of 𝑎 in 𝐾 such that 𝑤(𝑎) (𝑣(𝐿)) ⊆ 𝑈. This means that 𝑤(𝑎) ∈ 𝐵(𝑣, 𝐿,𝑈) ⊆
𝐶 (𝑋,𝑌 ). As 𝑤 : 𝐾 → 𝐶 (𝑋,𝑌 ) is continuous, the set 𝑁 = 𝑤−1(𝐵(𝑣, 𝐿,𝑈)) is a neigh-
bourhood of 𝑎 in 𝐾 . If 𝑏 ∈ 𝑁 ∩ 𝐿, then 𝑤(𝑏)(𝑣(𝑏)) ∈ 𝑤(𝑏)(𝑣(𝐿)) ⊆ 𝑈, so 𝑏 ∈ 𝑉 . Thus,
the neighbourhood 𝑁 ∩ 𝐿 of 𝑎 is contained in 𝑉 . This shows that 𝑉 is open, as required.

(3) We first show that it is a bijection at the level of sets. If 𝑓 : 𝑋 → 𝐶 (𝑌, 𝑍) is continuous,
then its image

𝑋 ×𝑘 𝑌
𝑓 ×Id−−−−→ 𝐶 (𝑌, 𝑍) ×𝑘 𝑌

EvY,Z−−−−−→ 𝑍

is continuous. On the other hand, if 𝑔 : 𝑋 ×CG 𝑌 → 𝑍 is continuous, then its image

𝑋
inj𝑋,𝑌−−−−−→ 𝐶 (𝑌, 𝑋 ×𝑘 𝑌 )

EvX,Y−−−−−→ 𝑌
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is continuous. This shows that the exponential map is bijection. Moreover, if𝑊 ∈ CG we
have bijections:

𝐶 (𝑊,𝐶 (𝑋,𝐶 (𝑌, 𝑍))) � 𝐶 (𝑊 ×𝑘 𝑋,𝐶 (𝑌, 𝑍))
� 𝐶 (𝑊 ×𝑘 𝑋 ×𝑘 𝑌, 𝑍)
� 𝐶 (𝑊,𝐶 (𝑋 ×𝑘 𝑌, 𝑍)).

This means that 𝐶 (𝑋,𝐶 (𝑌, 𝑍)) and 𝐶 (𝑋 ×𝑘 𝑌, 𝑍) represent the same contravariant functor
and the claim now follows by Yoneda’s Lemma.

(4) The proof is similar to Proposition 10.2.10.
This completes the proof. □

Thus, we have obtained a category CG that contains all locally compact Hausdorff spaces, CW-
complexes, admits all limits and colimits, and is Cartesian closed.

10.4.2. WeaklyHausdorff Spaces. The categoryCG still contains some bad topological spaces,
like the Sierpinski space. These do not satisfy the Hausdorff condition and we would like to exclude
them by imposing a Hausdorff like condition.

Definition 10.4.13. Let 𝑋 ∈ Top. Then 𝑋 is weakly Hausdorff (WH) if for every compact Hausdorff
space 𝐾 and every continuous map 𝑢 : 𝐾 → 𝑋 , the image 𝑢(𝐾) ⊆ 𝑋 is closed in 𝑋 .

Example 10.4.14. If 𝑋 is a Hausdorff space, then 𝑋 is weakly-Hausdorff since 𝑢(𝐾) is compact and
thus closed in 𝑋 . Every CW-complex is Hausdorff, hence in particular weakly Hausdorff.

Proposition 10.4.15. Let 𝑋 be a weakly Hausdorff topological space.
(1) Any finer topology on 𝑋 is still weakly Hausdorff. In particular, 𝑘𝑋 is weakly Hausdorff.
(2) Any subspace of 𝑋 is weakly Hausdorff.

PROOF. The proof is given below:
(1) Let 𝑥 be the set 𝑋 equipped with a topology containing the original topology, i.e., the

identity function Id : 𝑥 → 𝑋 is continuous. For any compact Hausdorff space 𝐾 and
continuous map 𝑢 : 𝐾 → 𝑥, the composite Id ◦𝑢 : 𝐾 → 𝑋 is continuous, and so its image
(Id ◦𝑢)(𝐾) ⊆ 𝑋 is closed in 𝑋 . Thus, 𝑢(𝐾) = Id−1((Id ◦𝑢)(𝐾)) is closed in 𝑥.

(2) Let 𝑖 : 𝐴 ↩→ 𝑋 be the inclusion of a subspace in 𝑋 . For any compact Hausdorff space 𝐾
and continuous map 𝑢 : 𝐾 → 𝐴, the composite 𝑖 ◦ 𝑢 : 𝐾 → 𝑋 is continuous, and so its
image (𝑖 ◦ 𝑢)(𝐾) ⊆ 𝑋 is closed in 𝑋 , and thus in 𝐴 as well.

This completes the proof. □

Let CGWH denote the full subcategory of CG consisting of compactly generated weakly Haus-
dorff spaces. We have

CW ⊊ CGWH ⊊ CG ⊊ Top
as inclusion of categories. The inclusion CGWH ⊊ CG is strict since the Sierpinski space is in CG
but not in CGWH. Similarly, the inclusion CW ⊊ CGWH is strict. Simply consider the Hawaiian
earring.

Proposition 10.4.16. Let 𝑋 ∈ CG. Then 𝑋 ∈ CGWH if and only if the diagonal subspace Δ𝑋 =
{(𝑥, 𝑥) | 𝑥 ∈ 𝑋} is 𝑘-closed in 𝑋 ×𝑘 𝑋 .
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PROOF. Suppose that 𝑋 is weakly Hausdorff. First, observe that every one-point set {𝑥} ⊆ 𝑋 is
certainly a continuous image of a compact Hausdorff space and thus is closed in 𝑋 , so 𝑋 is 𝑇1.
Next, consider a test map 𝑢 = (𝑣, 𝑤) : 𝐾 → 𝑋 ×𝑘 𝑋 . It will be enough to show that the set
𝑢−1(Δ𝑋) = {𝑎 ∈ 𝐾 : 𝑣(𝑎) = 𝑤(𝑎)} is closed in 𝐾 . Suppose that 𝑎 ∉ 𝑢−1(Δ𝑋), so 𝑣(𝑎) ≠ 𝑤(𝑎).
Then the set

𝑈 = {𝑏 : 𝑣(𝑏) ≠ 𝑤(𝑎)}
is an open neighbourhood of 𝑎 (because {𝑤(𝑎)} is closed in 𝑋). Now 𝐾 is compact Hausdorff and
therefore regular, so there is an open neighbourhood 𝑉 of 𝑎 in 𝐾 such that 𝑉 ⊆ 𝑈, or equivalently
𝑤(𝑎) ∉ 𝑣(𝑉). This means that 𝑎 lies in the set

𝑊 = 𝑤−1(𝑣(𝑉)𝑐).
The weak Hausdorff condition implies that 𝑣(𝑉) is closed in 𝑋 , and thus𝑊 is open in 𝐾 . We claim
that (𝑉 ∩ 𝑊) ∩ 𝑢−1(Δ𝑋) = ∅. Indeed, if 𝑏 ∈ 𝑉 ∩ 𝑊 , then 𝑣(𝑏) ∈ 𝑣(𝑉) but 𝑤(𝑏) ∈ 𝑣(𝑉)𝑐 by
the definition of 𝑊 , so 𝑣(𝑏) ≠ 𝑤(𝑏), which implies 𝑢(𝑏) = (𝑣(𝑏), 𝑤(𝑏)) ∉ Δ𝑋. This shows that
𝑢−1(Δ𝑋) is closed in 𝐾 , as required.

Conversely, suppose that Δ𝑋 is 𝑘-closed in 𝑋 ×𝑘 𝑋 . Let 𝑢 : 𝐾 → 𝑋 be a test map. Given any
other test map 𝑣 : 𝐿 → 𝑋 , we define

𝑀 = {(𝑎, 𝑏) ∈ 𝐾 × 𝐿 : 𝑢(𝑎) = 𝑣(𝑏)} ⊆ 𝐾 × 𝐿.
This can also be described as (𝑢×𝑣)−1(Δ𝑋), so it is closed in 𝐾×𝐿 and thus compact. It follows that
the projection 𝜋𝐿 (𝑀) is compact and hence closed in 𝐿. However, it is easy to see that 𝜋𝐿 (𝑀) =
𝑣−1(𝑢(𝐾)). This shows that 𝑢(𝐾) is 𝑘-closed in 𝑋 , and hence closed. This means that 𝑋 is weakly
Hausdorff. □

Remark 10.4.17. Proposition 10.4.16 is an important characterization of weakly Hausdorff spaces.
In Top, the criteria in Proposition 10.4.16 is exactly the characterization of a Hausdorff space. That
is 𝑋 ∈ Top is Hausdorff if and only if Δ𝑋 = {(𝑥, 𝑥) | 𝑥 ∈ 𝑋} is closed in 𝑋 × 𝑋 . Here 𝑋 × 𝑋 is the
product in Top.

We now have two additional functors. The first is the forgetful functor from CGWH to CG.
Another is weak-Hausdorffification, dented as ℎ, from CG to CGWH. We need to construct this
functor ℎ. We fist need some additional facts about wtaking quotients in CG.

Lemma 10.4.18. Let 𝑋,𝑌 ∈ CG and let ∼ be an equivalence relation on 𝑋 .
(1) We have

(𝑋 ×𝑘 𝑌 )/(∼ × Id) � (𝑋/∼) ×𝑘 𝑌
(2) Let 𝑞 be the map

𝑞 : 𝑋 ×𝑘 𝑋 → (𝑋/∼) ×𝑘 (𝑋/∼)
The set 𝑞−1(Δ𝑋/∼) ⊆ 𝑋 ×𝑘 𝑋 is closed if and only if 𝑋/∼ ∈ CGWH.

PROOF. The proof is given below:
(1) The standard map

𝑓 : 𝑋 ×𝑘 𝑌 → (𝑋/∼) ×𝑘 𝑌
respects the relation ∼ × Id and thus factors as

𝑓 : (𝑋 ×𝑘 𝑌 )/(∼ × Id) → (𝑋/∼) ×𝑘 𝑌
Let 𝑔1 be the projection map.

𝑔1 : (𝑋/∼) ×𝑘 𝑌 → (𝑋 ×𝑘 𝑌 )/(∼ × Id)
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Using the exponential law, we get a map
𝑔2 : 𝑋 → 𝐶 (𝑌, (𝑋 ×𝑘 𝑌 )/(∼ × Id))

This respects ∼ on the level of sets, and so factors to give a map
𝑔2 : 𝑋/∼→ 𝐶 (𝑌, (𝑋 ×𝑘 𝑌 )/(∼ × Id))

Using the exponential law again, we get a map
𝑔 : 𝑋/∼ ×𝑘𝑌 → (𝑋 ×𝑘 𝑌 )/(∼ × Id)

𝑓 and 𝑔 are clearly inverses.
(2) By applying (1) twice, we have

(𝑋 ×𝑘 𝑋)/(∼ × ∼) � (𝑋/∼) ×𝑘 (𝑋/∼)
Thus, Δ𝑋/∼ is closed if and only if 𝑞−1(Δ𝑋/∼) is closed if and only if 𝑋/∼ is in CGWH.

This completes the proof. □

Proposition 10.4.19. There exists a functor ℎ : CG→ CGWH that is a left adjoint to the forgetful
functor CGWH→ CG. That is,

HomCG(ℎ(𝑋), 𝑌 ) = HomCGWH(𝑋,𝑌 )
for all 𝑋 ∈ CG and 𝑌 ∈ CGWH.

PROOF. We first construct ℎ. For 𝑋 ∈ CG, consider the smallest equivalence relation on 𝑋×𝑘𝑋 that is
closed. We can take the intersection of all closed equivalence relations. Then ℎ𝑋 := 𝑋/∼∈ CGWH
and there is a natural projectionmap 𝑝 : 𝑋 → 𝑋/∼. We now show that ℎ is left-adjoint to the forgetful
functor. It suffices to show that every 𝑓 : 𝑋 → 𝑌 factors through 𝑋 → ℎ𝑋 . Since 𝑌 ∈ CGWH
Δ𝑌 ⊆ 𝑌 ×𝑘 𝑌 is closed and hence 𝑓 −1(Δ𝑌 ) is closed in 𝑋 ×𝑘 𝑌 . This is an equivalence relation that
contains ∼ since it is closed. Thus 𝑋 → 𝑌 respects ∼ and factors through 𝑋 → ℎ𝑋 . Moreover, ℎ
is a functor since for 𝑓 : 𝑋 → 𝑌 such that 𝑋,𝑌 ∈ CG, we have 𝑋 → 𝑌 → ℎ𝑌 which in turn gives
ℎ𝑋 → ℎ𝑌 . □

Remark 10.4.20. The functors discussed are summarized in the diagram below:

Top CG CGWH

k

Forgetful

h

Forgetful

Corollary 10.4.21. The following properties hold:
(1) Limits exist in CGWH and can simply be computed in CG. In fact, small colimits in

CGWH can be computed in CG.
(2) ℎ commutes with colimits. In particular, colimits in exist in CGWH and are obtained

by applying ℎ to the colimit in CG. In particular, the category CGWH is admits small
colimits exist because CG admits admits small colimits.

(3) For 𝑋 ∈ CG and 𝑌 ∈ CGWH, 𝐶 (𝑋,𝑌 ) ∈ CGWH. Hence, CGWH is Cartesian closed.

PROOF. (Sketch) The proof is given below:
(1) (Sketch) This is because an arbitrary product in CG of CGWH spaces is still WH, and so

is an equalizer in CG of two maps.
(2) This follows since ℎ is left adjoint to the forgetful functor.
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(3) Define
Ev𝑥 : 𝐶 (𝑋,𝑌 ) � {𝑥} × 𝐶 (𝑋,𝑌 ) ↩→ 𝑋 × 𝐶 (𝑋,𝑌 ) Ev−−→ 𝑌

We have
Δ𝐶 (𝑋,𝑌 ) =

⋂
𝑥∈𝑋
(Ev𝑥 ×Ev𝑥)−1(Δ𝑌 )

This is closed. Hence, 𝐶 (𝑋,𝑌 ) ∈ CGWH,
This completes the proof. □

Thus, we have obtained a category CGWH that contains all locally compact Hausdorff spaces,
CW-complexes, admits all limits and colimits, and is Cartesian closed.

Remark 10.4.22. All results about Maps(𝑋,𝑌 ) that hold under the hypothesis of locally compact
and Hausdorff hold without any additional assumptions in C(𝑋,𝑌 ).



CHAPTER 11

Fibrations

We adopt the following conventions from now on:

(1) We will assume that we work in the category CGWH.
(2) Abusing notation, we will write CGWH as Top.
(3) We will write 𝑋 ×𝑘 𝑌 simply as 𝑋 × 𝑌 .

These assumptions will allow the theory of fibrations to be developed without further restrictions.

11.1. Fibrations
Fibrations play a fundamental role in homotopy theory. In a sense, fibrations can be thought

of as ‘homotopically nice projections,’ a notion made precise below. We will introduce two types
of fibrations - the Hurewicz fibrations and Serre fibrations - which are both obtained by imposing
certain homotopy lifting properties. Prominent examples of fibrations are fiber covering spaces and
fiber bundles, which are introduced in the next section. These fibrations provide powerful tools for
understanding the relationships between the base and total spaces, and they allow us to analyze the
homotopy type of complex spaces by studying simpler ones.

11.1.1. Definition & Examples.

Definition 11.1.1. Let 𝑋, 𝐸 ∈ Top. A continuous surjective map 𝑝 : 𝐸 → 𝑋 satisfies the homotopy
lifting for 𝐴 ∈ Top if for any homotopy 𝐻 : 𝐴 × 𝐼 → 𝑋 and map 𝑓 : 𝐴 × {0} → 𝐸 , there exists a
homotopy 𝐻 : 𝐴 × 𝐼 → 𝐸 such that the following diagram commutes:

𝐴 × {0} 𝐸

𝐴 × 𝐼 𝑋

𝑖0

𝐻0

𝑝

𝐻

𝐻

(1) We say a continuous surjective map 𝑝 : 𝐸 → 𝑋 is a Hurewicz fibration if it satisfies the
homotopy lifting property for any 𝐴 ∈ Top.

(2) We say a continuous surjective map 𝑝 : 𝐸 → 𝑋 is a Serre fibration if it satisfies the
homotopy lifting property for any 𝐼𝑛 ∈ Top for each 𝑛 ≥ 0.

Remark 11.1.2. Clearly, a Hurewicz fibration is a Serre fibration. It is clear that a fibration is a
generalization of the notion of a covering space since covering spaces satisfy the homotopy lifting
property.

196
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Remark 11.1.3. A continuous surjective map 𝑝 : 𝐸 → 𝑋 satisfies the homotopy lifting property for
𝐴 ∈ Top if and only if the following diagram commutes:

𝐴

𝐸 𝐼 𝑋 𝐼

𝐸 𝑋

𝑓

𝐻

𝐻

Ev0

𝑝∗

Ev0

𝑝

Here Ev0 is the evaluation at 0 map and 𝑋 𝐼 denotes Maps(𝐼, 𝑋).
Remark 11.1.4. If 𝑝 : 𝐸 → 𝑋 is a fibration and 𝑥 ∈ 𝑋 , then 𝐹𝑥 := 𝑝−1(𝑥) ⊆ 𝐸 is called the fiber
of 𝑝 over 𝑥. We write

𝐹𝑥 → 𝐸 → 𝑋

Example 11.1.5. Let’s look at some examples of fibrations:
(1) For any 𝑋 ∈ Top, the unique map 𝑋 → ∗ is a Hurewicz fibration. This is clear.
(2) Any projection 𝑝 : 𝑋 × 𝑌 → 𝑋 is a Hurewicz fibration. For 𝐴 ∈ Top, let 𝐻 : 𝐴 × 𝐼 → 𝑋

be a homotopy such that 𝐻0 lifts to a map 𝐴→ 𝑋 × 𝑌 . We can define 𝐻 by

𝐻 : 𝐴 × 𝐼 → 𝑋 × 𝑌,
(𝑎, 𝑡) ↦→ (𝐻 (𝑎, 𝑡), 𝐻 (𝑎, 0)).

It is clear that 𝐻 satisfies the definition.
(3) A homeomorphism 𝑓 : 𝑋 → 𝑌 is a Hurewicz fibration since we can simply define 𝐻 =

𝑓 −1 ◦ 𝐻.
(4) Consider the evaluation map

Ev0,1 : Maps(𝐼, 𝑋) → 𝑋 × 𝑋
𝛾 ↦→ (𝛾(0), 𝛾(1))

We show that Ev0,1 is a Hurewicz fibration. Consider the diagram:

𝐴 � 𝐴 × {0} Maps(𝐼, 𝑋)

𝐴 × 𝐼 𝑋 × 𝑋

𝑖0

𝐻0

Ev0,1

𝐻

𝐻

Equivalently, we are given a continuous map
𝜑 : (𝐴 × {0} × 𝐼) ∪ (𝐴 × 𝐼 × {0, 1}) → 𝑋

which we wish to extend to 𝐴 × 𝐼 × 𝐼. But
({0} × 𝐼) ∪ (𝐼 × {0, 1}) := 𝐽1 ⊆ 𝐼2

is a retract of 𝐼2. The argument is similar to Example 2.1.17. Hence so is 𝐴×𝐽1 of 𝐴× 𝐼× 𝐼.
Therefore, we can simply pre-compose 𝜑 with the retraction

𝑟 : 𝐴 × 𝐼 × 𝐼 → 𝐴 × 𝐽1

to find the required extension.
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Proposition 11.1.6. The following statements are true:
(1) The composition of Hurewicz fibrations is a Hurewicz fibration.
(2) The product of Hurewicz fibrations is a Hurewicz fibration.
(3) The pullback of a Hurewicz fibration is a Hurewicz fibration.
(4) (Universal Test Space) Let 𝑝 : 𝐸 → 𝑋 be a continuous surjective map and let 𝑁𝑝 be the

following pullback:
𝑁𝑝 𝑋 𝐼

𝐸 𝑋

𝜋2

𝜋1 Ev0

𝑝

Here
𝑁𝑝 := 𝐸 ×𝑋 𝑋 𝐼 = {(𝑒, 𝛾) ∈ 𝐸 × 𝑋 𝐼 | 𝑝(𝑒) = 𝛾(0)}.

If 𝑝 satisfies the homotopy lifting property for 𝑁𝑝 ∈ Top, then 𝑝 : 𝐸 → 𝑋 is a Hurewicz
fibration.

PROOF. The proof is given below:
(1) Let 𝑝1 : 𝐸1 → 𝑋 and 𝑝2 : 𝐸2 → 𝐸1 be fibrations and consider the following diagram:

𝐴

𝐸 𝐼2 𝐸 𝐼1 𝑋 𝐼

𝐸2 𝐸1 𝑋

𝑓

𝐻

𝐻˜̃𝐻
Ev0

(𝑝2 )∗

Ev0

(𝑝1 )∗

Ev0

𝑝2 𝑝1

Since 𝑝1 is a Hurewicz fibration, 𝐻 exists to make the right-hand side of the diagram
commute. Since 𝑝2 is a Hurewicz fibration, ˜̃𝐻 exists to make the left-hand side of the
diagram commute. The claim follows.

(2) This is clear. The same argument as in covering space theory applies here.
(3) Let 𝑝 : 𝐸 → 𝑋 be a Hurewicz fibration and consider a pullback square:

𝐸 ′ 𝐸

𝑋 ′ 𝑋

𝑞 𝑝

Consider the diagram below:

𝐴 × {0} 𝐸 ′ 𝐸

𝐴 × 𝐼 𝑋 ′ 𝑋

𝑖0

𝑓

𝑞 𝑝

𝐻

𝐻

The unmarked dotted arrow from 𝐴 × 𝐼 to 𝐸 can be completed since 𝑝 is a Hurewicz
fibration. The fact that the square is a pulback square then implies the existence of 𝐻.
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(4) Consider the following diagram:

𝐴

𝑁𝑝

𝐸 𝐼 𝑋 𝐼

𝐸 𝑋

𝑓

𝐻𝑞

𝜋1

𝜋2
𝑠

𝑝∗

Ev0 Ev0

𝑝

Suppose 𝑝 satisfies the homotopy lifting property for 𝑁𝑝. Then the map 𝑠 exists as in the
diagram. By the universal property of pullbacks, there exists a map 𝑞 : 𝑌 → 𝑁𝑝 such that
the diagram commutes. Then 𝑠 ◦ 𝑞 :→ 𝐸 𝐼 solves the problem.

This completes the proof. □

Remark 11.1.7. We give 𝑁𝑝 the subspace topology with respect to the compact open topology. We
say that 𝑁𝑝 is a universal test space 𝑝 : 𝐸 → 𝑋 .

11.1.2. Mapping Path Space. 𝑁𝑝 is an instance of the construction of a mapping path space
which we now describe.

Definition 11.1.8. Let 𝑓 : 𝑋 → 𝑌 be a continuous map. The mapping math space is the topological
space

𝑁 𝑓 = 𝑋 ×𝑌 𝑌 𝐼 = {(𝑥, 𝛾) ∈ 𝑋 × 𝑌 𝐼 | 𝑓 (𝑥) = 𝛾(0)}.
We give 𝑁 𝑓 the subspace topology with respect to the compact open topology.

Note that 𝑁 𝑓 is defined as a pullback:

𝑁 𝑓 𝑌 𝐼

𝑋 𝑌

𝜋1

𝜋2

Ev0

𝑓

We can now use the mapping path space construction in Proposition 11.1.6(4) to argue that any
continuous map 𝑓 : 𝑋 → 𝑌 can be decomposed as a composition of a homotopy equivalence and a
Hurewicz fibration.

Proposition 11.1.9. Let 𝑓 : 𝑋 → 𝑌 be a continuous map. Then 𝑓 can be decomposed as

𝑋 𝑁 𝑓 𝑌

𝑓

𝑖 𝑝

where 𝑖 is a homotopy equivalence and 𝑝 is a Hurewicz fibration.

