
TOPOLOGICAL K-THEORY

JUNAID AFTAB

Abstract. These are notes on topological K-theory. I compiled them during my
graduate studies at the University of Maryland while participating in a reading course
under the guidance of Dr. Jonathan Rosenberg. If you notice any typos or errors,
please feel free to send corrections to junaid.aftab1994@gmail.com.

Contents

1. Why K-Theory? 1

Part 1. Vector Bundles 2
2. Definitions & Examples 2
3. Transition Functions 4
4. Sections of Vector Bundles 7
5. Operations on Vector Bundles 9
6. Vector Bundles Over Paracompact Spaces 12
7. Vector Bundles Over Spheres 16
8. Classification of Vector Bundles 18

Part 2. K-Theory 24
9. Unreduced and Reduced K-Theory 24
10. Representability of K-Theory 28

Part 3. References 30
References 30

1. Why K-Theory?

Let X be a topological space. The premise behind K-theory is that the global topo-
logical properties of X can be studied by studying vector bundles over X. K-theory
is a generalized cohomology theory that formalizes this idea. K-theory can be used to
address the following questions:

(1) Which spheres Sn are parallelizable? Adams’ proof that only S0,S1,S3, S7 are
parallelizable1 used K-theory. The solution to this problem is related to the
classification of division algebras.

(2) How many linearly independent vector fields are there on Sn, or more generally
on any smooth manifold M?

K-theory also provides the framework for other related ideas in mathematics, such
as the Atiyah-Singer index theorem. More recently, K-theory has also been applied to
physics, both in high-energy theory and condensed matter physics. Specific applications
include the classification of topological insulators and topological phases of matter.

1A smooth manifold is parallelizable if its tangent bundle is trivial.
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Part 1. Vector Bundles

In what follows, let K be either R or C. We work in the category of topological spaces,
Top.

2. Definitions & Examples

Definition 2.1. Let E,X ∈ Top. A K-vector bundle is a triple (E,X, π), where
π : E → X is a continuous surjective map such that:

(1) For every x ∈ X, the fiber π−1(x) := {v ∈ E | π(v) = x} := Eπ−1(x) is a K-vector
space.

(2) For every x ∈ X, there exists an open neighborhood Ux of x in X and a homeo-
morphism φx : π−1(Ux)→ U ×Knx for some integer nx ∈ N (possibly depending
on x) such that the following diagram commutes:

π−1(Ux) Ux ×Knx

U

φx

π proj1

Here proj1 denotes the projection onto the first factor. The map φ is called a
local trivialization.

X is called the base space and E is called the total space.

If the map x 7→ nx in the definition of a vector bundle is constant, we say that the
vector bundle is of rank n if the image of this constant map is n ∈ N. We shall mostly be
concerned with this case. If the constant dimension is n, we say that the vector bundle
is of rank n which we write as dimX.

Remark 2.2. It can be argued that the dimension of a fibre is locally constant. In
particular, it is constant on each connected component of X and if X is connected then
the dimension is constant. From now on we implicitly assume that all topological spaces
are connected in order for the rank of a vector bundle to be well-defined.

Remark 2.3. The pair (Ux, φx) is called a locally trivializing cover. In what follows, we
shall occasionally write a locally trivializing cover as {(Uα, φα)}α or simply as {Uα}α.
If we need to emphasize the choice of x ∈ X, we will replace α with x.

Remark 2.4. In what follows, we simply use the phrase vector bundle to refer to a
generic K-vector bundle, assuming the base field K is understood. Moreover, if (E,X, π)
is a vector bundle, we will from time to time write that E → X is a vector bundle, or
simply that E is a vector bundle.

Example 2.5. Let X ∈ Top. The trivial rank n vector bundle is X×Kn → X with the
map being the the usual projection map. It is clear that this is a vector bundle since
X ×Kn → X is a continuous surjection such that the following diagram commutes:

X ×Kn X ×Kn

X

Id

proj1

Remark 2.6. For n = 0, we identify X ∼= X × K0. The trivial vector bundle X × Kn

is sometimes written as εn for n ∈ N ∪ {0}.
If it is possible to choose Ux = X for some x ∈