PROOF. We have 𝑋 ⊆ 𝑁 𝑓 via mapping 𝑥 ↦→ (𝑥, 𝑐 𝑓 (𝑥 ) ), where 𝑐 𝑓 (𝑥 ) is the constant path based at the
image of 𝑥 under 𝑓 . Call this map 𝑖 as in the diagram above. Define

𝑝 : 𝑁 𝑓 → 𝑌

(𝑥, 𝛾) ↦→ 𝛾(1)
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Clearly, 𝑓 = 𝑝◦𝑖. We first show that 𝑖 is a homotopy equivalence. Let 𝜋1 : 𝑁 𝑓 → 𝑋 be the projection
onto 𝑋 . Then 𝜋1 ◦ 𝑖 = Id𝑋 and we have a homotopy

𝐻 : 𝑁 𝑓 × 𝐼 → 𝑁 𝑓

((𝑥, 𝛾), 𝑡) ↦→ (𝑥, 𝑠 ↦→ 𝛾((1 − 𝑡)𝑠))
from 𝑖 ◦ 𝜋1 to Id𝑁 𝑓 . We now check that 𝑝 is a Hurewicz fibration. Consider the following diagram:

𝐴 × {0} 𝑁 𝑓

𝐴 × 𝐼 𝑌

𝑖0

𝐻0

𝑝

𝐻

First note that we have the following commutative diagram:

𝐴 � 𝐴 × {0} 𝑁 𝑓 𝑋

𝐴 × 𝐼 𝐴 � 𝐴 × {0}

Id
𝑖0

𝐻0 𝜋1

𝜋𝐴

𝜋1◦𝐻0

If we write 𝐻0(𝑎) = (𝐼 (𝑎), 𝐽 (𝑎)), then 𝜋𝐴◦ (𝜋◦𝐻0) (𝑎, 𝑡) = 𝐼 (𝑎). Hence, we identify 𝜋𝐴◦ (𝜋1 ◦𝐻0)
with 𝐼. Moreover, using Example 11.1.5(4), we have the following commutative diagram:

𝐴 × {0} 𝑁 𝑓 𝑌 𝐼

𝐴 × 𝐼 𝑌 × 𝑌

𝑖0

𝐻0 𝜋2

Ev0,1

( 𝑓 ◦𝐼,𝐻 )

𝐾

Hence, we can define 𝐻 (𝑎, 𝑡) = (𝐼 (𝑎, 𝑡), 𝐾 (𝑎, 𝑡)). The image of 𝐻 is in 𝑁 𝑓 . This is because

𝑓 (𝐼 (𝑎)) = Ev0(𝐾 (𝑎, 𝑡))
Moreover, the intended diagram commutes since

(𝑝 ◦ 𝐻) (𝑎, 𝑡) = 𝐾 (𝑎, 1) = Ev1 𝐾 (𝑎, 𝑡) = 𝐻 (𝑎, 𝑡),
𝐻 ◦ 𝑖0(𝑎) = 𝐻 (𝑎, 0) = 𝐻0(𝑎).

This completes the proof. □

Motivated by Proposition 11.1.9 we can make the following definition of the homotopy fiber of
any arbitrary continuous map 𝑓 : 𝑋 → 𝑌 .

Definition 11.1.10. Let 𝑓 : 𝑋 → 𝑌 be a continuous map. Let 𝑝 : 𝑁 𝑓 → 𝑌 denote the map as in
Proposition 11.1.9. The homotopy fiber of 𝑓 over 𝑦0 ∈ 𝑌 is

hFiber 𝑓 (𝑦0) := 𝑝−1( 𝑓 ) = {(𝑥, 𝛾) | 𝛾(0) = 𝑓 (𝑥), 𝛾(1) = 𝑦0}

Remark 11.1.11. For each 𝑦0 ∈ 𝑌 , note that there is a canonical map from the fiber of 𝑓 over 𝑥 to
the homotopy fiber of 𝑓 over 𝑥:

𝑓 −1(𝑦0) → hFiber 𝑓 (𝑦0)
𝑥 ↦→ (𝑥, 𝑐 𝑓 (𝑥 ) )
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Thus, the fiber sits in the homotopy fiber while the homotopy fiber can be thought of as a ‘relaxed’
version of the fiber: a point of the homotopy fiber is a pair (𝑥, 𝛾) consisting of 𝑥 ∈ 𝑋 together with
a path 𝛾 in 𝑌 ‘witnessing’ that 𝑥 ‘lies in the fiber up to homotopy.’

Remark 11.1.12. Let 𝑓 : 𝑋 → 𝑌 be a fibration. We check that the canonical map

𝑓 −1(𝑦0) → hFiber 𝑓 (𝑦0)

is a homotopy equivalence in this case. Define a homotopy

𝐻 : 𝑁 𝑓 × 𝐼 → 𝑌

((𝑥, 𝛾), 𝑡) ↦→ 𝛾(𝑡)

Note that 𝐻0(𝑥, 𝛾) = 𝛾(0) = 𝑓 (𝑥), and 𝐻0 lifts through 𝑓 by 𝐻0 : 𝑁 𝑓 → 𝑋 , 𝐻0(𝑥, 𝛾) = 𝑥. That is,
𝑓 ◦ 𝐻0 = 𝐻0. Because 𝑋 → 𝑌 is a fibration, there is a full lift

𝐻 : 𝑁 𝑓 × 𝐼 → 𝑋

of 𝐻 through 𝑓 . In other words, 𝐻𝑡 satisfies the following equation:

𝑓 (𝐻𝑡 (𝑥, 𝛾)) = 𝛾(𝑡)

Now restrict everything to the fibers. Let

ℎ𝑡 : hFiber 𝑓 (𝑦0) → hFiber 𝑓 (𝑦0)
(𝑥, 𝛾) ↦→

(
𝐻𝑡 (𝑥, 𝛾), 𝛾 | [𝑡 ,1]

)
Then ℎ0 is the identity, whereas ℎ1(𝑥, 𝛾) = (𝐻1(𝑥, 𝛾), 𝑐𝑦0) is in the image of 𝑖 : 𝑓 −1(𝑦0) →
hFiber 𝑓 (𝑦0). Now that ℎ𝑡 is a homotopy between 𝑖 ◦ ℎ1 and the identity, while the restriction of
ℎ𝑡 is a homotopy between ℎ1 ◦ 𝑖 and the identity. This verifies the assertion.

11.1.3. Fiber Homotopy Equivalence. It is important to study fibrations over a given base
space 𝑋 ∈ Top, working in the category of spaces over 𝑋 which we denote as Top𝑋. An object in
Top𝑋 is a continuous map 𝑝 : 𝐸 → 𝑋 . Moreover, a morphism in Top𝑋 is a commutative diagram

𝐸1 𝐸2

𝑋

𝑓

𝑝1 𝑝2

A homotopy in Top𝑋 is commutative diagram

𝐸1 × 𝐼 𝐸2

𝑋

𝐻

𝑝1 𝑝2

such that for all 𝑡 ∈ 𝐼, we have the following commutative diagram:

𝐸1 × {𝑡} 𝐸2

𝑋

𝐻 |𝐸1×{𝑡}

𝑝1 |𝐸1×{𝑡}
𝑝2
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Definition 11.1.13. Let 𝑋 ∈ Top and 𝐸1, 𝐸2 ∈ Top𝑋. An object 𝑓 : 𝐸1 → 𝐸2 in Top𝑋 is homotopy
equivalent if there exists another object 𝑔 : 𝐸2 → 𝐸1 in Top𝑋 such that

𝑔 ◦ 𝑓 ∼ Id𝐸1 , 𝑓 ◦ 𝑔 ∼ Id𝐸2 ,

in Top𝑋. The maps 𝑓 and 𝑔 are called fibre homotopy equivalences.

The following result will be useful later on:

Proposition 11.1.14. Let 𝑋 ∈ Top. Let 𝑝1 : 𝐸1 → 𝑋 and 𝑝2 : 𝐸2 → 𝑋 be fibrations in Top𝑋. Let
𝑓 : 𝐸1 → 𝐸2 be a map such that 𝑝2 ◦ 𝑓 = 𝑝1. Suppose that 𝑓 is a homotopy equivalence in Top.
Then 𝑓 is a fiber homotopy equivalence in Top𝑋.

PROOF. The proof is skipped. □

11.1.4. Characterization of Fibrations. We end with a criterion that allows us to recognize
Hurewicz fibrations. The criterion will also allow us to deduce that covering spaces and fiber bundles
over nice spaces are Hurewicz fibrations.

Definition 11.1.15. Let U be an open cover of 𝑋 ∈ Top. We say that U is numerable if there are
maps 𝜆𝑈 : 𝑋 → 𝐼 for each𝑈 ∈ U such that 𝜆−1

𝑈 ((0, 1]) = 𝑈.

Proposition 11.1.16. Let 𝑝 : 𝐸 → 𝑋 be a continuous surjective map and let U be a locally finite
numerable open cover of 𝑋 . Then 𝑝 is a Hurewicz fibration if and only if 𝑝 |𝑈 : 𝑝−1(𝑈) → 𝑈 is a
Hurewicz fibration for every𝑈 ∈ U.

PROOF. The proof can be found in [May99]. We will see in Proposition 11.2.4 that fiber bundles are
Serre fibrations. This suffices for most purposes. □

11.2. Fibre & Principal Bundles
In this section, we discuss fiber bundles providing the key definitions required to introduce some

important examples of interest. Our primary interest in fiber bundles arises from the fact that impor-
tant examples of Serre fibrations are given by fiber bundles.

11.2.1. Definitions.

Definition 11.2.1. Let 𝐸, 𝑋, 𝐹 ∈ Top. A continuous surjective map 𝑝 : 𝐸 → 𝑋 is a 𝐹-fibre bundle
if it satisfies the following conditions:

(1) There is an open cover {𝑈𝛼}𝛼
(2) There are homeoomorphisms 𝜑𝛼 : 𝑝−1(𝑈𝛼) → 𝑈𝛼 × 𝐹 such that the following diagram

commutes:
𝑝−1(𝑈𝛼) 𝑈𝛼 × 𝐹

𝑈𝛼

𝜑𝛼

𝑝
pr1

Remark 11.2.2. If 𝑝 : 𝐸 → 𝑋 is a continuous surjective map, we will henceforth use the term fibre
bundle to refer to a 𝐹-fiber bundle when the fiber 𝐹 is clear from context.

Example 11.2.3. Here is a basic list of examples of fibre bundles:
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(1) A trivial fibre bundle is of the form 𝐹 × 𝑋 with fibre 𝑋 . It is clear that this is a fibre bundle
since 𝑝 : 𝐹 × 𝑋 → 𝑋 is a continuous surjective map and the following diagram commutes:

𝑋 × 𝐹 𝑋 × 𝐹

𝑋

Id

𝑝
pr1

(2) Let 𝑝 : 𝐸 → 𝑋 be a covering space with a discrete fibres, 𝐹. Then 𝑝 : 𝐸 → 𝑋 is a fibre
bundle with fibre 𝐹.

(3) Let K = R,C. Let 𝑝 : 𝐸 → 𝑋 be a rank 𝑛 K-vector bundle. Then 𝑝 : 𝐸 → 𝑋 is a fibre
bundle with fibre K𝑛.

Why are we interested in fiber bundles in homotopy theory? We demonstrate that a fiber bundle
is a Serre fibration.

Proposition 11.2.4. Let 𝑝 : 𝐸 → 𝑋 be a fibre bundle. Then 𝑝 : 𝐸 → 𝑋 is a Serre fibration.

PROOF. Consider the following diagram:

𝐼𝑛 × {0} 𝐸

𝐼𝑛 × 𝐼 𝑋

𝑖0

𝐻0

𝑝

𝐻

Since 𝜋 : 𝐸 → 𝐵 is a fiber bundle, there exists an open covering by subsets𝑈𝛼 such that 𝑝−1(𝑈𝛼) �
𝑈𝛼 × 𝐹 (over 𝑈𝛼). We can cover 𝐼𝑛+1 by the open subsets 𝐻−1(𝑈𝛼). Since 𝐼𝑛+1 is compact, the
Lebesgue number lemma implies there exists a 𝑘 ∈ N such that, for any sequence ( 𝑗1, . . . , 𝑗𝑛) of
numbers 0 ≤ 𝑗1, . . . , 𝑗𝑛 ≤ 𝑘 − 1, the small cube[

𝑗1
𝑘
,
𝑗1 + 1
𝑘

]
× · · · ×

[
𝑗𝑛
𝑘
,
𝑗𝑛 + 1
𝑘

]
is mapped by 𝐻 into an open set𝑈𝛼 ⊆ 𝑋 . We construct the lift 𝐻 incrementally, one cube at a time.
Thus, we may assume that no further subdivision of 𝐼𝑛+1 is necessary and that 𝐻 maps 𝐼𝑛+1 entirely
into some 𝑈𝛼. Moreover, we are given 𝐻0 defined on 𝐼𝑛 × {0} that can be extended onto 𝜕𝐼𝑛 × 𝐼.
Consequently, we can also assume that 𝑝 is the trivial fiber bundle 𝑈𝛼 × 𝐹. Thus, we can construct
such a lift as

𝐻 : 𝐼𝑛+1 → 𝑈𝛼 × 𝐹; (𝑥1, . . . , 𝑥𝑛+1) ↦→
(
𝐻 (𝑥1, . . . , 𝑥𝑛+1), 𝑓 (𝑥1, . . . , 𝑥𝑛)

)
,

where 𝑓 is the composition 𝐼𝑛+1 → 𝐼𝑛 × {0} ∪ 𝜕𝐼𝑛 × 𝐼 → 𝐼𝑛 × {0} → 𝑈𝛼 × 𝐹 → 𝐹. Here the first
map is a deformation retraction. □

Remark 11.2.5. Proposition 11.1.16 implies that fibre bundles with paracompact base spaces are
Hurewicz fibrations. Recall that a paracompact space is a topological space in which every open
cover has an open refinement that is locally finite. Moreover, every open cover on a paracompact
space can be shown to be numerable by working with the existence of bump functions guaranteed to
exist by Urysohn’s lemma.

Let us consider some examples. We construct examples of fiber bundles (and hence Serre fi-
brations) via group actions. In fact, the examples we construct will be principal bundles, which are
specific instances of fiber bundles. To proceed, we first define the notion of a principal bundle.
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Definition 11.2.6. Let 𝑝 : 𝐸 → 𝑋 be a fibre bundle with a topological group, 𝐺, as its fibre. Then
𝑝 : 𝐸 → 𝑋 is a principal 𝐺-bundle if the following hold:

(1) There is a continuous, free group action 𝐸 × 𝐺 → 𝐸 ,
(2) For each 𝑥 ∈ 𝑋 , the action of 𝐺 preserves the fibre 𝐸𝑥 and the orbit map 𝐺 → 𝐸𝑥 is a

homeomorphism,
(3) The locally trivalizing cover {𝑈𝛼, 𝜑𝛼}𝛼 is such that each 𝜑 is 𝐺-equivariant. That is,

𝜑𝛼 (𝑒 · 𝑔) = 𝜑𝛼 (𝑒) · 𝑔

The group 𝐺 is called the structure group of the principal 𝐺-bundle.

The examples of principal 𝐺-bundles we construct will be derived from the category of smooth
manifolds. Consequently, the remainder of this section is adapted for the category of smooth mani-
folds. We will use the following important result:

Proposition 11.2.7. Let 𝐺 be a Lie group and 𝑀 be a smooth manifold. A smooth, free, properly
disctontnuous action of 𝐺 on 𝑀 induces a smooth manifold structure on 𝑀/𝐺 such that the map
𝑀 → 𝑀/𝐺 is principle 𝐺-bundle.

PROOF. The proof is skipped. □

Example 11.2.8. (Hopf Fibrations) We discuss the all important example of Hopf fibrations over
𝑘 = R,C,H.

(1) Let S𝑛 ⊆ R𝑛+1. Let Z2 acts on S𝑛 via

S𝑛 × Z2 → S2𝑛+1, (𝑤,±1) ↦→ ±𝑤.

The action is free. Since Z2 is compact, the action is proper as well. Proposition 11.2.7
implies that the S𝑛/Z2 is principal Z2-bundle. In fact, we have

Z2 → S𝑛 → S𝑛/Z2 � RP𝑛

is a principal Z2-bundle called the real Hopf bundle. By letting 𝑛→∞, we get:

Z2 → S∞ → RP∞

(2) Let S2𝑛+1 ⊆ C𝑛+1 be a sphere of odd dimension. Let S1 � U(1) ⊆ C acts on S2𝑛+1 via

S2𝑛+1 × S1 → S2𝑛+1, (𝑤, 𝑧) ↦→ 𝑤𝑧.

The action is free. Since S1 is compact, the action is proper as well. Proposition 11.2.7
implies that the S2𝑛+1/U(1) is principal S1-bundle. Hence,

S1 → S2𝑛+1 → S2𝑛+1/U(1) � CP𝑛

is a principal S1-bundle called the complex Hopf bundle. By letting 𝑛→∞, we get:

S1 → S∞ → CP∞

(3) Let S3 ⊆ H. and S4𝑛+3 ⊆ H𝑛+1. An argument as in (2) shows that

S3 → S4𝑛+3 → S4𝑛+3/S3 � HP𝑛

is a principal S3-bundle called the quarternionic Hopf bundle. By letting 𝑛→∞, we get:

S3 → S∞ → HP∞
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Remark 11.2.9. For 𝑛 = 1, the Hopf fibrations reduce to:
S0 → S1 → S1,

S1 → S3 → S2,

S3 → S7 → S4.

There is also an octonionic fibration:
S7 → S15 → S8,

but there are no higher octonionic versions of the Hopf fibrations.

Let 𝐺 be a Lie group and 𝐻 ⊆ 𝐺 is a closed Lie subgroup. The natural of 𝐻 on 𝐺 by right mul-
tiplication is smooth, free and proper. Hence, Proposition 11.2.7 implies that 𝐺/𝐻 is a 𝐻-principal
bundle.

Example 11.2.10. (Homoegenous Spaces) The following is a list of examples of homogenous space
which are principal bundles.

(1) Consider O(𝑛 − 1) a closed subgroup acting naturally on O(𝑛). Note that
O(𝑛)/O(𝑛 − 1) � S𝑛−1

This follows from the standard transitive action of O(𝑛) on S𝑛−1, the orbit-stabilizer theo-
rem and the characteristic property of smooth submersions. Hence,

O(𝑛 − 1) → O(𝑛) → S𝑛−1

is a principal O(𝑛 − 1)-bundle.
(2) Consider SO(𝑛 − 1) a closed subgroup acting naturally on SO(𝑛). Note that

SO(𝑛)/SO(𝑛 − 1) � S𝑛−1

This follows from the standard transitive acton of SO(𝑛) on S𝑛−1, the orbit-stabilizer the-
orem and the characteristic property of smooth submersions. Hence,

SO(𝑛 − 1) → SO(𝑛) → S𝑛−1

is a principal SO(𝑛 − 1)-bundle.
(3) Consider U(𝑛 − 1) a closed subgroup acting naturally on U(𝑛). Note that

U(𝑛)/U(𝑛 − 1) � S2𝑛−1

This follows from the standard transitive acton of U(𝑛) on S2𝑛−1, the orbit-stabilizer theo-
rem and the characteristic property of smooth submersions. Hence,

U(𝑛 − 1) → U(𝑛) → S2𝑛−1

is a principal U(𝑛 − 1)-bundle.

We can generalize the above examples by introducing the notion of Stiefel manifolds.

Definition 11.2.11. Let K = R,C,H. A 𝑘-frame in K𝑛 is an ordered orthonormal set of vectors
{𝑣1, . . . , 𝑣𝑘} ⊆ K𝑛¹. The set of all 𝑘-frames, 𝑉𝑘 (K𝑛), is called the Stiefel manifold.

Remark 11.2.12. It can be verified that 𝑉𝑘 (K𝑛) is a compact smooth manifold. Note that we have
the following identifications:

(1) 𝑉1(R𝑛) � S𝑛−1

¹Here we take the standard inner product.
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(2) 𝑉1(C𝑛) � S2𝑛−1

(3) 𝑉𝑛 (R𝑛) � O(𝑛)
(4) 𝑉𝑛 (C𝑛) � U(𝑛)

Example 11.2.13. Consider O(𝑛 − 𝑘) a closed subgroup acting naturally on O(𝑛). Note that

O(𝑛)/O(𝑛 − 𝑘) � 𝑉𝑘 (R𝑛)

The group O(𝑛) acts on the set 𝑉𝑘 (R𝑛) via

𝐴 · (𝑣1, . . . , 𝑣𝑘) = (𝐴𝑣1, . . . , 𝐴𝑣𝑘).

Since the vectors 𝑣1, . . . , 𝑣𝑘 can be completed to form an orthonormal basis of R𝑛, and O(𝑛) acts
transitively on orthonormal bases, it follows that the action of O(𝑛) on𝑉𝑘 (R𝑛) is also transitive. The
isotropy group of the point

𝑝 = (𝑒1, . . . , 𝑒𝑘) ∈ 𝑉𝑘 (R𝑛)
is given by

O(𝑛)𝑝 =

{(
𝐸𝑘 0
0 𝐴

) ���� 𝐴 ∈ O(𝑛 − 𝑘)
}
� O(𝑛 − 𝑘).

The characteristic property of smooth submersions now implies that

𝑉𝑘 (R𝑛) = 𝑂 (𝑛)/𝑂 (𝑛 − 𝑘).

as smooth manifolds. The discussion of homogenous spaces implies that

O(𝑛 − 𝑘) → O(𝑛) → 𝑉𝑘 (R𝑛)

is a principal O(𝑛 − 𝑘)-bundle.

Remark 11.2.14. Similarly, it can be shown that

𝑉𝑘 (C𝑛) = U(𝑛)/U(𝑛 − 𝑘),
𝑉𝑘 (H𝑛) = Sp(𝑛)/Sp(𝑛 − 𝑘).

Hence, we have additional examples:

U(𝑛 − 𝑘) → U(𝑛) → 𝑉𝑘 (C𝑛),
Sp(𝑛 − 𝑘) → Sp(𝑛) → 𝑉𝑘 (H𝑛).

We can also define the notion of a Grassmannian that can be used to generated additional prin-
cipal 𝐺-bundles.

Example 11.2.15. LetK = R,C,H. The set of all 𝑘-dimensional subspaces ofK𝑛,𝐺𝑘 (K𝑛), is called
the Grassmannian.

There is a natural surjection

𝑝 : 𝑉𝑘 (K𝑛) −→ 𝐺𝑘 (K𝑛)
{𝑣1, . . . , 𝑣𝑛} ↦→ span{𝑣1, . . . , 𝑣𝑛}.

The fact that 𝑝 is onto follows from the Gram-Schmidt procedure. Thus, 𝐺𝑘 (K𝑛) is a topological
space endowed with the quotient topology via 𝑝.
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Example 11.2.16. (Sketch) Note that O(𝑘) acts on 𝑉𝑘 (R𝑛) smoothly, freely and properly discontin-
uously. We have that

𝑉𝑘 (R𝑛)/O(𝑘) � 𝐺𝑘 (R𝑛)
Hence,

O(𝑘) → 𝑉𝑘 (R𝑛) → 𝐺𝑘 (R𝑛)
is a principal O(𝑘)-bundle. If we let 𝑛→∞, we get:

O(𝑘) → 𝑉𝑘 (R∞) → 𝐺𝑘 (R∞)
Here 𝐺𝑘 (R∞) is the infinite Grassmannian.

Remark 11.2.17. Similarly, it can be shown that we have the following examples:
U(𝑘) → 𝑉𝑘 (C𝑛) → 𝐺𝑘 (C𝑛)

If we let 𝑛→∞, we get:
U(𝑘) → 𝑉𝑘 (C∞) → 𝐺𝑘 (C∞)

11.3. Based Fibrations
Fibrations discussed above are called unbased fibrations. We can now define pointed fibrations.

Definition 11.3.1. Let (𝐸, 𝑒0), (𝑋, 𝑥0) ∈ Top∗. A pointed in 𝑝 : (𝐸, 𝑒0) → (𝑋, 𝑥0) is a based
fibration if all the relevant maps in Definition 11.1.1 are pointed maps.

Remark 11.3.2. 𝐹 = 𝑝−1(𝑥0) is called the pointed fiber of 𝑝 over 𝑥. We have a sequence

𝐹
𝑖−→ 𝐸

𝑝−→ 𝑋

Remark 11.3.3. Let (𝑋, 𝑥0), (𝑌, 𝑦0) ∈ Top∗. If 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) is a pointed map, we redefine
𝑁 𝑓 to be

𝑁 𝑓 = 𝑋 × 𝑓 𝑌 𝐼 : {(𝑥, 𝛾) ∈ 𝑋 × 𝑌 𝐼 | 𝑓 (𝑥) = 𝛾(1)}.
The proof in Proposition 11.1.9 goes through and 𝑓 can be decomposed as:

(𝑋, 𝑥0) 𝑁 𝑓 (𝑌, 𝑦0)

𝑓

𝑖 𝑝

Here 𝑖 is a homotopy equivalence as defined in Proposition 11.1.9 and 𝑝 is a (Hurewicz) fibration
such that

𝑝 : 𝑁 𝑓 → 𝑌

(𝑥, 𝛾) ↦→ 𝛾(0)

Example 11.3.4. Let (𝑋, 𝑥0) ∈ Top∗ and let 𝑓 : {𝑥0} ↩→ 𝑋 denote the inclusion of a singleton. In
this case, 𝑁 𝑓 � 𝑃(𝑋, 𝑥0). Here 𝑁 𝑓 is as redefined in Remark 11.3.3. We have

{𝑥0} 𝑃(𝑋, 𝑥0) (𝑋, 𝑥0)

𝑓

𝑝

Here 𝑝 is a fibration called the path space fibration. Note that we have 𝑝−1(𝑥0) = Ω(𝑋, 𝑥0). Hence,
we have the following sequence

Ω(𝑋, 𝑥0) → 𝑃(𝑋, 𝑥0) → (𝑋, 𝑥0).
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Remark 11.3.5. We shall only use the phrase fibration when working with a based fibration.
Wewould to generate a long exact sequence of homotopy groups associated to a continuous map.

Here is the strategy. Let 𝑓 : 𝑋 → 𝑌 be a pointed continuous map of pointed topological spaces.
Using Remark 11.3.3, we can decomopose 𝑓 as:

𝑋 𝑁 𝑓 𝑌

𝑓

𝑖 𝑝′

Consider the homotopy fiber:
hFiber 𝑓 (𝑦0) := (𝑝′)−1(𝑦) = {(𝑥, 𝛾) ∈ 𝑋 × 𝑃(𝑌, 𝑦0) | 𝛾(1) = 𝑓 (𝑥), 𝛾(0) = 𝑦0}

For brevity, we write hFiber 𝑓 (𝑦0) and hFib 𝑓 . Note that hFib 𝑓 is a pullback:

hFib 𝑓 𝑃(𝑌, 𝑦0)

𝑋 𝑌

Ev1

𝑓

Therefore, Proposition 11.1.6 implies that the projection 𝑝 : hFib 𝑓 → 𝑋 is a fibration. We get a
sequence

hFib 𝑓
𝑝−→ 𝑋

𝑓−→ 𝑌

We would like to iterate this construction. Since 𝑥 ∈ 𝑋0 is the basepoint of 𝑋 , note that the fiber of
the fibration 𝑝 is

𝑝−1(𝑥0) = {𝑥0} × {𝛾 ∈ 𝑃(𝑌, 𝑦0) | 𝛾(1) = 𝑓 (𝑥0) = 𝑦0, 𝛾(0) = 𝑦0} � Ω(𝑌, 𝑦0)
Hence, the usual fiber of 𝑝 over 𝑥0 can be identified with Ω(𝑌, 𝑦0). As before, we have an inclusion
of 𝑝−1(𝑥0) into the homotopy fiber hFib𝑝. Since 𝑝 is a fibration, this inclusion is a homotopy
equivalence by Remark 11.1.12. Hence, we have a sequence

Ω(𝑌, 𝑦0) hFib 𝑓 𝑋 𝑌

hFib𝑝 hFib 𝑓 𝑋 𝑌

�

𝑖 𝑝 𝑓

proj 𝑝 𝑓

Here 𝑖 is the inclusion mapping 𝛾 → (𝑥0, 𝛾). The left most square commutes by construction.
Hence, the diagram above commutes in Top∗. How shall we extend the sequence? The answer is
given by the following result:

Lemma 11.3.6. Let (𝐸, 𝑒0), (𝑋, 𝑥0) ∈ Top∗ and let 𝑓 : (𝐸, 𝑒0) → (𝑋, 𝑥0) be a pointed map. Let
𝐹 = 𝑝−1(𝑥0) and

𝐹
𝑔−→ 𝐸

𝑓−→ 𝑋

be the associated fiber sequence. The homotopy fibre hFiber𝑔 of 𝑔 is homotopy equivalent to
Ω(𝑋, 𝑥0).
PROOF. Using Remark 11.3.3, decompose 𝑓 as:

(𝐸, 𝑒0) 𝑁 𝑓

(𝑋, 𝑥0)

𝑓
𝑖

𝑝
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Since 𝑖 is a homotopy equivalence and 𝑓 , 𝑝 are fibrations, Proposition 11.1.14 implies that 𝑖 is in fact
a fiber homotopy equivalence. It follows that

𝑖 |𝐹 : 𝐹 → hFiber 𝑓
is a homotopy equivalence. From the discussion above hFiber 𝑓 is defined as a pullback and the
projection hFiber 𝑓 → 𝐸 is a fibration. We can furthermore decompose 𝑔 as:

𝐹 → 𝑁𝑔 → 𝐸

We know that 𝑁𝑔 is also defined as a pullback, the map 𝐹 → 𝑁𝑔 is a homotopy equivalence and
𝑁𝑔 → 𝐸 is a fibration. The fiber of the fibration 𝑁𝑔 → 𝐸 is hFiber𝑔 and the fiber of the fibration
hFiber 𝑓 → 𝐸 is Ω(𝑋, 𝑥0). All in all, we have the following diagram:

hFiber𝑔 𝑁𝑔

𝐹 𝐸

Ω(𝑋, 𝑥0) hFiber 𝑓

�
fib.

𝑔

�
fib.

Since the map from 𝑁𝑔 → hFiber 𝑓 , Proposition 11.1.14 implies that the map is in fact a fiber
homotopy equivalence over 𝐸 . In particular, the map restricts to a homotopy equivalnce between
hFiber𝑔 and Ω(𝑋, 𝑥0). □

We can now use Lemma 11.3.6 to continue to construction of the sequence.

Ω(𝑋, 𝑥0) Ω(𝑌, 𝑦0) hFib 𝑓 𝑋 𝑌

hFib𝑖 hFib𝑝 hFib 𝑓 𝑋 𝑌

𝑗′◦inv

Ω 𝑓

𝑗

𝑖 𝑝 𝑓

proj′ proj 𝑝 𝑓

Here 𝑗 is the homotopy equivalence discussed above and 𝑗 ′ that exists by Lemma 11.3.6. Moreover,
inv is the map

inv : Ω(𝑋, 𝑥0) → Ω(𝑋, 𝑥0),
𝛾 ↦→ 𝛾−1.

Since hFib𝑝 � Ω(𝑌, 𝑦0), we identify proj′ to be simply the projection ontoΩ(𝑌, 𝑦0). We claim that
the diagram above commutes in in hTop∗. The first and second squares are clearly commutative.
The third square commutes as discussed above. It suffices to consider the left most square. Let

𝑘 = proj′ ◦( 𝑗 ′ ◦ inv)

We claim that 𝑘 ∼ 𝑗 ◦Ω 𝑓 . Note that we have

𝑘 [𝛾] = (𝑐𝑦0 , [𝛾−1])
𝑗 ◦Ω 𝑓 [𝛾] = ([ 𝑓 ◦ 𝛾], 𝑐𝑥0)

The desired homotopy is given by

𝐻 ([𝛾], 𝑡) = ( 𝑓 (𝛾 | [𝑡 ,1]]), [𝛾−1 | [0,𝑡 ]])
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Iterating the above construction, we get the following sequence in hTop∗:

· · · Ω(hFib 𝑓 ) Ω(𝑋, 𝑥0) Ω(𝑌, 𝑦0) hFib 𝑓 𝑋 𝑌

· · · hFibΩ 𝑓 hFib𝑖 hFib𝑝 hFib 𝑓 𝑋 𝑌

�

Ω𝑝1

�

Ω 𝑓

�

𝑖 𝑝 𝑓

For each pair of adjacent maps, the first is the inclusion of the homotopy fibre of the next, up to
homotopy equivalence. What now? For a fixed 𝑌 , w can take the homotopy classes of maps [𝑌,−]∗,
where · is a space in the sequence above. We need the following lemma and a definition.

Definition 11.3.7. A sequence of functions of pointed sets

(𝐴, 𝑎) 𝑓−→ (𝐵, 𝑏) 𝑔−→ (𝐶, 𝑐)
is exact if 𝑓 (𝐴) = 𝑔−1(𝑐).
Lemma 11.3.8. Let (𝐸, 𝑒0), (𝑋, 𝑥0), (𝑍, 𝑧0) ∈ Top∗. Let 𝑝 : (𝐸, 𝑒0) → (𝑋, 𝑥0) be a fibration and
let 𝐹 = 𝑝−1(𝑥0). The sequence

𝐹
𝑖−→ 𝐸

𝑝−→ 𝑋

induces an exact sequence of sets²:

[𝑍, 𝐹]∗
𝑖#−−→ [𝑍, 𝐸]∗

𝑝#−−→ [𝑍, 𝑋]∗
PROOF. Let [𝑔] ∈ [𝑍, 𝐹]∗. Then

𝑝# ◦ 𝑖#( [𝑔]) : 𝑍 → 𝑋

𝑦 ↦→ 𝑥0

and so
𝑖#( [𝑍, 𝐹]∗) ⊆ 𝑝−1

# ([𝑐𝑥0])
where 𝑐𝑥0 is the constant map 𝐸 → 𝑥0. Now, let [ 𝑓 ] ∈ 𝑝−1

# ( [𝑐𝑥0]). So 𝑓 : 𝑍 → 𝐸 is such that

𝑝#([ 𝑓 ]) = [𝑝 ◦ 𝑓 ] = [𝑐𝑥0]
That is 𝑝 ◦ 𝑓 is homotopic to 𝑐𝑥0 . Let 𝐺 : 𝑍 × 𝐼 → 𝑋 be the corresponding homotopy. Now define
𝐻 : 𝑍 × 𝐼 → 𝐸 via the homotopy lifting property as in the following commutative diagram.

𝑍 × {0} 𝐸

𝑍 × 𝐼 𝑋

𝑖0

𝑓

𝑝

𝐺

𝐻

Then
𝑝 ◦ 𝐻 (𝑧, 1) = 𝐺 (𝑧, 1) = 𝑐𝑥0

Hence 𝐻 (𝑍, 1) ⊆ 𝐹. So 𝑧 ↦→ 𝐻 (𝑧, 1) can be restricted to a map 𝑓 ′ : 𝑍 → 𝐹. But 𝐻 (𝑧, 0) = 𝑓 (𝑧),
so we have

𝑓 � 𝑖 ◦ 𝑓 ′

That is, [ 𝑓 ] = 𝑖#( [ 𝑓 ′]) and so [ 𝑓 ] ∈ 𝑖#([𝑌, 𝐹]). This completes the proof. □

Let’s now use Lemma 11.3.8 to get the following result:

²A sequence of functions of pointed sets (𝐴, 𝑎)
𝑓
−→ (𝐵, 𝑏)

𝑔
−→ (𝐶, 𝑐)is exact if 𝑓 (𝐴) = 𝑔−1 (𝑐).
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Proposition 11.3.9. (Exact Puppe Sequence) Let (𝑋, 𝑥0), (𝑌, 𝑦0) ∈ Top∗ and let 𝑓 : (𝑋, 𝑥0) →
(𝑌, 𝑦0) be a pointed continuous map. The sequence

· · · Ω(hFib 𝑓 ) Ω(𝑋, 𝑥0) Ω(𝑌, 𝑦0) hFib 𝑓 𝑋 𝑌
Ω𝑝1 Ω 𝑓 𝑖 𝑝 𝑓

is exact.

PROOF. Let (𝑍, 𝑧0) ∈ Top∗. First consider

hFib
𝑝−→ 𝑋

𝑓−→ 𝑌

Instead consider the sequence
hFib 𝑓

𝑖−→ 𝑁 𝑓
𝑝′−−→ 𝑌

Here the map 𝑝′ is an honest fibration and hFib 𝑓 is the fibre of 𝑝′. For 𝑌 ∈ Top∗, we can apply
Lemma 11.3.6 to get an exact sequence of sets:

[𝑍, hFib 𝑓 ]∗ −→ [𝑍, 𝑁 𝑓 ]∗ −→ [𝑍,𝑌 ]∗
However, note that [𝑍, 𝑁 𝑓 ]∗ � [𝑍, 𝑋]∗ since 𝑃(𝑌, 𝑦0) is contractible. Hence, we find that the
sequence

hFib
𝑝−→ 𝑋

𝑓−→ 𝑌

is exact. Moreover,
Ω𝑘 (hFib) 𝑝−→ Ω𝑘 (𝑋, 𝑥0)

𝑓−→ Ω𝑘 (𝑌, 𝑦0)
is exact for each 𝑘 ≥ 1. This is because the sequence

[𝑍,Ω𝑘 (hFib)]∗ → [𝑍,Ω𝑘 (𝑋, 𝑥0)] → [𝑍,Ω𝑘 (𝑌, 𝑦0)]
can be written as

[Σ𝑘𝑍, hFib]∗ → [Σ𝑘𝑍, (𝑋, 𝑥0)]∗ → [Σ𝑘𝑍, (𝑌, 𝑦0)]∗
which is know to be exact. Hence, the given long exact sequence is an exact sequence. □
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CHAPTER 13

Higher Homotopy Groups

As before, we adopt the following conventions from now on:
(1) We will assume that we work in the category CGWH.
(2) Abusing notation, we will write CGWH as Top.
(3) We will write 𝑋 ×𝑘 𝑌 simply as 𝑋 × 𝑌 .

Let’s finally get to higher homotopy groups.

13.1. Definitions
In this section, we generalize the definition of the first homotopy group.

Definition 13.1.1. Let (𝑋, 𝑥0) ∈ Top∗ be a path-connected pointed topological space. The 𝑛-th
homotopy group of (𝑋, 𝑥0), denoted as 𝜋𝑛 (𝑋, 𝑥0), is defined as

𝜋𝑛 (𝑋, 𝑥0) = [(S𝑛, ∗), (𝑋, 𝑥0)] := [S𝑛, 𝑋]∗
𝑋 is or 𝑛-connected if 𝜋𝑘 (𝑋, 𝑥0) for 1 ≤ 𝑘 ≤ 𝑛. We say that 𝑋 is weakly contractible or∞-connected
if 𝜋𝑘 (𝑋, 𝑥0) = 0 for all 𝑘 ∈ N.

Remark 13.1.2. Note that
(𝐼𝑛/𝜕𝐼𝑛, 𝜕𝐼𝑛/𝜕𝐼𝑛) � (S𝑛, ∗)

Hence, we have the following commutative diagram:

(𝐼𝑛, 𝜕𝐼𝑛) (𝑋, 𝑥0)

(𝐼𝑛/𝜕𝐼𝑛, 𝜕𝐼𝑛/𝜕𝐼𝑛)

𝑓

𝑞
𝑔

Equivalently, 𝜋𝑛 (𝑋, 𝑥0) consists of homotopy classes of maps 𝑓 : 𝐼𝑛 → 𝑋 for which 𝜕𝐼𝑛 is mapped
onto 𝑥0. This is because the properties of the quotient topology imply that every 𝑓 in the diagram
above uniquely factors through a 𝑔 in the same diagram.

Remark 13.1.3. If 𝑛 = 0, then 𝜋0(𝑋, 𝑥0) is the set of connected components of 𝑋 . Indeed, we have
𝐼0 = {∗} and 𝜕𝐼0 = ∅. Hence,

𝜋0(𝑋, 𝑥0) = {[𝑦] | 𝑦 ∈ 𝑋}
Moreover, [𝑦] ∼ [𝑦′] if and only if there is a path between 𝑦 and 𝑦′. Hence, 𝜋0(𝑋, 𝑥0) consists of
homotopy classes of maps from a point into the space 𝑋 .

Proposition 13.1.4. Let (𝑋, 𝑥0) ∈ Top∗. Then there is a bijection of pointed sets:

𝜋𝑛−1(Ω(𝑋, 𝑥0), 𝑐𝑥0) � 𝜋𝑛 (𝑋, 𝑥0)
for each 𝑛 ≥ 1. Here 𝑐𝑥0 is the constant loop at 𝑥0.
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PROOF. We have:

𝜋𝑛−1(Ω(𝑋, 𝑥0), 𝑐𝑥0) = 𝜋0(Maps((S𝑛−1, ∗),Ω(𝑋, 𝑥0)))
� 𝜋0(Maps(Σ(S𝑛−1, ∗), (𝑋, 𝑥0)))
� 𝜋0(Maps((S𝑛, ∗), (𝑋, 𝑥0)))
= 𝜋𝑛 (𝑋, 𝑥0).

for each 𝑛 ≥ 1. □

Remark 13.1.5. We can also make the following computation:
𝜋𝑛 (𝑋, 𝑥0) � 𝜋0(Maps((S𝑛, ∗), (𝑋, 𝑥0)))

� 𝜋0(Maps((S1, ∗) ∧ (S𝑛−1, ∗), (𝑋, 𝑥0)))
� 𝜋0(Maps((S1, ∗),Ω𝑛−1

′ (𝑋, 𝑥0)))
:= 𝜋1(Ω𝑛−1

′ (𝑋, 𝑥0)).
for each 𝑛 ≥ 1. Here we denote

Ω𝑛−1
′ (𝑋, 𝑥0) := [(S𝑛−1, ∗), (𝑋, 𝑥0)]∗

Note that we have
(Ω𝑛−1(𝑋, 𝑥0), 𝑐𝑥0) � [(S0, ∗),Ω𝑛−1(𝑋, 𝑥0)]

� [Σ𝑛−1(S0, ∗), (𝑋, 𝑥0)]
� [(S𝑛−1, ∗), (𝑋, 𝑥0)]
:= Ω𝑛−1

′ (𝑋, 𝑥0).

This identification follows since Ω𝑛−1(𝑋, 𝑥0) is a pointed topological space with the constant loop
as the base point. Hence, we have

𝜋𝑛 (𝑋, 𝑥0) = 𝜋1(Ω𝑛−1(𝑋, 𝑥0), 𝑐𝑥0)
for 𝑛 ≥ 1.

Proposition 13.1.6. Let (𝑋, 𝑥0) ∈ Top∗. The set 𝜋𝑛 (𝑋, 𝑥0) forms a group for 𝑛 ≥ 2.

PROOF. This follows immediately from the fact that 𝜋𝑛 (𝑋, 𝑥0) = 𝜋1(Ω𝑛−1(𝑋, 𝑥0), 𝑐𝑥0) and 𝜋1(·) is
a group. We can also give a more direct argument. Consider the following map:

( 𝑓 + 𝑔)(𝑠1, 𝑠2, . . . , 𝑠𝑛) =
{
𝑓 (2𝑠1, 𝑠2, . . . , 𝑠𝑛) if 0 ≤ 𝑠1 ≤ 1

2
𝑔(2𝑠1 − 1, 𝑠2, . . . , 𝑠𝑛) if 1

2 ≤ 𝑠1 ≤ 1

Note that since only the first coordinate is involved in this operation, the same argument used to prove
that 𝜋1(𝑋, 𝑥0) is a group is valid here as well. In particular, the identity element is the constant map
taking all of 𝐼𝑛 to 𝑥0 and the inverse element is given by

− 𝑓 (𝑠1, 𝑠2, . . . , 𝑠𝑛) = 𝑓 (1 − 𝑠1, 𝑠2, . . . , 𝑠𝑛).
This completes the proof. □

The additive notation for the group operation is used because 𝜋𝑛 (𝑋, 𝑥0) is abelian for 𝑛 ≥ 2.

Lemma 13.1.7. (Eckmann–Hilton Argument) Let 𝑋 be a set equipped with two binary operations,
◦ and ⊗, such that:
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• ◦ and ⊗ are both unital. That is, there are identity elements 1◦ and 1⊗ such that
1◦ ◦ 𝑎 = 𝑎 = 𝑎 ◦ 1◦

1⊗ ⊗ 𝑎 = 𝑎 = 𝑎 ⊗ 1⊗
for all 𝑎 ∈ 𝑋 .
• We have,

(𝑎 ⊗ 𝑏) ◦ (𝑐 ⊗ 𝑑) = (𝑎 ◦ 𝑐) ⊗ (𝑏 ◦ 𝑑),
for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋 .

Then ◦ and ⊗ are the same and in fact commutative and associative.

PROOF. Observe that the units of the two operations coincide:

1◦ = 1◦ ◦ 1◦ = (1⊗ ⊗ 1◦) ◦ (1◦ ⊗ 1⊗) = (1⊗ ◦ 1◦) ⊗ (1◦ ◦ 1⊗) = 1⊗ ⊗ 1⊗ = 1⊗ .

We denote the common identity as 1. Now, let 𝑎, 𝑏 ∈ 𝑋 . Then
𝑎 ◦ 𝑏 = (1 ⊗ 𝑎) ◦ (𝑏 ⊗ 1) = (1 ◦ 𝑏) ⊗ (𝑎 ◦ 1) = 𝑏 ⊗ 𝑎 = (𝑏 ◦ 1) ⊗ (1 ◦ 𝑎) = (𝑏 ⊗ 1) ◦ (1 ⊗ 𝑎) = 𝑏 ◦ 𝑎.
This establishes that the two operations coincide and are commutative. For associativity,

(𝑎 ⊗ 𝑏) ⊗ 𝑐 = (𝑎 ⊗ 𝑏) ⊗ (1 ⊗ 𝑐) = (𝑎 ⊗ 1) ⊗ (𝑏 ⊗ 𝑐) = 𝑎 ⊗ (𝑏 ⊗ 𝑐).
This completes the proof. □

Proposition 13.1.8. Let (𝑋, 𝑥0) ∈ Top∗. If 𝑛 ≥ 2, 𝜋𝑛 (𝑋, 𝑥0) is an abelian group.

PROOF. We use Lemma 13.1.7. To use Lemma 13.1.7, we define an alternative binary operation. Let
[ 𝑓 ], [𝑔] ∈ 𝜋𝑛 (𝑋, 𝑥0). Then define [ 𝑓 ] × [𝑔] to be the homotopy class of the map 𝑓 × 𝑔 defined by

( 𝑓 × 𝑔) (𝑡1, . . . , 𝑡𝑛) =
{
𝑓 (𝑡1, 2𝑡2, 𝑡3, . . . , 𝑡𝑛) if 𝑡2 ∈ [0, 1/2],
𝑔(𝑡1, 2𝑡2 − 1, 𝑡3, . . . , 𝑡𝑛) if 𝑡2 ∈ [1/2, 1] .

It is clear that × is a well-defined operation on 𝜋𝑛 (𝑋, 𝑥0). Moreover, × is a unital operation with the
identity element given by the constant map taking all of 𝐼𝑛 to 𝑥0. To make use of Lemma 13.1.7, it
remains to prove that for any [ 𝑓 ], [𝑔], [ℎ], [𝑘] ∈ 𝜋𝑛 (𝑋, 𝑥0),

( [ 𝑓 ] × [𝑔]) + ([ℎ] × [𝑘]) = ([ 𝑓 ] + [ℎ]) × ([𝑔] + [𝑘]).
The left-hand side is defined to be the homotopy class of

(( [ 𝑓 ] × [𝑔]) + ([ℎ] × [𝑘])) (𝑡1, . . . , 𝑡𝑛) =


𝑓 (2𝑡1, 2𝑡2, 𝑡3, . . . , 𝑡𝑛) if 𝑡1 ≤ 1

2 , 𝑡2 ≤
1
2 ,

𝑔(2𝑡1, 2𝑡2 − 1, 𝑡3, . . . , 𝑡𝑛) if 𝑡1 ≤ 1
2 , 𝑡2 ≥

1
2 ,

ℎ(2𝑡1 − 1, 2𝑡2, 𝑡3, . . . , 𝑡𝑛) if 𝑡1 ≥ 1
2 , 𝑡2 ≤

1
2 ,

𝑘 (2𝑡1 − 1, 2𝑡2 − 1, 𝑡3, . . . , 𝑡𝑛) if 𝑡1 ≥ 1
2 , 𝑡2 ≥

1
2 .

The right-hand side is the homotopy class of

(( [ 𝑓 ] + [ℎ]) × ([𝑔] + [𝑘])) (𝑡1, . . . , 𝑡𝑛) =


𝑓 (2𝑡1, 2𝑡2, 𝑡3, . . . , 𝑡𝑛) if 𝑡1 ≤ 1

2 , 𝑡2 ≤
1
2 ,

ℎ(2𝑡1 − 1, 2𝑡2, 𝑡3, . . . , 𝑡𝑛) if 𝑡1 ≥ 1
2 , 𝑡2 ≤

1
2 ,

𝑔(2𝑡1, 2𝑡2 − 1, 𝑡3, . . . , 𝑡𝑛) if 𝑡1 ≤ 1
2 , 𝑡2 ≥

1
2 ,

𝑘 (2𝑡1 − 1, 2𝑡2 − 1, 𝑡3, . . . , 𝑡𝑛) if 𝑡1 ≥ 1
2 , 𝑡2 ≥

1
2 .

Both these maps are exactly the same map. By Lemma 13.1.7, + is commutative, so 𝜋𝑛 (𝑋, 𝑥0) is
abelian for 𝑛 ≥ 2. □
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Remark 13.1.9. The proof of Proposition 13.1.8 makes it clear why 𝜋1(𝑋, 𝑥0) need not be abelian.
We simply do not have “enough space” in [0, 1] to carry out the same argument.

We end this section is devoted to discussing various properties of higher homotopy groups that
are analogous to those of the fundamental group.

Proposition 13.1.10. Let (𝑋, 𝑥0) ∈ Top∗. The following are some properties of 𝜋𝑛 (𝑋, 𝑥0) for 𝑛 ≥ 1.
(1) For each 𝑥′0 ∈ 𝑋, such that 𝑥′0 ∈ 𝜋0(𝑥), we have

𝜋𝑛 (𝑋, 𝑥0) � 𝜋𝑛 (𝑋, 𝑥′)
(2) For 𝑛 ≥ 2, 𝜋𝑛 is a functor from Top∗ to Ab, the category abelian of groups.
(3) For each 𝑛 ≥ 1, 𝜋𝑛 preserves products. If (𝑌, 𝑦) ∈ Top∗ then

𝜋𝑛 (𝑋 × 𝑌, (𝑥0, 𝑦0)) � 𝜋𝑛 (𝑋, 𝑥0) � 𝜋𝑛 (𝑌, 𝑦0)
That is, 𝜋𝑛 preserves products for 𝑛 ≥ 1.

(4) If 𝑓 : (𝑋, 𝑥0) → (𝑌, 𝑦0) is a pointed homotopy equivalence, then the induced homomor-
phism 𝑓∗ : 𝜋𝑛 (𝑋, 𝑥0) → 𝜋𝑛 (𝑌, 𝑦0) is an isomorphism.

(5) If (𝑋, 𝑥0) ∈ Top and 𝑝 : 𝑋 → 𝑋 is a covering map, then 𝑝∗ : 𝜋𝑛 (𝑋, 𝑥0) → 𝜋𝑛 (𝑋, 𝑝(𝑥0))
is an isomorphism for all 𝑛 ≥ 2.

PROOF. The proof is given below:
(1) This follows because

𝜋𝑛 (𝑋, 𝑥0) � 𝜋1(Ω𝑛−1(𝑋, 𝑥0), 𝑐𝑥0) � 𝜋1(Ω𝑛−1(𝑋, 𝑥′0), 𝑐𝑥′0) � 𝜋𝑛 (𝑋, 𝑥
′
0)

Here we have used the fact that Ω𝑛−1(𝑋, 𝑥0) and Ω𝑛−1(𝑋, 𝑥′0) are homeomorphic topolog-
ical spaces.

(2) Let 𝜙 : (𝑋, 𝑥0) → (𝑌, 𝑦0) be a continuous map. If 𝑓 ∼ 𝑔, then 𝜑 ◦ 𝑓 ∼ 𝜑 ◦ 𝑔 as before.
Hence, the induced map 𝜙∗ : 𝜋𝑛 (𝑋, 𝑥0) → 𝜋𝑛 (𝑌, 𝑦) is well-defined. Moreover, from the
definition of the group operation on 𝜋𝑛, it is clear that we have

𝜑 ◦ ( 𝑓 + 𝑔) = (𝜑 ◦ 𝑓 ) + (𝜑 ◦ 𝑔)
Thus, 𝜑∗([ 𝑓 + 𝑔]) = 𝜑∗([ 𝑓 ]) + 𝜑∗( [𝑔]). Hence, 𝜑∗ is a group homomorphism.

(3) The proof in the case of 𝜋1 goes through as before.
(4) Let 𝑔 : (𝑌, 𝑦0) → (𝑋, 𝑥0) be an inverse pointed homotopy equivalence so that we have:

𝑔 ◦ 𝑓 ∼ Id𝑋 rel 𝑥0 and 𝑓 ◦ 𝑔 ∼ Id𝑌 rel 𝑦0.

Homotopy invariance gives¹ 𝑔∗ ◦ 𝑓∗ = (𝑔 ◦ 𝑓 )∗ = Id𝜋𝑛 (𝑋,𝑥0 ) , and similarly 𝑓∗ ◦ 𝑔∗ =
Id𝜋𝑛 (𝑌,𝑦0 ) .

(5) First, we show that 𝑝∗ is surjective. Let 𝑥0 = 𝑝(𝑥0) and consider 𝑓 : (S𝑛, ∗) → (𝑋, 𝑥0).
Since 𝑛 ≥ 2, we have 𝜋1(S𝑛, ∗) = 0, so

𝑓∗(𝜋1(S𝑛, ∗)) = {0} ⊆ 𝑝∗(𝜋1(𝑋, 𝑥)).
By the path lifting criterion, 𝑓 admits a lift to (𝑋, 𝑥0). That is there exists 𝑓 : (S𝑛, ∗) →
(𝑋, 𝑥0) such that 𝑝 ◦ 𝑓 = 𝑓 . Then [ 𝑓 ] = [𝑝 ◦ 𝑓 ] = 𝑝∗( [ 𝑓 ]). Next, we show that 𝑝∗ is
injective. Suppose [ 𝑓 ] ∈ ker 𝑝∗. So [𝑝 ◦ 𝑓 ] = 0. Let 𝑝 ◦ 𝑓 = 𝑓 . Then 𝑓 ∼ 𝑐𝑥0 via some
homotopy

𝐻𝑡 : (S𝑛, ∗) → (𝑋, 𝑥0)

¹It is easy to see that homotopic maps induce identical homotopic maps and hence identical maps on homotopy groups.
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with 𝜑1 = 𝑓 and 𝜑0 = 𝑐𝑥0 . By the homotopy lifting criterion, there is a unique 𝐻𝑡 :
(S𝑛, ∗) → (𝑋, 𝑥0) with 𝑝◦𝐻𝑡 = 𝐻𝑡 . Then we have 𝑝◦𝐻1 = 𝐻1 = 𝑓 and 𝑝◦𝐻0 = 𝐻0 = 𝑐𝑥0 ,
so by the uniqueness of lifts, we must have 𝐻1 = 𝑓 and 𝐻0 = 𝑐𝑥0 . Then 𝐻𝑡 is a homotopy
between 𝑓 and 𝑐𝑥 . So [ 𝑓 ] = 0. Thus, 𝑝∗ is injective.

This completes the proof. □

Remark 13.1.11. Proposition 13.1.10(5) can be interpreted as mentioning that covering spaces
cannot be used to compute higher homotopy groups!

How does one compute higher homotopy groups? In general, this is a difficult problem. But we
can at the very least state some trivial calculations for definition and basic properties:

Proposition 13.1.12. The following are calculations of some higher homotopy groups:
(1) If 𝑋 = {•} is a one-point space, then 𝜋𝑛 (𝑋) = {0}, is the trivial abelian group for 𝑛 ≥ 2.
(2) If (𝑋, 𝑥0) is contractible, then 𝜋𝑛 (𝑋, 𝑥0) = {0} is the trivial abelian group for 𝑛 ≥ 2.
(3) We have

𝜋𝑛 (S1) =
{
Z, if 𝑛 = 0, 1,
0, if 𝑛 ≥ 2

(4) We have
𝜋𝑛

(
S1 × · · · × S1︸          ︷︷          ︸

𝑘 -times

, (∗1, · · · , ∗𝑘)
)
= {0}

for 𝑛 ≥ 2.
(5) We have 𝜋𝑛 (RP𝑘 , ∗) � 𝜋𝑛 (S𝑘 , ∗) for 𝑛 ≥ 2.
(6) We have 𝜋𝑛 (RP∞, ∗) = 0 for 𝑛 ≥ 2.

PROOF. The proof is given below:
(1) A one-point space has only the constant loop. Hence, each higher homotopy group is trivial.
(2) This follows from the Proposition 13.1.10(5) and (1) above.
(3) Consider S1 with its universal covering map 𝑝 : R→ S1. If 𝑛 ≥ 2, we have

𝜋𝑛 (S1, ∗) = 𝜋𝑛 (R, 0) = 0

We already know the result for 𝑛 = 0, 1.
(4) This follows from (3) and Proposition 13.1.10(3). We can also apply a covering space

argument as in (3).
(5) This is because S𝑛 → RP𝑛 is a covering map.
(6) This is because S∞ → RP∞ is a covering map and S∞ is contractible.

This completes the proof. □

13.2. Cellular Approximation
Homotopy theory of CW complexes is more tractable. For instance, a key results includes the

cellular approximation, which allows for approximating maps by cellular ones. We prove the cellular
approximation theorem in this section. Since CW complexes are built inductively, the following
strategy will not come as a surprise. Given a map 𝑓 : 𝑋 → 𝑌 of CW complexes, we will try
to deform 𝑓 cell by cell into a cellular map. As an important building block for the proof of the
theorem, there is the following case of a single cell.
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Lemma 13.2.1. Let 𝑋,𝑌 ∈ Top such that we have a pushout diagram

S𝑛−1 𝑋

D𝑛 𝑌
𝜒

Any map 𝑓 : (D𝑚, S𝑚−1) → (𝑌, 𝑋) with 𝑚 < 𝑛 is homotopic relative to S𝑚−1 to a map 𝑔 satisfying
𝑔(D𝑚) ⊆ 𝑋 .

Let us describe the strategy of the proof. The attaching map 𝜒 : D𝑛 → 𝑌 restricts to a homeo-
morphism 𝜒Int(D𝑛 ) . Hence, we identify Int(D𝑛) ⊆ 𝑌 . We show that we can construct a homotopy
relative to S𝑚−1 such that 𝑓 ≃ ℎ and 0 ∉ ℎ(D𝑚). Here 0 is the origin of Int(D𝑛). To see that this is
enough, consider 𝑌 \ {0}. The inclusion 𝑖 : 𝑋 → 𝑌 \ {0} is the inclusion of a strong deformation
retraction 𝑟 : 𝑌 \ {0} → 𝑋 induced by collapsing Int(D𝑛) \ {0} onto S𝑛−1. Hence, we have

Id𝑌−{0} ≃ 𝑖 ◦ 𝑟
relative to 𝑋 which induces the desired relative homotopy

ℎ = Id𝑌−{0} ◦ℎ ≃ 𝑖 ◦ 𝑟 ◦ ℎ = 𝑔

relative to S𝑚−1. Putting these two homotopies together, we conclude that 𝑓 ≃ 𝑔 relative to S𝑚−1.

PROOF. We induct on 𝑛. Let 𝑛 = 1, 𝑚 = 0. In this case, S𝑚−1 = ∅ and D𝑚 = {∗}. A map

𝑓 : ({∗}, ∅) → (𝑌, 𝑋)
is essentially the same as a point 𝑦 ∈ 𝑌 . For some 𝑥 ∈ 𝑋 , there is a path 𝜔 : 𝐼 → 𝑌 with 𝜔(0) = 𝑦
and 𝜔(1) = 𝑥 ∈ 𝑋 . This path defines the desired homotopy. Assume the claim has been prove for
𝑛 − 1. We list the following consequences of our inductive assumption:

(1) Any map S𝑘 → S𝑛−1 for 𝑘 < 𝑛 − 1 is homotopic to a constant map. Indeed, apply the
inductive hypothesis to for 𝑛 − 1 to the standard map (D𝑘 , S𝑘−1) → (D𝑛−1 ∐

S𝑛−2 ∗, ∗).
(2) Any map S𝑘 → S𝑛−1 × (𝑎, 𝑏) for 𝑘 < 𝑛 − 1 is homotopic to a constant map. This follows

from (1) and that (𝑎, 𝑏) is contractible.
(3) Any map S𝑘 → S𝑛−1 × (𝑎, 𝑏) for 𝑘 < 𝑛− 1 can be extended D𝑘 . This follows from (2) and

Proposition 10.1.4.
We now construct a homotopy 𝑓 ≃ ℎ : D𝑚 → 𝑌 relative to S𝑚−1 such that 0 ∉ ℎ(D𝑚).Consider the
subsets

𝑈0 = {𝑥 ∈ D𝑛 | ∥𝑥∥ < 2/3},
𝑉0 = {𝑥 ∈ D𝑛 | ∥𝑥∥ > 1/3}.

and define two subsets of 𝑌 by setting𝑈 = 𝜒(𝑈0) and 𝑉 = 𝑋
∐
S𝑛−1 𝜒(𝑉0). Note that

𝑈 ∩𝑉 � S𝑛−1 × (1/3, 2/3).
We construct a homotopy 𝑓 ≃ ℎ such that the image of ℎ entirely lies in𝑉 , and hence avoids the point
0 ∈ 𝑌 . WLOG replace (D𝑚, S𝑚−1) by (𝐼𝑚, 𝜕𝐼𝑚). Note that {𝑈,𝑉} is an open cover for 𝑌 . Pulling
back the open cover of 𝑌 along 𝑓 induces an open cover 𝑓 −1(𝑈), 𝑓 −1(𝑉) of of 𝐼𝑚. The Lebesgue
number lemma implies there exists a 𝑁 > 0 such that the image of each m-cube

𝐼𝑚𝑘1,...,𝑘𝑚
=

[
𝑘1
𝑁
,
𝑘1 + 1
𝑁

]
× · · · ×

[
𝑘𝑚
𝑁
,
𝑘𝑚 + 1
𝑁

]
, 0 ≤ 𝑘𝑖 < 𝑁
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under 𝑓 is contained in either𝑈 or 𝑉 . We construct homotopies to modify 𝑓 only on those 𝐼𝑚𝑘1,...,𝑘𝑚
which are not entirely mapped to 𝑉 . We define a filtration on 𝐼𝑚,

𝜕𝐼𝑚 ⊆ 𝑍 (−1) ⊆ 𝑍 (0) ⊆ · · · ⊆ 𝑍 (𝑚) = 𝐼𝑚.
Let 𝐽−1 be the index set for all 𝑙-dimensional sub-cubes, 0 ≤ 𝑙 ≤ 𝑚, of all cubes 𝐼𝑚𝑘1,...,𝑘𝑚

which are
already completely mapped to 𝑉 by 𝑓 . Let us denote the 𝑙-dimensional sub-cube corresponding to
such an index 𝜑 ∈ 𝐽−1 by 𝐼𝑙𝜑 . We then set

𝑍 (−1) =
⋃
𝜑∈𝐽−1

𝐼𝑙𝜑 ,

and it follows from our assumption on 𝑓 that 𝜕𝐼𝑚 ⊆ 𝑍 (−1) . We now take care of the remaining sub-
cubes, and this will be done by induction over the dimension of these sub-cubes. For each 0 ≤ 𝑘 ≤ 𝑚,
let 𝐽𝑘 be the index set for all 𝑘-dimensional sub-cubes, 𝐼𝑘𝜑 for 𝜑 ∈ 𝐽𝑘 , of the cubes 𝐼𝑚𝑘1,...,𝑘𝑚

which
satisfy 𝑓 (𝐼𝑘𝜑) ⊈ 𝑉 . Set

𝑍 (𝑘 ) = 𝑍 (𝑘−1)
∐ ⋃

𝜑∈𝐽𝑘
𝐼𝑘𝜑 .

This defines a filtration for 𝑋 . We now want to inductively construct maps ℎ𝑘 : 𝑍 (𝑘 ) → 𝑌 , 𝑘 ≥ −1,
such that:

• The map ℎ−1 is obtained from 𝑓 by restriction.
• The map ℎ𝑘 sends the cubes 𝐼𝑘𝜑 to𝑈 ∩𝑉 for all 𝜑 ∈ 𝐽𝑘 and 𝑘 ≥ 0.
• The map ℎ𝑘 extends ℎ𝑘−1, i.e., we have ℎ𝑘 |𝑍 (𝑘−1) = ℎ𝑘−1 for all 𝑘 ≥ 0.

For ℎ0, note that 𝑍 (0) is obtained from 𝑍 (−1) by possibly adding some vertices which are mapped
to 𝑈. For each such vertex, choose a path to a point in 𝑈 ∩ 𝑉 . This defines ℎ0. Inductively, assume
that ℎ𝑘−1 has already been constructed. For each 𝜑 ∈ 𝐽𝑘 , we have that ℎ𝑘−1(𝜕𝐼𝜑𝑘 ) ⊆ 𝑈 ∩ 𝑉 . Since
𝑈∩𝑉 � S𝑛−1×(1/3, 2/3), the induction hypothesis and (3) above implies that we can find extensions
as indicated in the following diagram:

𝜕𝐼𝑘𝜑 𝑈 ∩𝑉

𝐼𝑘𝜑

ℎ𝑘−1

ℎ𝑘,𝜑

Thesemaps ℎ𝑘,𝜑 and ℎ𝑘−1 can be assembled together in order to define amap ℎ𝑘 : 𝑍 (𝑘 ) → 𝑌 with the
desired properties. If we set ℎ = ℎ𝑚 : 𝐼𝑚 = 𝑋 (𝑚) → 𝑌 , then we have ℎ(𝐼𝑚) ⊆ 𝑉 . Hence, it suffices
to show that 𝑓 � ℎ relative to 𝜕𝐼𝑚. We show that in fact we construct such a homotopy relative to
𝑍 (−1) . Both maps 𝑓 and ℎ coincide on 𝑍 (−1) . Moreover, the restrictions of both maps to 𝐼𝑚 − 𝑍 (−1)

can be considered as maps taking values in 𝑈. But, 𝑈 is homeomorphic to an open 𝑛-disc, hence
convex, so that the two restrictions are homotopic via linear homotopies. This homotopy, together
with the constant homotopy on 𝑍 (−1) , can be assembled together to give the desired homotopy 𝑓 ∼ ℎ
relative to 𝑍 (−1) . □

We now state and prove the cellular approximation theorem.

Proposition 13.2.2. Let (𝑋, 𝐴) be a finite-dimensional CW pair, let𝑌 be a CW complex. If 𝑓 : 𝑋 →
𝑌 is a continuous map such that 𝑓 |𝐴 : 𝐴 → 𝑌 is a cellular map, then 𝑓 is homotopic to a cellular
map 𝑔 : 𝑋 → 𝑌 relative to 𝐴. In particular, any map of CW complexes is homotopic to a cellular
map.
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PROOF. We have a filtration

𝐴 = 𝑋 (−1) ⊆ 𝑋 (0) ⊆ 𝑋 (1) ⊆ . . . 𝑋 (𝑚) = 𝑋,
Similarly, we also have a filtration for 𝑌 . Let 𝑔−1 = 𝑓 . We construct maps 𝑔𝑛 : 𝑋 → 𝑌 and
homotopies 𝑔𝑛−1 ≃ 𝑔𝑛 such that

(1) The map 𝑔𝑛 sends the relative 𝑛-cells to 𝑌 (𝑛) .
(2) The homotopy 𝑔𝑛−1 ≃ 𝑔𝑛 is relative to 𝑋 (𝑛−1) .

We proceed by induction. Let 𝐽𝑛 denoting the set of relative 𝑛-cells. We have a pushout diagram:⊔
𝜎∈𝐽𝑛 𝜕D

𝑛
𝜎 𝑋 (𝑛−1)

⊔
𝜎∈𝐽𝑛 D

𝑛
𝜎 𝑋 (𝑛) .

For each such cell D𝑛𝜎 such that 𝑔𝑛−1(D𝑛𝜎) is not contained in 𝑌 (𝑛−1) , there is a finite relative sub-
complex 𝑌 ′ with

𝑌 (𝑛) ⊆ 𝑌 ′ ⊆ 𝑌
such that 𝑔𝑛−1(D𝑛𝜎) ⊆ 𝑌 ′. Choose a cell of maximal dimension in 𝑌 ′ which has a nontrivial in-
tersection with 𝑔𝑛−1(D𝑛𝜎). By Lemma 13.2.1, this cell can be avoided up to relative homotopy.
Repeating this finitely many times and gluing the relative homotopies together, we obtain a homo-
topy 𝐻𝑛,𝜎 : 𝑔𝑛−1 ≃ 𝑔𝑛,𝜎 : D𝑛𝜎 → 𝑌 relative to 𝜕D𝑛𝜎 such that 𝑔𝑛,𝜎 (D𝑛𝜎) ⊆ 𝑌 (𝑛) . Recalling that
𝑋 (𝑛) × [0, 1] carries the quotient topology with respect to the map(

𝑋 (𝑛−1) ⊔
( ⊔
𝜎∈𝐽𝑛

D𝑛𝜎

))
× [0, 1] −→ 𝑋 (𝑛) × [0, 1] .

We can glue the homotopies 𝐻𝑛,𝜎 , the constant homotopies on 𝑔𝑛−1 : D𝑛𝜎 → 𝑌 for all 𝑛-cells with
𝑔𝑛−1(𝑒𝑛𝜎) ⊆ 𝑌 (𝑛) , and the constant homotopy on 𝑔𝑛−1 |𝑋 (𝑛−1) together in order to obtain a homotopy

𝐻𝑛 : 𝑋 (𝑛) × [0, 1] → 𝑌 .

relative to 𝑋 (𝑛) . Since 𝑋 (𝑛) → 𝑋 is a cofibation, we obtain a homotopy

𝐻𝑛 : 𝑋 × [0, 1] → 𝑌 .

which admits a solution since the inclusion 𝑋 (𝑛) → 𝑋 is a cofibration. We set 𝑔𝑛 = 𝐻𝑛 (−, 1). Since
𝑋 (𝑚) = 𝑋 , it suffices to compose the finitely many homotopies 𝐻𝑘 , 0 ≤ 𝑘 ≤ 𝑛, to obtain a homotopy
𝐻 : 𝑓 ≃ 𝑔 = 𝑔𝑛 relative to 𝐴 such that 𝑔 : 𝑋 → 𝑌 is a cellular map. □

Remark 13.2.3. Proposition 13.2.2 can be extended to the case where 𝑋 is infinite-dimensional.

13.3. Relative Homotopy Groups
We define relative homotopy groups. We also state and prove the long exact sequence in homo-

topy groups, which is a crucial tool for computations.

Definition 13.3.1. Let (𝑋, 𝐴, 𝑥0) ∈ Top∗2 such that 𝐴 contains the basepoint 𝑥0. For 𝑛 ≥ 1, the 𝑛-th
relative homotopy group, denoted as 𝜋𝑛 (𝑋, 𝐴, 𝑥0), is defined as

𝜋𝑛 (𝑋, 𝐴, 𝑥0) = [(D𝑛, S𝑛−1, ∗), (𝑋, 𝐴, 𝑥0)]
We say (𝑋, 𝐴, 𝑥0) is 𝑛-connected if 𝜋𝑘 (𝑋, 𝐴, 𝑥0) for 0 ≤ 𝑘 ≤ 𝑛.
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One can think about relative homotopy groups differently. Consider the relative path space
𝑃(𝑋, 𝐴, 𝑥0) = {𝛾 ∈ 𝑃(𝑋, 𝑥0) | 𝛾(1) ∈ 𝐴}.

Note that 𝑃(𝑋, 𝐴, 𝑥0) is a based topological sapce with basepoint the constant path at 𝐼 → 𝑥0. Con-
sider 𝜋𝑛−1(𝑃(𝑋, 𝐴, 𝑥0), 𝑐𝑥0) An element of 𝜋𝑛−1(𝑃(𝑋, 𝐴, 𝑥0), 𝑐𝑥0) is amap (S𝑛−1, ∗) → 𝑃(𝑋, 𝐴, 𝑐𝑥0)
up to homotopy that sends ∗ to 𝑐𝑥0 . Equivalently, it is a map (S𝑛−1, ∗) × 𝐼 → 𝑋 up to homotopy
that:

(1) Maps (S𝑛−1, ∗) × {0} to 𝑥0, as every path starts at 𝑥0.
(2) Maps {∗} × 𝐼 to 𝑐𝑥0
(3) Maps (S𝑛−1, ∗) × {1} into 𝐴 as paths end in 𝐴.

This is nothing but the data of a map
(D𝑛, S𝑛−1, ∗) → (𝑋, 𝐴, 𝑥0)

defined up to homotopy. Hence,
𝜋𝑛 (𝑋, 𝐴, 𝑥0) = 𝜋𝑛−1(𝑃(𝑋, 𝐴, 𝑥0), 𝑐𝑥0)

This shows that 𝜋𝑛 (𝑋, 𝐴, 𝑥0) is a group for 𝑛 ≥ 2 and an abelian group for 𝑛 ≥ 3. We have a long
exact sequence in relative homotopy groups:

Proposition 13.3.2. Let (𝑋, 𝐴, 𝑥0) ∈ Top2
∗ such that 𝐴 is a closed subspace. Then there is an exact

sequence of homotopy groups:
· · · → 𝜋𝑛 (𝐴, 𝑥0) → 𝜋𝑛 (𝑋, 𝑥0) → 𝜋𝑛 (𝑋, 𝐴, 𝑥0) → 𝜋𝑛−1(𝐴, 𝑥0) → · · ·

PROOF. Consider the inclusion map 𝑖 : 𝐴→ 𝑋 . The homotopy fiber of 𝑖 is 𝑃(𝑋, 𝐴, 𝑥0). Note that
[(S0, ∗),Ω𝑛 (𝑃(𝑋, 𝐴, 𝑥0), 𝑐𝑥0)] � [Σ𝑛 (S0, ∗), (𝑃(𝑋, 𝐴, 𝑥0), 𝑐𝑥0)]

� [(S𝑛, ∗), (𝑃(𝑋, 𝐴, 𝑥0), 𝑐𝑥0)]
= 𝜋𝑛 (𝑃(𝑋, 𝐴, 𝑥0), 𝑐𝑥0) = 𝜋𝑛+1(𝑋, 𝐴, 𝑥0).𝑑

The claim now follows by letting (𝑍, 𝑧0) = (S0, ∗) and applying [(S0, ∗),−] to the exact sequence
in Proposition 11.3.9. □

Remark 13.3.3. Using Proposition 13.3.2 and some algebraic manipulations, one can show if (𝐵 ⊂
𝐴 ⊂ 𝑋) ∈ Top3

∗ such that 𝐵 ⊆ 𝐴 ⊆ 𝐴 and 𝐵 contains the base point 𝑥0, then there is a long exact
sequence:

· · · → 𝜋𝑛 (𝐴, 𝐵, 𝑥0) → 𝜋𝑛 (𝑋, 𝐵, 𝑥0) → 𝜋𝑛 (𝑋, 𝐴, 𝑥0) → 𝜋𝑛−1(𝐴, 𝐵, 𝑥0) → · · ·

13.4. Freudenthal’s Suspension Theorem
The purpose of this section is to prove Freudenthal’s suspension theorem. We first state a notion

of the excision theorem for homotopy groups. Recall that a remarkable fact about homology groups
is that the relative homology groups satisfy the excision property. However, this is not the case for
relative homotopy groups. However, there is a version of excision that holds for CW complexes that
have rather strong connectedness properties.

Proposition 13.4.1. Let 𝑋 be a CW complex such that 𝑋 = 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 is non-empty and
connected. If (𝐴, 𝐴 ∩ 𝐵) is 𝑘-connected, (𝐵, 𝐴 ∩ 𝐵) is 𝑙-connected, and 𝑖 : (𝐴, 𝐴 ∩ 𝐵) → (𝑋, 𝐵) is
the inclusion map, then for any 𝑥0 ∈ 𝐴 ∩ 𝐵, the induced map

𝑖∗ : 𝜋𝑛 (𝐴, 𝐴 ∩ 𝐵, 𝑥0) → 𝜋𝑛 (𝑋, 𝐵, 𝑥0)
is an isomorphism when 𝑛 < 𝑘 + 𝑙 and is a surjection when 𝑛 = 𝑘 + 𝑙.
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PROOF. The proof is lengthy and technical. See [May99; Hat02]. □

We now state and prove Freudenthal’s Suspension Theorem:

Proposition 13.4.2. Let (𝑋, 𝑥0) be an (𝑘 − 1)-connected pointed CW complex. For any map 𝑓 :
S𝑘 → (𝑋, 𝑥0), consider its suspension,

Σ 𝑓 : ΣS𝑛 = S𝑛+1 → Σ(𝑋, 𝑥0).
The assignment

𝜋𝑛 ((𝑋, 𝑥0)) → 𝜋𝑛+1(Σ(𝑋, 𝑥0))
[ 𝑓 ] ↦→ [Σ 𝑓 ]

is a homomorphism which is an isomorphism for 𝑛 < 2𝑘 − 1 and a surjection for 𝑛 = 2𝑘 − 1.

PROOF. We can think of Σ𝑋 as two copies of 𝐶𝑋 , which we call 𝐶+𝑋 and 𝐶−𝑋 , identified along
their bases. Define 𝑗 to be the composition of the following three maps drawn in the diagram below,
each of which is induced by the obvious inclusion maps.

𝜋𝑛 (𝑋, 𝑥0)
�−→ 𝜋𝑛+1(𝐶+𝑋, 𝑋, 𝑥0) −→ 𝜋𝑛+1(Σ𝑋,𝐶−𝑋, 𝑥0)

�−→ 𝜋𝑛+1(Σ𝑋, 𝑥0)
For any 𝑛, the leftmost and rightmost maps are isomorphisms because of the long exact sequences of
the CW pairs (𝐶+𝑋, 𝑋) and (Σ𝑋,𝐶−𝑋), respectively, since 𝜋𝑛 (𝐶±𝑋) is always trivial. Also, when
𝑋 is (𝑘 −1)-connected, the CW pair (𝐶±𝑋, 𝑋) is 𝑘-connected by the long exact sequence of the pair
(𝐶±𝑋, 𝑋). This allows us to apply Proposition 13.4.1, so the middle map in the diagram above is an
isomorphism when 𝑛 + 1 < 2𝑘 and a surjection when 𝑛 + 1 = 2𝑘 . □

Remark 13.4.3. Let 𝑋 be a 𝑘-connected CW complex. For any 𝑛 ∈ N, consider the sequence of
maps:

· · · → 𝜋𝑛 (𝑋, 𝑥0) → 𝜋𝑛+1(Σ𝑋, 𝑥0) → 𝜋𝑛+2(Σ2𝑋, 𝑥0) → . . .

Since 𝑋 is an 𝑘-connected CW complex, the Proposition 13.4.2 implies that us that 𝜋𝑛 (𝑋, 𝑥0) �
𝜋𝑛+1(Σ𝑋, 𝑥0) 𝑛 < 2𝑘 + 1. We make the following observations:

(1) In particular,
𝜋𝑛 (Σ𝑋, 𝑥0) = 𝜋𝑛−1(𝑋, 𝑥0) = 0

if 0 < 𝑛 ≤ 𝑘 + 1. If 𝑋 is 0-connected (path-connected) then Σ𝑋 is also 0-connected
(path-connected). Hence, we have that

𝑋 is 𝑘-connected =⇒ Σ𝑋 is (𝑘 + 1)-connected
More generally, we have that Σ𝑛𝑋 is (𝑘 + 𝑛)-connected for any 𝑛 ∈ N.

(2) Let 𝑁 (𝑘, 𝑛) = 𝑛 − 1− 2𝑘 , and observe that when 𝑖 > 𝑁 (𝑘, 𝑛), we have 𝑛 + 𝑖 < 2(𝑘 + 𝑖) + 1.
Thus, the groups 𝜋𝑛+𝑖 (Σ𝑖𝑋) are isomorphic for all 𝑖 > 𝑁 (𝑘, 𝑛). Let 𝑁 = 𝑁 (𝑛, 𝑘), and
define 𝜋𝑛+𝑁 (Σ𝑁𝑋, 𝑥0) as the 𝑛-th stable homotopy group of 𝑋 .

More generally, the 𝑛-th stable homotopy group of any 𝑋 ∈ Top∗,

𝜋𝑠𝑛 (𝑋) := lim−−→
𝑘∈N

𝜋𝑛+𝑘 (Σ𝑘𝑋, 𝑥0).

Observe that since Σ𝑋 is always 0-connected, we do not actually need 𝑋 to be 0-connected, so every
space 𝑋 has 𝑛-th stable homotopy groups for all 𝑛 ∈ N. Moreover, Proposition 13.4.2 proves this
colimit is realized after finitely many elements along the sequence. This is the start of the subject of
stable homotopy theory.
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13.5. Some Computations
The purpose of this section is to compute the homotopy groups. Our main computational tool

will be the long exact sequence associated with a fibration, as proved below. We begin by considering
a basic example.

Example 13.5.1. (Spheres) Let 𝑘 ≥ 2. We compute 𝜋𝑛 (S𝑘 , ∗).
(1) Let 1 ≤ 𝑛 < 𝑘 . Let S𝑛 → S𝑘 be a continuous map. WLOG, we can assume that 𝑓 is

a cellular map by Proposition 13.2.2. If S𝑘 is given the standard cellular structure with a
0-cell and a 𝑘-cell, then the 𝑛-th skeleton of S𝑘 for 𝑛 < 𝑘 is simply the 0-cell. Therefore,
𝑓 : S𝑛 → S𝑘 is homotopic to the constant map. Hence, 𝜋𝑛 (S𝑘 , ∗) = 0 for 1 ≤ 𝑛 < 𝑘 .

(2) Let 𝑛 = 𝑘 . Since S𝑛 is (𝑛−1)-connected by (1), Proposition 13.4.2 implies that 𝜋 𝑗 (S𝑛, ∗) →
𝜋 𝑗+1(S𝑛+1, ∗) is an isomorphism for 𝑗 < 2𝑛 − 1. Therefore,

𝜋𝑛 (S𝑛, ∗) → 𝜋𝑛+1(S𝑛+1, ∗)

for 𝑛 ≥ 2. Moreover, Proposition 13.4.2 implies that Z � 𝜋1(S1, ∗) → 𝜋2(S2, ∗) is sur-
jective. We will show that in Example 13.5.5 that in fact this map is an isomorphism since
𝜋2(S2, ∗) � Z. Therefore, we have

Z � 𝜋2(S2, ∗) � 𝜋3(S3, ∗) � 𝜋4(S4, ∗) � ·

That is, 𝜋𝑛 (S𝑛, ∗) � Z.
Hence, for 𝑘 ≥ 2 we have

𝜋𝑛 (S𝑘) =
{

0, if 1 ≤ 𝑛 < 𝑘,
Z, if 𝑛 = 𝑘.

Remark 13.5.2. Example 13.5.1 implies that it remains to compute 𝜋𝑛 (S𝑘) for 𝑛 > 𝑘 . This turns
out to be a very difficult problem.

Remark 13.5.3. We can now also argue that homotopy groups are not a perfect topological invari-
ant. Consider

𝑋 = S2 × RP3, 𝑌 = RP2 × S3.

By Example 13.5.1, we have:

𝜋1(𝑋) � 𝜋1(S2) × 𝜋1(RP3) � 0 × Z2 � Z2

𝜋1(𝑌 ) � 𝜋1(RP2) × 𝜋1(S3) � Z2 × 0 � Z2

The universal cover of both 𝑋 and 𝑌 is homeomorphic to S5. Hence,

𝜋𝑛 (𝑋) � 𝜋𝑛 (𝑌 )

for 𝑛 ≥ 2. Hence, 𝑋 and 𝑌 have same homotopy groups. However, 𝑋 and 𝑌 are not homotopy
equivalent. Indeed,

𝐻5(𝑋) = Z, 𝐻5(𝑌 ) = 0
since 𝑋 is compact and orientable, and 𝑌 is compact and non-orientable.

We now establish the long exact sequence associated with a fibration. Notably, we can leverage
the properties of fibrations along with the exact Puppe sequence (Proposition 11.3.9) to derive a long
exact sequence of homotopy groups.
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Proposition 13.5.4. Let (𝐸, 𝑒0), (𝑋, 𝑥0) ∈ Top∗ and let 𝑝 : (𝐸, 𝑒0) → (𝑋, 𝑥0) be a based fibration.
Let 𝐹 = 𝑝−1(𝑥0). Then we have an exact sequence of homotopy groups:
· · · → 𝜋𝑛 (𝐹, 𝑒0) → 𝜋𝑛 (𝐸, 𝑒0) → 𝜋𝑛 (𝑋, 𝑥0) → 𝜋𝑛−1(𝐹, 𝑒0) → 𝜋𝑛−1(𝐸, 𝑒0) → 𝜋𝑛−1(𝑋, 𝑒0) → · · ·

PROOF. Since 𝑝 is a fibration, we have that the homotopy fiber of 𝑝 is homotopy equivalent to 𝐹.
Observe that

[(S0, ∗),Ω𝑛 (𝑋, 𝑥0)]∗ � [Σ𝑛 (S0, ∗), (𝑋, 𝑥0)]∗
� [(S𝑛, ∗), (𝑋, 𝑥0)]∗
= 𝜋𝑛 (𝑋, 𝑥0)

The claim now follows by letting (𝑍, 𝑧0) = (S0, ∗) and applying [(S0, ∗),−] to the exact sequence
in Proposition 11.3.9. □

We can perform further computations by exploiting the long exact sequence of homotopy groups
associated to fibrations.

Example 13.5.5. (Hopf Fibration) Consider the Hopf Fibration:
S1 → S3 → S2

Barring 𝜋0, the long exact sequence reads:
· · · → 0→ 𝜋3(S3) → 𝜋3(S2) → 0→ 0→ 𝜋2(S2) → Z→ 0→ 0

Hence,
𝜋2(S2, ∗) � Z
𝜋𝑛 (S3, ∗) � 𝜋𝑛 (S2, ∗), 𝑛 ≥ 2

In particular,
𝜋3(S2, ∗) � Z

Remark 13.5.6. The computation in Example 13.5.5 is independent of the computation in Exam-
ple 13.5.1. This shows that the claim 𝜋𝑛 (S𝑛, ∗) � Z made in Example 13.5.1 is correct.

Example 13.5.7. Consider the fibration
S1 → S∞ → CP∞

Barring 𝜋0, the long exact sequence reads:
· · · 0→ 𝜋3(CP∞) → 0→ 𝜋2(CP∞) → Z→ 0→ 𝜋1(CP∞) → Z→ Z→ Z

Hence,

𝜋𝑛 (CP∞) �
{
Z 𝑘 = 0, 2
0 otherwise

Example 13.5.8. (Special Orhthogonal Group) Consider the fibration:
SO(𝑘 − 1) → SO(𝑘) → S𝑘−1

We have a long exact sequence of homotopy groups:
· · · → 𝜋𝑛 (SO(𝑘−1)) → 𝜋𝑛 (SO(𝑘)) → 𝜋𝑛 (S𝑘−1) → 𝜋𝑛−1(SO(𝑘−1)) → 𝜋𝑛−1(SO(𝑘)) → 𝜋𝑛−1(S𝑘−1) → · · ·
For 𝑛 ≤ 𝑘 − 3, we have

· · · → 𝜋𝑛 (SO(𝑘 − 1)) → 𝜋𝑛 (SO(𝑘)) → 0→ · · ·
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This implies that
𝜋𝑛 (SO(𝑘)) � 𝜋𝑛 (SO(𝑘 − 1))

for 𝑘 ≥ 𝑛 + 3. This isomorphism doesn’t hold for 𝑘 = 𝑛 + 2 (𝑛 = 𝑘 − 2). Indeed, if 𝑘 = 3 and 𝑛 = 1,
we have

Z2 � 𝜋1(RP3) � 𝜋1(SO(3)) ; 𝜋1(SO(2)) � 𝜋1(S1) � Z
In any case if 𝑘 ≥ 𝑛 + 3, we have

𝜋𝑛 (SO(𝑘)) � 𝜋𝑛 (SO(𝑘 − 1)) � 𝜋𝑛 (SO(𝑛 + 2))

In particular, we have

𝜋0(SO(𝑘)) � Z, 𝜋1(SO(𝑘)) �


0 𝑘 = 1
Z 𝑘 = 2
Z2 𝑘 = 3
Z2 𝑘 ≥ 4

Example 13.5.9. (Unitary Group) Consider the fibration:

U(𝑘 − 1) → U(𝑘) → S2𝑘−1

We have a long exact sequence of homotopy groups:

· · · → 𝜋𝑛 (U(𝑘−1)) → 𝜋𝑛 (U(𝑘)) → 𝜋𝑛 (S2𝑘−1) → 𝜋𝑛−1(U(𝑘−1)) → 𝜋𝑛−1(U(𝑘)) → 𝜋𝑛−1(S2𝑘−1) → · · ·

For 𝑛 ≤ 2𝑘 − 3, we have

· · · → 𝜋𝑛 (U(𝑘 − 1)) → 𝜋𝑛 (U(𝑘)) → 0→ · · ·

This implies that
𝜋𝑛 (U(𝑘)) � 𝜋𝑛 (U(𝑘 − 1))

for 𝑛 ≤ 2𝑘 − 3. This isomorphism doesn’t hold for 𝑛 = 2𝑘 − 1. Indeed, if 𝑘 = 2 and 𝑛 = 3, we have

Z � 𝜋3(S3)
� 𝜋3(SU(2))
� 𝜋3(SU(2)) × 𝜋3(S1)
� 𝜋3(SU(2) × S1)
� 𝜋3(U(2)) ; 𝜋3(U(1))
� 𝜋3(S1) � 0.

In any case if 𝑘 ≥ ⌈(𝑛 + 3)/2⌉, we have

𝜋𝑛 (U(𝑘)) � 𝜋𝑛 (U(𝑘 − 1)) � 𝜋𝑛 (U(⌈(𝑛 + 3)/2⌉ − 1))

In particular, we have

𝜋0(U(𝑘)) � Z, 𝜋1(U(𝑘)) �
{
Z 𝑘 = 1
Z 𝑘 ≥ 2

𝜋2(U(𝑘)) �


0 𝑘 = 1
0 𝑘 = 2
0 𝑘 ≥ 3

𝜋3(U(𝑘)) �


0 𝑘 = 1
Z 𝑘 = 2
Z 𝑘 ≥ 3
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13.6. Classification of Principal 𝐺-bundles
We can use homotopy theory to provide a homotopy-theoretic classification of principal 𝐺-

bundles. More precisely, we show that the functor taking a topological space to the set of principal
𝐺-bundles on it is representable in the homotopy category. Recall that a principal𝐺-bundle is defined
as follows:

Definition 13.6.1. Let 𝐸, 𝑋 ∈ Top such that 𝑝 : 𝐸 → 𝑋 be a fibre bundle with a topological group,
𝐺, as its fibre. Then 𝑝 : 𝐸 → 𝑋 is a principal 𝐺-bundle if the following hold:

(1) There is a continuous, free group action 𝐸 × 𝐺 → 𝐸 ,
(2) For each 𝑥 ∈ 𝑋 , the action of 𝐺 preserves the fibre 𝐸𝑥 and the orbit map 𝐺 → 𝐸𝑥 is a

homeomorphism,
(3) The locally trivalizing cover {𝑈𝛼, 𝜑𝛼}𝛼 is such that each 𝜑 is 𝐺-equivariant. That is,

𝜑𝛼 (𝑒 · 𝑔) = 𝜑𝛼 (𝑒) · 𝑔

The group 𝐺 is called the structure group of the principal 𝐺-bundle.

We now define the notion of morphisms of principal 𝐺-bundles.

Definition 13.6.2. Let 𝑝𝑖 : 𝐸𝑖 → 𝑋𝑖 be two principal 𝐺-bundles. A morphism of principal 𝐺-
bundles is given by a pair of smooth functions 𝑓 : 𝐸1 → 𝐸2 and 𝑔 : 𝑋1 → 𝑋2 such 𝑓 is a
𝐺-equivariant map and the diagram

𝐸1 𝐸2

𝑋1 𝑋2

𝑓

1 𝑝2

𝑔

commutes. A morphism of principal 𝐺-bundles is an isomorphism of principal 𝐺-bundles if 𝑓 , 𝑔
are diffeomorphisms.

Remark 13.6.3. If 𝑝𝑖 : 𝐸𝑖 → 𝑋𝑖 be two principal 𝐺-bundles for 𝑖 = 1, 2, any 𝐺-equivariant map
𝑓 : 𝐸1 → 𝐸2 defines a morphism of principal 𝐺-bundles. This is because

𝑓 (𝑒1 · 𝑔) = 𝑔(𝑒1) · 𝑔

implies that 𝑓 maps fibers of 𝐸1 to fibers of 𝐸2. Hence, defining

𝑔 : 𝑋1 → 𝑋2

𝑥1 ↦→ 𝑝2( 𝑓 (𝑒1))

is well-defined for any choice of 𝑒1 ∈ 𝑝−1
1 (𝑥1) and uniquely determines the base map 𝑔 : 𝑋1 → 𝑋2.

Remark 13.6.4. An important special case we will consider is when 𝑋1 = 𝑋2 = 𝑋 . In this case,
𝑔 = Id𝑋.

Before stating the classification theorem, we need to introduce some constructions of principal
𝐺-bundles, with the first important one being the pullback construction.

Example 13.6.5. The following are examples of constructions of principal 𝐺-bundles.
(1) Let 𝑋1, 𝑋2 ∈ Top and let 𝑝𝑖 : 𝐸𝑖 → 𝑋𝑖 be a principal 𝐺-bundles for 𝑖 = 1, 2. Then

𝑝1 × 𝑝2 : 𝐸1 × 𝐸2 → 𝑋1 × 𝑋2
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is a principal 𝐺-bundle. Indeed, 𝑝1 × 𝑝2 is a fibre bundle. This is in my other notes. The
group action on 𝐸1 × 𝐸2 is given by the diagonal action:

(𝑒1, 𝑒2) · 𝑔 = (𝑒1 · 𝑔, 𝑒2 · 𝑔)
It is clear that Definition 13.6.1 is satisfied.

(2) Let 𝑋 ∈ Top and let 𝑝 : 𝐸 → 𝑋 be a principal 𝐺-bundle. If 𝑋 ′ ⊆ 𝑋 is a subspace of 𝑋 ,
then

𝑝 |𝑋′ : 𝑝−1(𝑋 ′) → 𝑋 ′

is a principal𝐺-bundle. Indeed, 𝑝 |𝑋′ is a fibre bundle. This is in my other notes. Moreover,
Definition 13.6.1 is easily satisfied.

(3) (Pullback) Let 𝑋,𝑌 ∈ Top and let 𝑝 : 𝐸 → 𝑌 be a principal 𝐺-bundle. Consider a
continuous map 𝑓 : 𝑋 → 𝑌 . We construct a principal 𝐺-bundle 𝑓 ∗𝑝 : 𝑓 ∗𝐸 → 𝑋 that fits
into the following commutative diagram:

𝑓 ∗𝐸 𝐸

𝑋 𝑌

𝜋2

𝑓 ∗𝑝 𝑝

𝑓

Consider
𝑓 ∗𝐸 := {(𝑥, 𝑒) ∈ 𝑋 × 𝐸 | 𝑓 (𝑥) = 𝑝(𝑒)} := 𝑋 ×𝑌 𝐸

We endow 𝑓 ∗𝐸 with the subspace topology of the product topology. Let 𝑓 ∗𝑝 and 𝜋2 be
projections onto first and second factors respectively. Consider the product principal 𝐺-
bundle.

Id𝑋 ×𝑝 : 𝑋 × 𝐸 → 𝑋 × 𝑌
Consider the graph of 𝑓 :

Γ 𝑓 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝑦 = 𝑓 (𝑥)} ⊆ 𝑋 × 𝑌
Note that we have

(𝑥, 𝑒) ∈ (Id𝑋 ×𝑝)−1(Γ 𝑓 ) ⇐⇒ 𝑓 (𝑥) = 𝑝(𝑒).
Hence, the inverse image of Γ 𝑓 is 𝑓 ∗𝐸 . This shows that 𝑓 ∗𝐸 is a principal 𝐺-bundle.
Uniqueness follows from categorical nonsense.

We now prove the important fact the pullbacks of principal 𝐺-bundles along homotopic maps
are isomorphic.

Proposition 13.6.6. Let 𝑋,𝑌 ∈ Top be paracompact Hausdorff topological spaces. Let 𝑝 : 𝐸 → 𝑌
be a principal 𝐺-bundle. If ℎ0, ℎ1 : 𝑋 → 𝑌 are homotopic maps, then ℎ∗0(𝐸) � ℎ∗1(𝐸).

Remark 13.6.7. We will invoke the following facts on principal 𝐺-bundles in the proof of Proposi-
tion 13.6.6.

(1) Every morphism of principal 𝐺-bundles is an isomorphism.
(2) There is a bijection between morphisms of 𝐺-bundles 𝐸1 → 𝐸2 over a common base and

global sections of the associated bundle 𝐸1 ×𝐺 𝐸2² over 𝑋 with fiber 𝐸2.
These constructions and facts are covered in my other notes.

²Here 𝐸2 is endowed with the left action 𝑔 · 𝑒2 := 𝑒2 · 𝑔−1



228 13. HIGHER HOMOTOPY GROUPS

PROOF. Consider a homotopy
𝐻 : 𝑋 × 𝐼 → 𝑌

such that 𝐻0 = ℎ0 and 𝐻1 = ℎ1. Pulling back 𝑝 : 𝐸 → 𝑌 along 𝐻, we get a principal 𝐺-bundle
𝐻∗𝐸 → 𝑋 × 𝐼 such that

𝐻∗𝐸 |𝑋×{0} = ℎ∗0(𝐸)
𝐻∗𝐸 |𝑋×{1} = ℎ∗1(𝐸)

Hence, it suffices to sow that for any principal 𝐺-bundle 𝑞 : 𝐹 → 𝑋 × 𝐼, the restrictions 𝑞 |𝑋×{0} and
𝑞 |𝑋×{1} are isomorphic. Denote the restrictions as

𝑞0 : 𝐹0 → 𝑋 × {0} � 𝑋
𝑞1 : 𝐹1 → 𝑋 × {1} � 𝑋

It suffices to prove that 𝐹 � 𝐹0× 𝐼 as prinicpal𝐺-bundles over 𝑋× 𝐼, since then restriction to 𝑋×{1}
gives the isomorphism

𝐹 |𝑋×{1} ≡ 𝐹1 � (𝐹0 × 𝐼) |𝑋×{1} ≡ 𝐹0.

It suffices to find a global section of 𝐹 ×𝐺 (𝐹0 × 𝐼) → 𝑋 × 𝐼. Now, 𝐹 ×𝐺 (𝐹0 × 𝐼) has a section over
𝑋 × {0}, since

𝐹 |𝑋×{0} � 𝐹0 � 𝐹0 × 𝐼 |𝑋×{0}
Since 𝑋 is paracompact Hausdorff, 𝑋 × 𝐼 is paracompact Hausdorff. Hence,

𝐹 ×𝐺 (𝐹0 × 𝐼) → 𝑋 × 𝐼
is a fibration by Remark 11.2.5. The claim now follows from the homotopy lifting property of fibra-
tions.

𝑋 × {0} 𝐹 ×𝐺 (𝐹0 × 𝐼)

𝑋 × 𝐼 𝑋 × 𝐼Id

This completes the proof. □

Let𝒫(𝑋, 𝐺) denote the set of isomorphism classes of principal𝐺-bundles over 𝑋 , and let𝒫(𝐺)
denote the isomorphism classes of all principal 𝐺-bundles. The assignment

Top→ 𝒫(𝐺)
𝑋 ↦→ 𝒫(𝑋, 𝐺)

is a contravariant (set-valued) functor. Indeed, this follows from the pullback construction. Propo-
sition 13.6.6 states that the functor actually descends to the homotopy category:

Top→ 𝒫(𝐺)
The homotopy theoretic classification of principal𝐺-bundles argues that this functor is representable.
We restrict ourselves to the category CW complexes. The representability below can be generalized
to other categories. We need the following facts about CW complexes.

Lemma 13.6.8. Let (𝑋,𝑌 ) be a CW pair and let 𝑝 : 𝐸 → 𝑋 be a fiber bundle with fiber 𝐹. Assume
that 𝑝𝑘 (𝐹) = 0 for each 𝑘 such that 𝑋 \ 𝑌 has cells of dimension 𝑘 + 1.

(1) Every map 𝑓 : 𝑌 → 𝐹 extends to a map 𝑓 : 𝑋 → 𝐹.
(2) Every section 𝑠 ∈ Γ(𝑌, 𝐸) can be extended to a global section �̄� ∈ Γ(𝑋, 𝐸). In particular

(taking 𝑌 = ∅) 𝑝 : 𝐸 → 𝑋 admits global sections if 𝐹 is 𝑘-connected where 𝑘 = dim(𝑋).
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Remark 13.6.9. Let 𝑝 : 𝐸 → 𝑋 be fiber bundle with fiber 𝐹. We will invoke the following facts in
the proof of Lemma 13.6.8.

(1) There is a bijection between local sections defined over a locally trivial cover 𝑈𝛼 and
smooth maps𝑈𝛼 → 𝐹

This is proved in my other notes.

PROOF. The proof is given below:
(1) We have a relative 𝐶𝑊-complex structure:

𝑌 ⊆ 𝑍 (−1) ⊆ 𝑍 (0) ⊆ · · · ⊆ 𝑍 (𝑚) = 𝑋.
We induct on 𝑘 . Assume that 𝑓 has been extended to 𝑍 (𝑘 ) . The base case 𝑘 = −1 follows
by assumption. For each 𝑘 + 1-cell D𝑘+1 ⊆ 𝑋 with attaching map 𝜑 : S𝑘 → 𝑍 (𝑘 ) , the
composition

𝑓 ◦ 𝜑 : S𝑘 → 𝐹

is nullhomotopic by assumption. Hence 𝑓 ◦𝜑 can be extended toD𝑘+1 and hence to 𝑍 (𝑘 )∪𝜑
D𝑘+1. Extending 𝑓 in this way for each 𝑘 + 1-cell completes the induction.

(2) If 𝐸 = 𝑋 × 𝐹, the claim follows from (1) and Remark 13.6.9. Generally, we proceed as
above by induction on 𝑘 . Assume a section has been extended to 𝑍 (𝑘 ) , so 𝑠 ∈ Γ(𝑍 (𝑘 ) , 𝐸).
Given a 𝑘 + 1 cell D𝑘+1 of 𝑋 , we can subdivide D𝑘+1 � 𝐼𝑘+1 into sufficiently small cubes
and reduce to the caseD𝑘+1 ⊆ 𝑈𝛼, where𝑈𝛼 is a locally trivial open set. The claim follows
as above.

This completes the proof. □

We now state and prove the main result regarding classification of principal 𝐺-bundles.

Proposition 13.6.10. Let 𝑋 be a CW-complex. For a topological group, 𝐺, 𝑝𝐺 : 𝐸𝐺 → 𝐵𝐺 be a
principal 𝐺-bundle such that 𝐸𝐺 is weakly contractible. There is a bijective correspondence

Φ : [𝑋, 𝐵𝐺] → 𝒫(𝑋, 𝐺)
[ 𝑓 ] ↦→ [ 𝑓 ∗𝑝𝐺]

𝐵𝐺 is called the classifying space for principal 𝐺-bundles.

Remark 13.6.11. We will invoke the following facts on principal 𝐺-bundles in the proof of Propo-
sition 13.6.10.

(1) There is a bijection between morphisms of 𝐺-bundles 𝐸1 → 𝑋1 and 𝐸2 → 𝑋2 and global
sections of the associated bundle 𝐸1 ×𝐺 𝐸2³ over 𝑋1 with fiber 𝐸2.

This is covered in my other notes.

PROOF. Φ is well-defined by Proposition 13.6.6. We first showΦ is surjective. Suppose 𝑝 : 𝐸 → 𝑋 is
a principal𝐺-bundle. We need to find 𝑓 : 𝐵→ 𝐵𝐺 and a principal𝐺-bunle morphism 𝑓 : 𝐸 → 𝐸𝐺
such that the following diagram commutes:

𝐸 � 𝑓 ∗(𝐸𝐺) 𝐸𝐺

𝑋 𝐵𝐺

𝑓

𝑝 𝑝𝐺

𝑓

³Here 𝐸2 is endowed with the left action 𝑔 · 𝑒2 := 𝑒2 · 𝑔−1
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This is equivalent to the existence of a global section of the associated bundle 𝐸 ×𝐺 𝐸𝐺 → 𝑋 with
fiber 𝐸𝐺. Since 𝐸𝐺 is weakly contractible, such a section exists by Lemma 13.6.8(2). We now show
Φ is injective. Suppose that 𝑓0, 𝑓1 : 𝐵 → 𝐵𝐺 are two maps such that 𝐸0 := 𝑓 ∗0 (𝐸𝐺) � 𝑓 ∗1 (𝐸𝐺) :=
𝐸1. Let 𝑝0 : 𝐸0 → 𝑋 and 𝑝1 : 𝐸1 → 𝑋 . We show that 𝑓0 ∼ 𝑓1. We have a commutative diagram:

𝐸0 × {0, 1} 𝐸𝐺

𝑋 × {0, 1} 𝐵𝐺

( 𝑓0, 𝑓1 )

𝑝0×Id 𝑝𝐺

( 𝑓0, 𝑓0 )

We extend it to a commutative diagram:

𝐸0 × 𝐼 𝐸𝐺

𝑋 × 𝐼 𝐵𝐺

�̄�

𝑝0×Id 𝑝𝐺

𝐻

This yields the desired homotopy 𝐻 : 𝑋× 𝐼 between 𝑓0 and 𝑔1. This is equivalent to finding a section
of the associated bundle bundle (𝐸0 × 𝐼) ×𝐺 𝐸𝐺 → 𝑋 × 𝐼 with fiber 𝐸𝐺. We have already have a
section of the associated bundle (𝐸0 × {0, 1}) ×𝐺 𝐸𝐺 → 𝑋 × {0, 1}. Under the obvious inclusion

(𝐸0 × {0, 1}) ×𝐺 𝐸𝐺 ⊆ (𝐸0 × 𝐼) ×𝐺 𝐸𝐺,

this section can be regarded as a section of (𝐸0 × 𝐼) ×𝐺 𝐸𝐺 → 𝑋 × 𝐼 over 𝑋 × {0, 1}. Since 𝐸𝐺 is
weakly contractible, the section can be extended via Lemma 13.6.8(2). □

The question remains: how does one construct the universal bundle 𝐸𝐺 → 𝐵𝐺? We will not
present a general construction ; rather, we will explicitly find such universal bundles for specific
examples. However, we can prove that such a universal bundle is defined uniquely up to homotopy.

Proposition 13.6.12. Let 𝐺 be a topological group. Then a universal principal 𝐺-bundle 𝑝𝐺 :
𝐸𝐺 → 𝐵𝐺 such that 𝐸𝐺 is weakly contractible exists. Moreover, the construction is functorial in
the sense that a continuous group homomorphism 𝜇 : 𝐺 → 𝐻 induces a bundle map

𝐸𝐺 𝐸𝐻

𝐵𝐺 𝐵𝐻

𝑝𝐺

𝐸𝜇

𝑝𝐻

𝐵𝜇

Furthermore, the classifying space 𝐵𝐺 is unique up to homotopy.

PROOF. (Sketch) There is a general construction due to Milnor of 𝐵𝐺 associated to any locally com-
pact topological group𝐺. We don’t discuss it here. We first show that 𝐵𝐺 is unique up to homotopy.
Assume we are given two universal principal 𝐺-bundles

𝑝𝐺 : 𝐸𝐺 → 𝐵𝐺

𝑝𝐺′ : 𝐸𝐺′ → 𝐵𝐺′

By regarding each as a universal principal 𝐺-bundle for the other principal 𝐺-bundle, we obtain the
following commutative diagram:
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𝐸𝐺 𝐸𝐺′ 𝐸𝐺

𝐵𝐺 𝐵𝐺′ 𝐵𝐺

𝑝𝐺

𝑓 𝑓

𝑝𝐺′ 𝑝𝐺

𝑔 𝑓

By Proposition 13.6.10, 𝑓 ◦ 𝑔 = Id𝐵𝐺 and 𝑔 ◦ 𝑓 = Id𝐵𝐺′ . This shows uniqueness up to homotopy.
Functoriality is clear. □

How does one construct the classifying space 𝐵𝐺? Note that if 𝐸𝐺 → 𝐵𝐺 is a principal 𝐺-
bundle, then 𝐺 acts freely on 𝐸𝐺 such that 𝐵𝐺 � 𝐸𝐺/𝐺. Hence, it suffices to find a weakly
contractible space 𝐸𝐺 on which 𝐺 acts freely.

Example 13.6.13. The following is a list of examples of some classifying spaces:
(1) Let 𝐺 = Z. We can take 𝐸𝐺 = R since Z acts freely on R by translations. Hence, we have

𝐵Z � 𝐸Z/Z
� R/Z � S1

(2) Let 𝐺 = Z𝑛. We can take 𝐸𝐺 = R𝑛 since Z𝑛 acts freely on R𝑛 by translations. Hence, we
have

𝐵Z𝑛 � 𝐸Z𝑛/Z𝑛

� R𝑛/Z𝑛 � S1 × · · · × S1︸          ︷︷          ︸
𝑛-times

(3) Let 𝐺 = Z2. We can take 𝐸𝐺 = S∞ since Z2 acts freely on S∞ and S∞ is contractible.
Hence, we have

𝐵Z2 � 𝐸Z2/Z2

� S∞/Z2 � RP∞

(4) Let 𝐺 = S1. We can take 𝐸𝐺 = S∞ since S1 acts freely on S∞ and S∞ is contractible.
Hence, we have

𝐵S1 � 𝐸S1/S1

� S∞/S1 � CP∞

(5) Let 𝐺 = O(𝑘). It can be checked that 𝑉𝑘 (R∞) is contractible. Hence, we can take 𝐸𝐺 =
𝑉𝑘 (R∞) since O(𝑘) acts freely on 𝑉𝑘 (R∞). Hence, we have

𝐵O(𝑘) � 𝐸 O(𝑘)/O(𝑘)
� 𝑉𝑘 (R∞)/O(𝑘) � 𝐺𝑘 (R∞)

(6) Let 𝐺 = U(𝑘). It can be checked that 𝑉𝑘 (C∞) is contractible. Hence, we can take 𝐸𝐺 =
𝑉𝑘 (C∞) since U(𝑘) acts freely on 𝑉𝑘 (C∞). Hence, we have

𝐵U(𝑘) � 𝐸 U(𝑘)/U(𝑘)
� 𝑉𝑘 (C∞)/U(𝑘)
� 𝐺𝑘 (C∞)
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Remark 13.6.14. The following observation is quite useful. Since 𝐸𝐺 → 𝐵𝐺 is a principal 𝐺-
bundle, the long exact sequence in homotopy associated to a fibration reads:

· · · → 𝜋𝑛+1(𝐵𝐺) → 𝜋𝑛 (𝐺) → 𝜋𝑛 (𝐸𝐺) → 𝜋𝑛 (𝐵𝐺) → 𝜋𝑛−1(𝐺) → . . .

As 𝐸𝐺 is weakly contractible, 𝜋𝑛 (𝐸𝐺) = 0 for 𝑛 > 0. Hence, we see that
𝜋𝑛+1(𝐵𝐺) � 𝜋𝑛 (𝐺)

for 𝑛 ≥ 1.

13.7. Eilenberg-Maclane Spaces
We can use homotopy theory to show that the singular cohomology functor is representable in

the homotopy category. If 𝐺 is an abelian group, assume there exists a topological space 𝑍𝑛 such
that

𝐻𝑛 (𝑋, 𝐺) = [𝑋, 𝑍𝑛]
for all topological spaces and all 𝑋 ∈ Top. If 𝑋 = S𝑘 , note that

𝜋𝑘 (𝑍𝑛) = [S𝑘 , 𝑍𝑛] = 𝐻𝑛 (S𝑘 , 𝐺) =
{
𝐺 if 𝑛 = 0, 𝑘
0 otherwise

Hence, we see that 𝜋𝑘 (𝑍𝑛) is non-trivial for exactly one value of 𝑘 ∈ N. This motivates the following
definition.

Definition 13.7.1. Let 𝑋 ∈ Top, 𝐺 ∈ Grp If 𝑋 has only one non-trivial homotopy group such that
𝜋𝑛 (𝑋) � 𝐺

for some 𝑛 ∈ N, then 𝑋 is called an Eilenberg-MacLane space.

A generic Eilenberg-Maclane space is denoted as 𝐾 (𝐺, 𝑛). The question remains: how does
one construct an Eilenberg-Maclane space 𝐾 (𝐺, 𝑛). We will not present a general existence and
uniqueness argument; rather, we will explicitly find 𝐾 (𝐺, 𝑛) for specific examples. We first discuss
a link between classifying spaces and Eilenberg-Maclane spaces for discrete groups:

Proposition 13.7.2. Let 𝐺 be a discrete abelian group. Then 𝐵𝐺 � 𝐾 (𝐺, 1).
PROOF. Since 𝐺 is discrete, we have

𝜋𝑛 (𝐺) =
{
𝐺 if 𝑛 = 0
0 otherwise

By Remark 13.6.14, we have 𝜋𝑛 (𝐵𝐺) = 0 for 𝑛 ≥ 2. Since 𝐸𝐺 → 𝐵𝐺 is a universal covering map
with discrete fibers 𝐺, covering space theory implies that 𝜋1(𝐵𝐺) � 𝐺. This proves the claim. □

Example 13.7.3. The following is a list of Eilenberg-Maclane space:
(1) S1 is a model of 𝐾 (Z, 1). This follows from Proposition 13.7.2 and that 𝐵Z � S1.
(2) RP∞ is a model of 𝐾 (Z2, 1). This follows from Proposition 13.7.2 and that 𝐵Z2 � RP∞.
(3) More generally, the cyclic groupZ/𝑚 acts on S∞ when thought of as a direct limit of spheres

in complex vector spaces C𝑛, where the action is by multiplication of each coordinate by
𝑒2𝜋𝑖/𝑚. We have a principal Z/𝑚-bundle:

Z/𝑚 → S∞ → S∞/Z/𝑚
The quotient 𝑆∞/Z/𝑚 is called the infinite-dimensional lens space, which is a 𝐾 (Z/𝑚, 1).

(4) CP∞ is a model of 𝐾 (Z, 2). This follows from Example 13.5.7.
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(5) The wedge sum of 𝑛-circles is a model space for 𝐾 (𝐹𝑛, 1), where 𝐹𝑛 is the free group on 𝑛
generators. Clearly, we have

𝜋1

(
𝑛∨
𝑖=1
S1

)
� 𝐹𝑛

Moreover, the higher homotopy groups of a wedge sum of 𝑛-circles vanish since its univer-
sal covering space, which is the Cayley graph on 𝑛 generators, is contractible. By Propo-
sition 13.7.2, we also have

𝐵𝐹𝑛 �
𝑛∨
𝑖=1
S1

The following is a basic list of properties of 𝐾 (𝐺, 1).

Proposition 13.7.4. Let 𝐺 be a group.
(1) If 𝐺′ is another group, we have

𝐾 (𝐺, 𝑛) × 𝐾 (𝐺′, 𝑛) � 𝐾 (𝐺 × 𝐺′, 𝑛)
(2) 𝐾 (𝐺, 1) exists for any finitely-generated abelian group.
(3) If 𝑋 � 𝐾 (𝐺, 𝑛), then Ω𝑋 � 𝐾 (𝐺, 𝑛 − 1).

PROOF. The proof is given below:
(1) This is clear 𝜋𝑛 is a functor that preserves products.
(2) We have constructed a 𝐾 (Z, 1) and a 𝐾 (Z/𝑚, 1) for each 𝑚 ≥ 2. Thus, we can construct a

𝐾 (𝐺, 1) for any finitely generated 𝐺 by (1).
(3) This follows because 𝜋𝑛 (Ω𝑋) � 𝜋𝑛+1(𝑋)

This completes the proof. □

Remark 13.7.5. If 𝐺 is a finitely-generated abelian group, then if 𝐺 has torsion, then the 𝐾 (𝐺, 1)
contains an infinite-dimensional lens space in the product. Since a 𝐾 (𝐺, 1) is unique up to homo-
topy equivalence (assumed without proof), a finite-dimensional 𝐾 (𝐺, 1) cannot exist if 𝐺 is finitely
generated and has torsion.

We now use homotopy theory to show that the singular cohomology functor is representable
in the homotopy category in terms of Eilenberg-Maclane spaces. We will invoke the definition of
reduced cohomology. We first prove the following lemma:

Lemma13.7.6. Let ℎ∗ be an unreduced cohomology theory withZ coefficients defined as a collection
of functors

ℎ𝑛 : CW2 → Ab
If ℎ𝑛 (∗;Z) � 0 for 𝑛 ≠ 0, then there exists a natural isomorphism

ℎ𝑛 (𝑋, 𝐴) � 𝐻𝑛 (𝑋, 𝐴;𝐺)
for all CW-pairs (𝑋, 𝐴) and for all 𝑛 ≥ 1, where 𝐺 := ℎ0(∗;Z) ∈ Ab.

PROOF. (Sketch) The proof is similar to the proof for homology theories defined on CW2. (Propo-
sition 6.6.1). See [Hat02] for the difference that needs to be accounted for. □

Remark 13.7.7. There is also a version of Lemma 13.7.6 for reduced cohomology.

We now prove the desired result:
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Proposition 13.7.8. Let 𝐻∗ be an unreduced singular cohomology theory with Z coefficients defined
as a collection of functors

𝐻𝑛 : CW2
∗ → Ab

There exists a natural isomorphism
𝑇𝑛 : 𝐻𝑛 (𝑋;𝐺) → [𝑋, 𝐾 (𝐺, 𝑛)]∗

for all 𝑋 ∈ CW∗ and any abelian group 𝐺 for all 𝑛 ≥ 1.

PROOF. Using Proposition 13.7.4 we have that Ω𝐾 (𝐺, 𝑛) � 𝐾 (𝐺, 𝑛 − 1). Define the functors
𝐿𝑛 : CW∗ → Ab

𝑋 ↦→ [𝑋, 𝐾 (𝐺, 𝑛)]∗
We claim that these functors define a reduced cohomology theory on CW∗.

(1) (Homotopy invariance) A map 𝑓 : 𝑋 → 𝑌 induces a map
𝑓 ∗ : [𝑌, 𝐾 (𝐺, 𝑛)]∗ → [𝑋, 𝐾 (𝐺, 𝑛)]∗

which depends only on the basepoint-preserving homotopy class. It can be checked that
𝑓 ∗ is indeed a homomorphism by replacing 𝐾 (𝐺, 𝑛) with Ω𝐾 (𝐺, 𝑛 + 1).

(2) (Wedge sum axiom) Let 𝑖𝛼 : 𝑋𝛼 ↩→
∨
𝛼∈𝐴 𝑋𝛼 be the inclusion. We want to show that the

map ∏
𝛼∈𝐴

𝑖∗𝛼 :
[ ∨
𝛼∈𝐴

𝑋𝛼, 𝐾 (𝐺, 𝑛)
]
∗
→

∏
𝛼∈𝐴
[𝑋𝛼, 𝐾 (𝐺, 𝑛)]∗

is an isomorphism for all 𝑛. This follows from Remark 2.1.14.
(3) (Suspension Axiom) We have

𝐿𝑛+1(Σ𝑋) = [Σ𝑋, 𝐾 (𝐺, 𝑛 + 1)]∗
= [𝑋,Ω𝐾 (𝐺, 𝑛 + 1)]∗
= [𝑋, 𝐾 (𝐺, 𝑛)]∗
= 𝐿𝑛 (𝑋)

for all 𝑛. Hence, the suspension axiom holds.
(4) (Long Exact Sequence) This follows from the coexact Puppe sequence (which is not in-

cluded in the notes for now).
Hence, we have an reduced cohomology theory. The reduced version of Lemma 13.7.6 shows that
there exists natural isomorphism

𝑇𝑛 : 𝐻𝑛 (𝑋;𝐺) → [𝑋, 𝐾 (𝐺, 𝑛)]∗
This completes the proof. □

Remark 13.7.9. In the proof Proposition 13.7.8 we used the fact that the family of spaces {𝐾 (𝐺, 𝑛)}𝑛≥0
for a fixed 𝐺 ∈ Ab is such that

𝐾 (𝐺, 𝑛) � Ω𝐾 (𝐺, 𝑛 + 1)
We say that {𝐾 (𝐺, 𝑛)}𝑛≥0 is an Ω-spectrum. This suggests that Ω-spectrum can be used to defined
cohomology theories. This is the start of the study of spectra in stable homotopy theory.



CHAPTER 14

Serre Spectral Sequence

14.1. Construction
The Serre spectral sequence is a powerful computational tool in algebraic topology that arises in

the study of the homology and cohomology of fibrations. It allows one to relate the (co)homology of
the total space of a fibration to that of its base and fiber, often turning otherwise intractable compu-
tations into manageable ones. We present the Serre spectral sequence and illustrate its use through
examples and applications. We will treat the general theory of spectral sequences largely as a black
box, relying on established results without reproving them here.¹

Remark 14.1.1. There is a version of the Serre spectral sequence for both homology and cohomol-
ogy. In these notes, we focus on the cohomological version, as it is the one most commonly used in
practice. The homological version is very similar in structure and can be invoked when needed. For
further details, the reader is referred to [Hat04].

¹Some of these general results are developed in more detail in my other notes.
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CHAPTER 15

Appendix

Throughout, let 𝒜 be a locally small abelian category to ensure that the Hom functors are set-
valued.

15.1. Hom Functors
We briefly review the Hom functors.

Definition 15.1.1. Let 𝐴 ∈ 𝒜. The Hom functor Hom(𝐴,−) : 𝒜 → Ab, is defined by

Hom(𝐴,−)(𝐵) = Hom(𝐴, 𝐵),
for all 𝐵 ∈ 𝒜.

Let’s verify that Hom(𝐴,−) is indeed a functor.

Lemma 15.1.2. For 𝐴 ∈ 𝒜, Hom(𝐴,−) is a covariant functor.

PROOF. If 𝑓 : 𝐵→ 𝐵′ is a morphism𝒜, then Hom(𝐴,−)( 𝑓 ) : Hom(𝐴, 𝐵) → Hom(𝐴, 𝐵′) is given
by ℎ ↦→ 𝑓 ◦ ℎ. Note that the composite 𝑓 ◦ ℎ makes sense:

𝐴 𝐵 𝐵′

𝑓 ◦ℎ

ℎ 𝑓

We call Hom(𝐴,−)( 𝑓 ) the inducedmap, and we denote it by 𝑓∗. If 𝑓 is the identity map 1𝐵 : 𝐵→ 𝐵,
then

𝐴 𝐵 𝐵

ℎ

ℎ 1𝐵

Hence so that (1𝐵)∗ = 1Hom(𝐴,𝐵) . Suppose now that 𝑔 : 𝐵′ → 𝐵′′. We have the following diagram:

𝐴 𝐵 𝐵′ 𝐵′′

(𝑔◦ 𝑓 )◦ℎ

𝑓 ◦ℎ

ℎ 𝑓

𝑔◦( 𝑓 ◦ℎ)

𝑔

Clearly, 𝑔 ◦ ( 𝑓 ◦ ℎ) = (𝑔 ◦ 𝑓 ) ◦ ℎ Therefore, we have (𝑔 ◦ 𝑓 )∗ = 𝑔∗ ◦ 𝑓∗. □

We now discuss the contravariant Hom functor.

Definition 15.1.3. Let 𝐵 ∈ 𝒜. The contravariant Hom functor Hom(𝐴,−) : 𝒜 → Ab, is defined
by

Hom(−, 𝐴)(𝐵) = Hom(𝐴, 𝐵),
for all 𝐴 ∈ 𝒜.
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Remark 15.1.4. It can be verified, similarly to Lemma 15.1.2, that the contravariant Hom functor
is indeed a well-defined contravariant functor.

We now show that the Hom functors are are also left and right exact depending on the choice of
the Hom functor.

Proposition 15.1.5. Let 𝐴 ∈ 𝒜.
(1) The functor Hom(𝐴,−) : 𝒜 → Ab is a left exact functor.
(2) The functor Hom(−, 𝐴) : 𝒜 → Ab is a left exact functor.

PROOF. The proof is as follows:
(1) Let

0→ 𝑋
𝑓−→ 𝑌

𝑔−→ 𝑍 → 0
be an exact sequence in𝒜. Applying Hom(𝐴,−), which we denote as ℎ𝐴 in the rest of the
proof, we obtain homomorphisms

0→ Hom𝒜 (𝐴, 𝑋)
ℎ𝐴 ( 𝑓 )−−−−−→ Hom𝒜 (𝐴,𝑌 )

ℎ𝐴 (𝑔)−−−−−→ Hom𝒜 (𝐴, 𝑍)
of abelian groups. We claim that this sequence is exact. If ℎ𝐴( 𝑓 ) (𝛼) = 0, then 𝑓 ◦ 𝛼 = 0,
but 𝑓 is a monomorphism, so 𝛼 = 0.

𝐴

0 𝑋 𝑌

0𝛼

𝑓

Since ℎ𝐴 is a functor, we have ℎ𝐴(𝑔) ◦ ℎ𝐴( 𝑓 ) = 0. If 𝛽 ∈ ker ℎ𝐴(𝑔), then 𝑔 ◦ 𝛽 = 0. The
universal property of the kernel implies that 𝛽 factors through a morphism 𝑋 → ker 𝑔.

𝐴

0 𝑋 𝑌 𝑍 0

𝛽 0

𝑓 𝑔

But we have canonical isomorphisms

𝑋
∼−→ coim 𝑓

∼−→ im 𝑓
∼−→ ker 𝑔

the first as 𝑓 is a monomorphism, the second by the first isomorphism theorem in a small
abelian category and the third because the sequence is exact at 𝑌 . The composite of the
composite of these with the canonical morphism ker 𝑔 → 𝐵 is 𝑔.

𝐴

𝑋 𝑌

𝛽𝛼

𝑓

Therefore, we obtain a morphism 𝛼 : 𝑋 → 𝐴 satisfying 𝑓 ◦ 𝛼 = 𝛽.
(2) The statement in (2) is the dual of the statement in (1).

This completes the proof. □

In fact, as the next lemma shows, exactness of a sequence can be checked by studying all possible
Hom functors. More precisely:
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Proposition 15.1.6. Let𝒜 be a small abelian category. A sequence

𝑋
𝑓−→ 𝑌

𝑔−→ 𝑍

is exact if every sequence

Hom(𝐴, 𝑋) ℎ𝐴 ( 𝑓 )−−−−−→ Hom(𝐴,𝑌 ) ℎ𝐴 (𝑔)−−−−−→ Hom𝒜 (𝐴, 𝑍)
is exact for each 𝐴 ∈ 𝒜.

PROOF. For 𝐴 = 𝑋 , we get
𝑔 ◦ 𝑓 = ℎ𝑋 (𝑔) ◦ ℎ𝑋 ( 𝑓 ) (id𝐴) = 0,

so we have a monomorphism 𝑠 : im 𝑓 → ker 𝑔.

𝑋

𝑋 𝑌 𝑍

Id𝑋

0

𝑓 𝑔

For 𝐴 = ker 𝑔 and 𝜄 : ker 𝑔 ↩→ 𝑌 , we have ℎ𝑋 (𝑔)(𝜄) = 𝑔 ◦ 𝜄 = 0, so there exists 𝛼 : ker 𝑔 → 𝑋 with
𝑓 ◦ 𝛼 = 𝜄.

ker 𝑔

𝑋 𝑌 𝑍

𝛼 𝜄

𝑓 𝑔

Then 𝜄 factors as a morphism 𝑡 : ker 𝑔 → im 𝑓 which is the inverse to 𝑠. □

Corollary 15.1.7. Let𝒜 be a small abelian category. A sequence

𝑋
𝑓−→ 𝑌

𝑔−→ 𝑍

is exact if every sequence

Hom(𝑍, 𝐴) ℎ𝐴 (𝑔)−−−−−→ Hom(𝑌, 𝐴) ℎ𝐴 ( 𝑓 )−−−−−→ Hom𝒜 (𝑋, 𝑍)
is exact for each 𝐴 ∈ 𝒜.

PROOF. The statement is dual to the statement in Proposition 15.1.6. □

Example 15.1.8. The functor Hom(𝐴,−) need not be right exact. To see this, let 𝒜 = Ab be the
category of abelian groups and let 𝐴 = Z/2Z. Consider the short exact sequence:

0→ Z ·2−→ Z 𝜋−→ Z/2Z→ 0

Applying Hom(Z/2Z,−) and noting that

Hom(Z/2Z,Z) = 0
Hom(Z/2Z,Z/2Z) � Z/2Z,

we obtain the sequence:
0→ 0→ 0→ Z/2Z→ 0

This sequence is not right exact since 0→ Z/2Z is not a surjective map.
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15.2. Tensor Product Functor
Let’s now introduce the tensor product functor. We assume the construction of the tensor product

functor is known. Note that the tensor product functor is only defined in Mod𝑅, the category of left
𝑅-modules. Inwhat follows, we assume that 𝑅 is a commutative ring, sowe do not need to distinguish
between left and right 𝑅-modules. Using a clever argument exploiting the adjunction between the
Hom and tensor product functors, we can show the following:

Proposition 15.2.1. Let 𝑅 be a ring and let Mod𝑅 be the category of left 𝑅-modules. Let 𝑀 be a
right 𝑅-module. The functor 𝑀 ⊗𝑅 − is a right exact functor.

PROOF. Let 0→ 𝐴→ 𝐵→ 𝐶 → 0 be an exact sequence in Mod𝑅. We show that

𝑀 ⊗𝑅 𝐴→ 𝑀 ⊗𝑅 𝐵→ 𝑀 ⊗𝑅 𝐶 → 0

is an exact sequence. Proposition 15.1.5 and Corollary 15.1.7 imply that

𝑀 ⊗𝑅 𝐴→ 𝑀 ⊗𝑅 𝐵→ 𝑀 ⊗𝑅 𝐶 → 0

is an exact sequence if and only if

0→ Hom(𝑀 ⊗𝑅 𝐶, 𝑋) → Hom(𝑀 ⊗𝑅 𝐵, 𝑋) → Hom(𝑀 ⊗𝑅 𝐴, 𝑋)

is an exact sequence for each left 𝑅-module 𝑋 . We have

Hom(𝑀 ⊗𝑅 𝑁, 𝑋) = Hom(𝑁,Hom(𝑀, 𝑋)),

for all 𝑅-modules 𝑁 . Hence, the sequence above can be written as

0→ Hom(𝐶,Hom(𝑀, 𝑋)) → Hom(𝐵,Hom(𝑀, 𝑋)) → Hom(𝐴,Hom(𝑀, 𝑋))

which is indeed exact by Proposition 15.1.5. □

Example 15.2.2. The functor 𝑀 ⊗𝑅 − need not be left exact functor. To see this, take 𝑅 = Z.
Consider the sequence:

0→ Z ↩→ Q

Letting 𝑀 = Z and noting that,

Z ⊗Z Q � 0
Z ⊗Z Z � Z,

we obtain the sequence:

0→ Z→ 0

which is not left exact since the map Z→ 0 is not a surjective map.

15.3. Projective & Injective Objects
We now introduce special objects that can rectify the failure of the exactness of the Hom and

tensor product functors.
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15.3.1. Projective Objects. We first define the notion of projective objects.

Definition 15.3.1. An object 𝑃 ∈ 𝒜 is called projective if the functor Hom(𝑃,−) is an exact functor.

Remark 15.3.2. An object 𝑃 is projective if and only if for every morphism𝑌 → 𝑍 → 0 and 𝑃→ 𝑍 ,
there exists a morphism 𝑃→ 𝑌 such that the diagram

𝑃

𝑌 𝑍 0
commutes.

Example 15.3.3. The following are examples of projective objects:
(1) The zero object in a small abelian category is projective.
(2) In Mod𝑅, the object 𝑅 is projective: indeed, the functor

Hom(𝑅,−) : Mod 𝑅 → Ab
𝑀 ↦→ 𝑀

is just the forgetful functor, and hence clearly is exact.

Proposition 15.3.4. An object 𝑃 in 𝒜 is projective if and only if every exact sequence

0→ 𝑋
𝑓−→ 𝑌

𝑝−→ 𝑃→ 0

in 𝒜 splits.

PROOF. Skipped. □

Proposition 15.3.5. A direct summand of a projective object is a projective object. Moreover, an
arbitrary direct sum of projective objects is a projective object

PROOF. Let 𝑃1, 𝑃2 ∈ 𝒜 such that 𝑃1 ⊕ 𝑃2 such that 𝑃1 ⊕ 𝑃2 is a projective object. Consider an
epimorphism 𝑓 : 𝑌 → 𝑍 → 0 and a morphism 𝛽 : 𝑃1 → 𝑍 . Along with the zero morphism
from 𝑃2 to 𝑍 , the universal property of the co-product implies that there is a unique morphism
𝛾 : 𝑃1 ⊕ 𝑃2 → 𝑍 . Since 𝑃1 ⊕ 𝑃2 is a projective object, there is a morphism 𝛾′ : 𝑃1 ⊕ 𝑃2 → 𝑌 such
that the diagram

𝑃

𝑃 ⊕ 𝑄 𝑄

𝑌 𝑍 0

𝜄𝑃1

𝛽

𝛾
𝛾′ 0

𝜄𝑃2

𝑓

commutes. The required morphism is then 𝛾′ ◦ 𝜄𝑃1 . A similar argument as above shows that a direct
sum of projective objects is a projective object. □

Projective objects in Mod𝑅 can be easily characterized in terms of free 𝑅-modules, which we
now define:
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Definition 15.3.6. A left 𝑅-module, 𝐹, is a free module if it is isomorphic to an arbitrary direct sum
of copies of 𝑅 as a left 𝑅-module. That is,

𝐹 �
⊕
𝑖∈𝐼

𝑅 := 𝑅𝐼

Remark 15.3.7. Any free 𝑅-module 𝐹 has a basis 𝐵 in bijection with its indexing set, and therefore
a map 𝐹 → 𝐴 for some left 𝑅-module 𝐴 is prescribed uniquely by its (arbitrary) values on 𝐵.

HomMod𝑅 (𝐹, 𝐴) = HomSets(𝐵, 𝐴)

Proposition 15.3.8. A free 𝑅-module, 𝐹, is a projective module.

PROOF. Consider 𝛽 : 𝐹 → 𝑍 and a surjective 𝑅-module homomorphism¹ 𝑓 : 𝑌 → 𝑍 → 0. Let 𝐵
be a basis for 𝐹.

𝐹

𝑌 𝑍 0

𝛽
𝑔

𝑓

For each 𝑏 ∈ 𝐵, the element 𝛽(𝑏) ∈ 𝑍 has the form 𝑓 (𝑏) = 𝑝(𝑎𝑏) for some 𝑎𝑏 ∈ 𝐴, because 𝑓 is
surjective. By the Axiom of Choice, there is a function 𝑢 : 𝐵→ 𝑌 with 𝑢(𝑏) = 𝑎𝑏 for all 𝑏 ∈ 𝐵. By
the remark above, we have an 𝑅-homomorphism 𝑔 : 𝐹 → 𝑌 with 𝑔(𝑏) = 𝑎𝑏 for all 𝑏 ∈ 𝐵. Clearly,
𝑔 is the required morphism. □

Proposition 15.3.9. The following statements are equivalent:
(1) 𝑃 is projective in Mod𝑅.
(2) There is a module𝑄 such that 𝑃 ⊕𝑄 � 𝑅𝐼 for some set 𝐼. The module 𝑅𝐼 is a called a free

module.

PROOF. Assume that 𝑃 is a projective object and let 𝐼 be the set of generators of 𝑃 and let 𝑅𝐼 denote
a free module on the set of generators of 𝑃. Consider the natural map 𝜋 : 𝑅𝐼 → 𝑃. It clearly is a
surjective, and, since 𝑃 is projective, it splits. Therefore,

𝑃 ⊕ ker 𝜋 � 𝑅𝐼

The converse follows since a free module is projective and a direct summand of projective module
is a projective module by Proposition 15.3.5. □

Remark 15.3.10. Every projective module need not be free. For example, consider
𝑅 = Z/6Z = Z/3Z ⊕ Z/2Z

Z/3Z is a projective Z/6Z-module since Z/6Z is a projective Z/6Z-module. However, Z/3Z is not
a free Z/6Z-module: a (finitely generated) free Z/6Z-module 𝐹 is a direct sum of, say, 𝑛 copies of
Z/6Z, and so 𝐹 has 6𝑛 elements. Therefore, Z/3Z is not a free Z/6Z since it has only three elements.

Example 15.3.11. Let 𝒜 = Ab. The functor Hom(Z,−) is an exact functor. This is because Z is a
free object in Ab.

Example 15.3.12. Let 𝒜 = Ab. The functor Hom(Q,−) is not an exact functor. This is because
Q is not a projective object in Ab since Q cannot be a summand of a free Z-module because a free
Z-module is not divisible but Q is a divisible group.

¹Epimorphisms and surjective 𝑅-module homomorphisms coincide in the category of 𝑅-modules.
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15.3.2. Injective Objects. We now define the notion of injective objects.

Definition 15.3.13. Let 𝒜 be a small abelian category. An object 𝐼 ∈ 𝒜 is called injective if the
functor Hom(−, 𝐼) is an exact functor.

Remark 15.3.14. Injective objects in𝒜 are just projective objects in 𝒜op.

Remark 15.3.15. An object 𝐼 is injective if and only if for every morphisms 0 → 𝑋 → 𝑌 and
𝑋 → 𝑌 , there exists a unique morphism 𝑌 → 𝐼 such that the diagram

𝐼

0 𝑋 𝑌

commutes.

Proposition 15.3.16. Let𝒜 be a small abelian category. An object 𝐼 in𝒜 is injective if and only if
every exact sequence

0→ 𝐼
𝑖−→ 𝑌

𝑓−→ 𝑍 → 0

in 𝒜 splits.

PROOF. Skipped. □

Proposition 15.3.17. A direct summand of an injective object is an injective object. Moreover, an
arbitrary product of injective objects is an injective object.

PROOF. Let 𝐼1, ⊕𝐼2 ∈ 𝒜 such that 𝐼1 ⊕ 𝐼2 is an injective object. Consider a monomorphism 𝑓 : 0→
𝑋 → 𝑌 and a morphism 𝛾 : 𝑋 → 𝐼1. Note that 𝜄1 ◦ 𝛾 is a morphism from 𝑋 to 𝐸1 ⊕ 𝐸2, where 𝜄1
is the canonical inlcusion map. Since 𝐸1 ⊕ 𝐸2 is injective, there is a morphism 𝛾′ : 𝑌 → 𝐸1 ⊕ 𝐸2
such that the diagram

𝐸1 𝐸1 ⊕ 𝐸2

0 𝑋 𝑌

𝜄1

𝜋1

𝑓

𝛾 𝛾′

commutes. Then 𝜋1 ◦ 𝛾′ is the required morphism, where 𝜋1 is the canonical projection map. A
similar argument as above shows that a product of injective objects is an injective object. □

We now characterize injective objects in Mod𝑅.

Proposition 15.3.18. (Baer’s criterion) An 𝑅-module, 𝐼, is injective if and only if for every left
ideal 𝐽 ⊆ 𝑅 and every 𝑅-module homomorphism 𝑔 : 𝐽 → 𝐼, there exists 𝑔′ : 𝑅 → 𝐼 such that the
following diagram

0 𝐽 𝑅

𝐼

𝑔
𝑔′

commutes.



15.3. PROJECTIVE & INJECTIVE OBJECTS 243

PROOF. The forward implication is clear. For the reverse implication, consider the diagram:

0 𝐽 𝑅

𝐼

𝑔

Consider the set of all intermediate extensions:
𝑆 = {(𝐶, ℎ) | 𝐽 ⊆ 𝐶 ⊆ 𝑅 submodule, ℎ ∈ Hom(𝐶, 𝐼) and ℎ|𝐽 = 𝑔}

Set (𝐶, ℎ) ≤ (𝐶′, ℎ′) if and only if 𝐶 ⊆ 𝐶′ and ℎ′ |𝐶 = ℎ. Note that 𝑆 ≠ ∅ because we can
choose 𝐶 = 𝐽. Suppose {(𝐶𝑥 , ℎ𝑥)}𝑥∈𝐼 is a chain for an index set 𝐼 such that for any 𝑥, 𝑦 ∈ 𝐼,
(𝐶𝑥 , ℎ𝑥) ≤ (𝐶𝑦 , ℎ𝑦). Let

𝐶 =
⋃
𝑥∈𝐼

𝐶𝑥

and define ℎ : 𝐶 → 𝐼 by setting ℎ(𝑎) = ℎ𝑥 (𝑎) if 𝑎 ∈ 𝐶𝑥 for some 𝑥 ∈ 𝐼. This is well-defined by
assumption, and ℎ|𝐶𝑥 = ℎ𝑥 for any 𝑥 ∈ 𝐼. Hence (𝐶𝑥 , ℎ𝑥) ≤ (𝐶, ℎ) for any 𝑥 ∈ 𝐼, showing that
(𝐶, ℎ) is an upper bound. By Zorn’s lemma, the chain has a maximal element, (𝐶, ℎ). If 𝐶 = 𝑅, we
are done. Otherwise, let 𝑏 ∈ 𝑅 \ 𝐶. Consider the sequence:

0→ 𝐽
𝑓1−−→ 𝑅 ⊕ 𝐶 𝑓2−−→ 𝑅𝑏 ⊕ 𝐶 → 0 𝑓2(𝑟, 𝑐) = 𝑟𝑏 + 𝑐 𝑓1(𝑟) = (𝑟,−𝑟𝑏)

where 𝐽 = {𝑎 ∈ 𝑅 | 𝑎𝑏 ∈ 𝐶}. Let 𝑔 : 𝐽 → 𝐼, 𝑔(𝑎) = ℎ(𝑎𝑏) and hence there exists a 𝑔′ such that the
diagram

0 𝐽 𝑅

𝐼

𝑔
𝑔′

commutes. Consider a morphism:

ℎ̂ : 𝑅𝑏 ⊕ 𝐶 → 𝐼

𝑟𝑏 + 𝑐 ↦→ ℎ(𝑐) + 𝑟𝑔′(1)

We show that ℎ̂ is well-defined. If 𝑟𝑏 + 𝑐 = 𝑟 ′𝑏 + 𝑐′, then (𝑟 − 𝑟 ′)𝑏 = 𝑐′ − 𝑐 ∈ 𝐶. It follows that
(𝑟 − 𝑟 ′) ∈ 𝐽. Therefore, ℎ((𝑟 − 𝑟 ′)𝑏) and 𝑔(𝑟 − 𝑟 ′) are defined. Moreover,

ℎ(𝑐′ − 𝑐) = ℎ((𝑟 − 𝑟 ′)𝑏) = 𝑔(𝑟 − 𝑟 ′) = 𝑔′(𝑟 − 𝑟 ′) = (𝑟 − 𝑟 ′)𝑔′(1).
Thus,

ℎ(𝑐′) − ℎ(𝑐) = 𝑟𝑔′(1) − 𝑟 ′𝑔′(1),
which implies that

ℎ(𝑐′) + 𝑟 ′𝑔′(1) = ℎ(𝑐) + 𝑟𝑔′(1)
Clearly, ℎ̂(𝑐) = ℎ(𝑐) so ℎ̂′ extends ℎ. With 𝐶 = 𝑅𝑏 + 𝑐, we have that (𝐶, ℎ) ≤ (𝐶, ℎ̂), so (𝐶, ℎ) =
(𝐶, ℎ̂). Hence 𝑏 ∈ 𝐶, a contradiction. This completes the proof. □

Example 15.3.19. The following are examples of injective objects as can be easily deduced from
Proposition 15.3.18.

(1) Z/𝑛Z is an injective Z/𝑛Z-module for any 𝑛 ≥ 1.
(2) Z/3Z is an injective Z/6Z-module, but not an injective Z/9Z-module.
(3) Q is an injective Z-module. A homomorphism 𝑓 : 𝑛Z → Q extends to a homomorphism

𝑔 : Z→ Q. Just take 𝑦 ∈ Q such that 𝑛𝑦 = 𝑓 (𝑛) and define 𝑔(𝑧) = 𝑧𝑦.
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Corollary 15.3.20. Let 𝐴 ∈ Ab. 𝐴 is an injective Z-module if and only if 𝐴 is a divisible group.

PROOF. Assume that 𝐴 is an injective Z-module. Let 𝑎 ∈ 𝐴 and 𝑛 ∈ Z. Consider the group homo-
morphism

𝑓 : 𝑛Z→ Z
𝑛 ↦→ 𝑎

By assumption, 𝑓 extends to a group homomorphism

𝑓 : Z→ 𝐼

such that 𝑓 (𝑛𝑘) = 𝑓 (𝑛𝑘) for each 𝑘 ∈ Z. Note that we have

𝑎 = 𝑓 (𝑛) = 𝑓 (𝑛 · 1) = 𝑛 𝑓 (1)
Hence, 𝐴 is a divisible group. Conversely, assume that 𝐴 is a divisible group. We show that the
criterion in Proposition 15.3.18 is satisfied. Let 𝐽 ⊆ Z be an abelian subgroup and let 𝑔 : 𝐽 → 𝐴
be a group homomorphism. Let {((𝐾, 𝑔′)} be the set of pairs (𝐾, 𝑔′) such that 𝐽 ⊆ 𝐾 ⊆ Z and
𝑔′ : 𝐾 → Z is a homomorphism with 𝑔′ |𝑈 = 𝑔. The set is non-empty since as it contains (𝐽, 𝐽), and
it is partially ordered by

(𝐾1, 𝑔
′
1) ≤ (𝐾2, 𝑔

′
2) ⇔ 𝐾1 ⊆ 𝐾2 and 𝑔′2 |𝐾1 = 𝑔′1.

It is clear that any ascending chain has an upper bound. By Zorn’s Lemma, the set contains amaximal
element (𝐾, 𝑔′). We claim that 𝐾 = Z. Suppose not. Let 𝑘 ∈ Z \ 𝐾 . If

⟨𝑘⟩ ∩ 𝐾 = {0},
the sum 𝐾 + ⟨𝑘⟩ is in fact a direct sum, and we can extend 𝑔′ to 𝐾 + ⟨𝑘⟩ by choosing an arbitrary
image of 𝑘 in Z and extending linearly. This is a contradiction. Hence, assume that

𝑛𝑘 ∈ ⟨𝑘⟩ ∩ 𝐾
for some 𝑛 ≠ 0. Choose 𝑛0 such that 𝑛0 is minimal. Since 𝑛0 ∈ 𝐾 , and 𝑔′ is defined on 𝐾 , 𝑔′(𝑛𝑘) is
well-defined. Since 𝐴 is divisible, there exists 𝑎 ∈ 𝐴 such that

𝑛𝑎 = 𝑔′(𝑛𝑘).
It is now easy to see that we can extend 𝑔′ to 𝐾 + ⟨𝑘⟩ by defining 𝑔′(𝑘) = 𝑎. This is also a contra-
diction. □

Example 15.3.21. Let 𝒜 = Ab and let 𝑘 be a field of characteristic zero. The functor Hom(−, 𝑘)
is an exact functor. This is because 𝑘 is a divisible group since for any 𝑔 ∈ 𝑘 and 𝑛 ∈ Z, there exists
an ℎ ∈ 𝑘 such that ℎ𝑛 = 𝑔. since Q ⊆ 𝑘 .

15.4. Resolutions & Derived Functors
An arbitrary 𝑅-module, 𝑀 , might be quite complicated to study; however, one can always find a

set of (possibly infinite) generator for 𝑀². In other words, one can always find a surjective morphism
𝐹0 → 𝑀 → 0, where 𝐹0 is a free 𝑅-module. Since 𝑀 is not a free 𝑅-module, the morphism

𝐹0 → 𝑀 → 0
is in general not injective; indeed, the any non-trivial relationship between generators of𝑀 will force
the kernel to be non-zero. However, we can repeat the construction as above: if we take a generating
set for the kernel of the morphism 𝐹0 → 𝑀 → 0, one can always find a morphism 𝐹1 → 𝐹0, which

²A fact we used in a proof in the previous section.
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is surjective onto the kernel of the morphism 𝐹0 → 𝑀 → 0, and where 𝐹1 is a free 𝑅-module on
the generating set of the kernel of the morphism 𝐹0 → 𝑀 → 0. We have the following sequence:

𝐹1 → 𝐹0 → 𝑀 → 0

We can repeat the above process unless it terminates, which only happens when there is no non-trivial
relationship among elements generating the free module at the left end of the sequence

𝐹𝑖 → · · · → 𝐹1 → 𝐹0 → 𝑀 → 0

This motivates the idea of taking a resolution of an object in a category by special types of objects
(free 𝑅-modules in the case considered above) in order to study the structure of the original object
in the category.

15.4.1. Projective & Injective Resolutions. For a object 𝑋 ∈ 𝒜, we will first discuss taking
a resolution of 𝑋 in 𝒜 by projective objects in 𝒜. An arbitrary category may not have projective
objects, though.

Example 15.4.1. Let 𝒜 = AbFin be the category of finite abelian groups. 𝒜 has no projective
objects except for the trivial abelian group. Indeed, the exact sequence

0→ Z/2Z→ Z/2𝑛Z→ Z/𝑛Z→ 0

is non-split, since Z/2𝑛Z is not isomorphic to Z/𝑛Z ⊕ Z/2Z. Hence, Z/𝑛Z is not projective. But
every other non-zero finite abelian group has a direct summand Z/𝑛 and the direct summand of a
projective object is a projective object.

This motivates the following definition:

Definition 15.4.2. 𝒜 has enough projectives if for every 𝑋 ∈ 𝒜 there exists an epimorphism 𝑓 :
𝑃→ 𝑋 → 0 where 𝑃 is a projective object.

Example 15.4.3. Clearly, the category of 𝑅-modules has enough projective objects. Indeed, free
modules are projective objects and free module exist in abdundance in the category of 𝑅-modules.

Definition 15.4.4. A projective resolution of 𝑋 ∈ 𝒜 is a nonnegative complex 𝑃• together with a
morphism 𝜖 : 𝑃0 → 𝑀 such that

· · · → 𝑃3 → 𝑃2 → 𝑃1 → 𝑃0 𝜀−→ 𝑀 → 0

is exact and the 𝑃𝑖’s are projective objects.

Example 15.4.5. In Ab, the abelian group Z/𝑛Z has a projective resolution

0→ Z 𝑛−→ Z→ Z/𝑛Z→ 0.

Proposition 15.4.6. If 𝒜 has enough projectives, then every object has a projective resolution.

PROOF. Take any 𝑋 ∈ 𝒜. There is an epimorphism 𝑃0 → 𝑋 → 0 from a projective object. 𝑃0.
Taking the kernel 𝐾0 → 𝑃0, we have a projective 𝑃1 with an epimorphism 𝑃1 → 𝐾0 → 0. We take
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its kernel 𝐾1 → 𝑃1 and again get a projective 𝑃2 → 𝐾1 →. This way, we get that the diagram:

0 0

𝐾1

· · · 𝑃2 𝑃1 𝑃0 𝑋 0

𝐾0

0 0
Continuing, this gives a projective resolution of 𝑋 . □

We can similarly define injective resolutions.

Definition 15.4.7. 𝒜 has enough injectives if for every 𝑋 ∈ 𝒜 there exists a monomorphism 𝑓 :
0→ 𝑋 → 𝐼 where 𝐼 is an injective object.

Proposition 15.4.8. The category of 𝑅-modules has enough injective objects.
PROOF. See [Rot09, Theorem 3.38]. □

Definition 15.4.9. An injective resolution of 𝑋 ∈ 𝒜 is a non-negative complex 𝐼• together with a
morphism 𝜖 : 0→ 𝑋 → 𝐼0 such that

0→ 𝑋
𝜀−→ 𝐼0 → 𝐼1 → · · ·

is exact and the 𝐼𝑖’s are injective objects.

Proposition 15.4.10. If 𝒜 has enough injectives, then every object has a injective resolution.

PROOF. The statement is the dual of the statement in Proposition 15.4.6, so it is clearly true. □

Example 15.4.11. In Ab, an injective resolution of Z is
0→ Z→ Q→ Q/Z→ 0

and an injective resolution of Z/𝑛Z is
0→ Z/𝑛Z→ Q/Z→ Q/Z→ 0

15.4.2. Derived functors. Derived functors provide us with a tool to quantitatively measure the
failure of a functor to be an exact functor. The philosophy behind derived functors is the following:
if ℱ : 𝒜 → 𝒟 is a left exact functor between two abelian categories, then any short exact sequence
in 𝒜,

0→ 𝐴→ 𝐵→ 𝐶 → 0,
gets transformed to a left exact sequence in 𝒟:

0→ ℱ(𝐴) → ℱ(𝐵) → ℱ(𝐶),
A right derived functor is a a sequence of functors 𝑅𝑖ℱ : 𝒜 → 𝒟 for all 𝑖 ≥ 0 and a functorial
isomorphism 𝑅0ℱ � ℱ such that that for any short exact sequence,

0→ 𝐴→ 𝐵→ 𝐶 → 0,
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in 𝒜 there is a long exact sequence,
0→ 𝑅0ℱ(𝐴) → 𝑅0ℱ(𝐵) → 𝑅0ℱ(𝐶) → 𝑅1ℱ(𝐴) → 𝑅1ℱ(𝐵) → 𝑅1ℱ(𝐶) → 𝑅2ℱ(𝐴) → · · · ,
for all 𝑖 ≥ 0. We expect that 𝑅1ℱ(𝐴) to quantitatively measure the failure of ℱ to be a right exact
functor since 𝑅1ℱ(𝐴) = 0 if and only if the sequence,

0→ ℱ(𝐴) → ℱ(𝐵) → ℱ(𝐶),
is a right exact sequence.

On the other hand, if ℱ : 𝒜 → 𝒟 is a right exact sequence, a left derived functor is a sequence
of functors 𝐿𝑖ℱ : 𝒜 → 𝒟 along with a functorial isomorphism 𝐿0ℱ � ℱ yieldsing a long exact
sequence

· · · → 𝐿1ℱ(𝐴) → 𝐿1ℱ(𝐵) → 𝐿1ℱ(𝐶) → 𝐿0ℱ(𝐴) → 𝐿0ℱ(𝐵) → 𝐿0ℱ(𝐶) → 0.
The theory of left and right derived functors is quite similar. Therefore, in what follows we

shall only focus on left derived functors of covariant functors. The theory of left derived functors of
contravariant functors is similar to the theory of left derived functors of covariant functors, which
we now describe. Left derived functors are constructed by means of projective resolutions.

Definition 15.4.12. Let 𝒜 be a locally small abelian category with enough projectives, 𝒟 be an
abelian category, and ℱ : 𝒜 → 𝒟 be a right exact functor. Given 𝑋 ∈ 𝒜, choose a projective
resolution of 𝑋:

· · · → 𝑃3 → 𝑃2 → 𝑃1 → 𝑃0 𝜀−→ 𝑋 → 0.
Apply ℱ to the above complex to obtain (the truncated) complex:

· · · → ℱ(𝑃3) → ℱ(𝑃2) → ℱ(𝑃1) → ℱ(𝑃0).
The 𝑖-th left derived functor of ℱ is defined as:

𝐿𝑖 (ℱ(𝑋)) = 𝐻𝑖 (ℱ(𝑃•)).
Here 𝐻𝑖 (ℱ(𝑃•)) is the 𝑖-th homology (defined similarly to cohomology) of 𝑃•,

Remark 15.4.13. Ifℱ is a right exact contravariant functor, then the left derived functor is defined
by taking an injective resolution.

The above definition naturally begs the question: is the definition of a left-derived functor well-
defined? If this is the case, the definition of a left-derived functor should be independent of the
projective resolution chosen. We show that this is indeed the case.

Proposition 15.4.14. (Comparison Theorem)Let𝒜 be a locally small abelian category with enough
projectives and let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝒜. Let

· · · 𝑃1 𝑃0 𝑋 0
𝑑𝑋2 𝑑𝑋1 𝑑𝑋0

and
· · · 𝑄1 𝑄0 𝑌 0

𝑑𝑌2 𝑑𝑌1 𝑑𝑌0

be projective resolutions for 𝑋 and 𝑌 . Then there is a sequence of homomorphisms 𝑓 𝑖 : 𝑃𝑖 → 𝑄𝑖

such that the following diagram commutes:

· · · 𝑃1 𝑃0 𝑋 0

· · · 𝑄1 𝑄0 𝑌 0

𝑑𝑋2 𝑑𝑋1

𝑓 1

𝑑𝑋0

𝑓 0 𝑓

𝑑𝑌2 𝑑𝑌1 𝑑𝑌0
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Furthermore, any two such extensions of 𝑓 are chain homotopic.

PROOF. (Existence) We proceed by induction on 𝑖. For the base case, note that since 𝑃0 is projective,
the morphism 𝑓 ◦ 𝑑𝑋0 lifts to a unique morphism 𝑓 0 such that the right most square in the diagram
above commutes. Assume that 𝑓 𝑖 : 𝑃𝑖 → 𝑄𝑖 has been constructed. Denote by ker 𝑑𝑋𝑖 and ker 𝑑𝑌𝑖
denote the kernels of 𝑑𝑋𝑖 and 𝑑𝑌𝑖 , respectively. Since 𝑑𝑋𝑖+1 factors through im𝑑𝑋𝑖+1 which is isomor-
phicm to ker 𝑑𝑋𝑖 , we can think of 𝑑𝑋𝑖+1 as mapping into ker 𝑑𝑋𝑖 . Moreover, 𝑓 𝑖 factors into ker 𝑑𝑌𝑖 since
𝑓 𝑖−1𝑑𝑋𝑖 = 𝑑𝑌𝑖 𝑓

𝑖 . Thus, consider the diagram:

𝑃𝑖+1 ker 𝑑𝑋𝑖 0

𝑄𝑖+1 ker 𝑑𝑌𝑖 0

𝑓 𝑖+1

𝑑𝑋𝑖+1

𝑓 𝑖

𝑑𝑌𝑖+1

The composition 𝑓 𝑖𝑑𝑋𝑖+1 gives a map from 𝑃𝑖+1 to ker 𝑑𝑌𝑖 , onto which 𝑑𝑌𝑖+1 surjects. Thus, the map
𝑓 𝑖+1 is furnished by the defining property of the projective object 𝑃𝑖+1, completing the induction.

(Uniqueness) To show that two extensions { 𝑓 𝑖} and {𝑔𝑖} are chain homotopic, we consider the
difference ℎ𝑖 := 𝑓 𝑖 − 𝑔𝑖 and construct a chain homotopy 𝑠𝑖 : 𝑃𝑖 → 𝑄𝑖+1 such that

ℎ𝑖 = 𝑑𝑌𝑖+1𝑠
𝑖 + 𝑠𝑖−1𝑑𝑋𝑖

We proceed by induction. Observe that ℎ−1 = 𝑓 − 𝑓 ≡ 0, so that ℎ0 maps 𝑃0 ker 𝑑𝑌0 by the universal
property of kernels, and therefore lifts to a map 𝑠0 : 𝑃0 → 𝑄1 as in the following diagram:

𝑃0 𝐴

𝑄1 ker 𝑑𝑌0 0

𝑠0
ℎ0

𝑑𝑋0

0
ℎ−1

𝑑𝑌1

This gives the base case for the induction. Suppose that 𝑠𝑖 : 𝑃𝑖 → 𝑄𝑖+1 has been constructed such
that ℎ𝑖 = 𝑑𝑌𝑖+1𝑠

𝑖 + 𝑠𝑖−1𝑑𝑋𝑖 . It follows that the map ℎ𝑖+1 − 𝑠𝑖𝑑𝑋𝑖+1 maps 𝑃𝑖+1 into ker 𝑑𝑌𝑖+1 since

𝑑𝑌𝑖+1(ℎ𝑖+1 − 𝑠𝑖𝑑𝑋𝑖+1) = ℎ𝑖𝑑𝑋𝑖+1 − (ℎ𝑖 − 𝑠𝑖−1𝑑𝑋𝑖 )𝑑𝑋𝑖+1 = ℎ𝑖𝑑𝑋𝑖+1 − ℎ𝑖𝑑𝑋𝑖+1 = 0.

𝑃𝑖+1

𝑄𝑖+2 ker 𝑑𝑌𝑖+1 0

𝑠𝑖+1
ℎ𝑖+1−𝑠𝑖𝑑𝑋𝑖+1

𝑑𝑌𝑖+2

Thus we have the diagram above and projectivity furnishes the map 𝑠𝑖+1 such that 𝑑𝑌𝑖+2𝑠
𝑖+1 = ℎ𝑖+1 −

𝑠𝑖𝑑𝑋𝑖+1. □

As a consequence of the comparison theorem, if 𝑃• is a projective resolution for 𝑋 and 𝑄• is a
projective resolution for 𝑌 such that there is a morphism 𝑓 : 𝑋 → 𝑌 , we get a well-defined map

𝐻𝑖 (𝐹 (𝑃•)) −→ 𝐻𝑖 (𝐹 (𝑄•)),
which is an isomorphism by the chain homotopy conclusion in the comparison theorem. Similarly,
we have:
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Corollary 15.4.15. Let 𝒜,𝒟 be abelian categories. The following are corollaries of Proposi-
tion 15.4.14:

(1) Suppose that 𝑃• and 𝑄• are projective resolutions of 𝑋 ∈ 𝒜. Then there is a canonical
isomorphism between 𝐻𝑖 (ℱ(𝑃•)) and 𝐻𝑖 (ℱ(𝑄•)) for each 𝑖 ≥ 0.

(2) letℱ : 𝒜 → 𝒟 be a right exact functor. For any 𝑋 ∈ 𝒜, 𝐿0ℱ(𝑋) � ℱ(𝑋).
(3) Letℱ : 𝒜 → 𝒟 be a functor. If 𝑃 is a projective object in𝒜, then 𝐿𝑖ℱ(𝑃) = 0 for 𝑖 ≥ 1.

PROOF. The proof proceeds as follows:
(1) If 𝑃• and 𝑄• are two projective resolutions of 𝑋 ∈ 𝒜, then Id𝑋 : 𝑋 → 𝑋 gives rise to

unique maps (up to homotopy) by the Proposition 15.4.14 such that the diagram

· · · 𝑃1 𝑃0 𝑋

· · · 𝑄1 𝑄0 𝑋

𝑓 1 𝑓 0

Id𝑋
𝑔1 𝑔1

Id𝑋

commutes. Hence, there are two chain homotopies

𝑠 : 𝐻•(ℱ(𝑃•)) → 𝐻∗(ℱ(𝑄•))
𝑞 : 𝐻•(ℱ(𝑄•)) → 𝐻∗(ℱ(𝑃•))

such that both 𝑠𝑞 and 𝑞𝑠 compose to the identity (by uniqueness up to homotopy). Hence
the derived functor is well-defined: for two choices of projective resolutions of objects, the
construction yields isomorphic derived functors.

(2) Choose a projective resolution of 𝑋:

· · · → 𝑃3 → 𝑃2 → 𝑃1 → 𝑃0 𝜀−→ 𝑋 → 0.

Since ℱ is right exact, the sequence

ℱ(𝑃1) 𝜑−→ ℱ(𝑃0) 𝜓−→ ℱ(𝑋) → 0

is exact. Hence, 𝜓 is an epimorphism and 𝜓 is the cokernel of 𝜑. By the first isomorphism
theorem,

ℱ(𝑋) � ℱ(𝑃0)
ker𝜓

�
ℱ(𝑃0)
im𝜑

� coker𝜑

Hence, we have

𝐿0ℱ(𝑋) = 𝐻0(ℱ(𝑃•)) � coker𝜑 � ℱ(𝑋).
(3) Consider the projective resolution:

· · · → 0 · · · → 0→ 𝑃
Id𝑃−−−→ 𝑃→ 0

Hence, we consider the homology of the complex:

· · · → 0 · · · → 0→ ℱ(𝑃)
and it is clear that

𝐿𝑖ℱ(𝑃) � 𝐻𝑖 (ℱ(𝑃•)) = 0
for 𝑖 ≥ 1.

□
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We now prove the horseshoe lemma (Lemma 15.4.16). The horsehoe lemma allows us to con-
struct a short exact sequence of projective resolutions given a short exact sequence of objects in an
abelian category. In the statement and the proof of the horseshoe lemma, for ease of notation we use
subscripts instead of superscipts to label indices of all projective objects.

Lemma 15.4.16. (Horseshoe Lemma) Let𝒜 be an abelian category and let

0→ 𝐴→ 𝐴′ → 𝐴′′ → 0

be a short exact sequence in 𝒜. Assume that there are projective resolutions 𝑃• and (𝑃′′)• of 𝐴
and 𝐴′′ respectively. Then there is projective resolution (𝑃′)• of 𝐴′ such that the following diagram
commutes.

0 0 0

· · · 𝑃1 𝑃0 𝐴 0

· · · 𝑃′1 𝑃′0 𝐴′ 0

· · · 𝑃′′1 𝑃′′0 𝐴′′ 0

0 0 0

𝑗

PROOF. Composition gives a map 𝑃0 → 𝐴′, and a map 𝑃′′0 → 𝐴′ is furnished by projectivity. Using
the universal property of the co-product, these combine to give a map 𝑃0 ⊕ 𝑃

′′
0 → 𝐴′, and we set

𝑃′0 := 𝑃0 ⊕ 𝑃
′′
0 . The sequence 𝑃0 → 𝑃0 ⊕ 𝑃′′0 → 𝑃

′′
0 is obviously split exact, we will show that the

morphism 𝑃0 ⊕ 𝑃′′0 → 𝐴′ is an epimorphism. This follows by applying the snake lemma to the two
right most exact columns, yielding a morphism ker 𝜀′′0 → 0→ coker 𝜀′0.

0 0 0

ker 𝜖0 𝑃0 𝐴 0

ker 𝜖 ′0 𝑃0 ⊕ 𝑃′′0 𝐴′ coker𝜀′0

ker 𝜖 ′′0 𝑃′′0 𝐴′′ 0”

0 0 0

𝜀0

𝜀′0

𝜀′′0

By the snake lemma (Proposition 4.6.3), the left most column is exact and the connecting morphism
yields a sequence which has a subsequence of the form

· · · → 0→ coker 𝜀′0 → 0→ · · ·

Hence, coker 𝜀′0 = 0 and the morphism 𝑃0 ⊕ 𝑃′′0 → 𝐴′ is an epimorphism. We then apply the same
procedure to the diagram with kernels to construct 𝑃1⊕𝑃′′1 → ker𝜀′0, where the product is projective
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and the map is an epimorphism onto the kernel.

0 0 0 0

𝑃1 ker 𝜖0 𝑃0 𝐴 0

𝑃1 ⊕ 𝑃′′1 ker 𝜖 ′0 𝑃0 ⊕ 𝑃′′0 𝐴′ 0

𝑃′′1 ker 𝜖 ′′0 𝑃′′0 𝐴′′ 0

0 0 0 0

𝜀0

𝜀′0

𝜀′′0

We continue this way iteratively and construct 𝑃𝑛 = 𝑃𝑛 ⊕ 𝑃′′𝑛 at the 𝑛-th step with the desired
properties. □
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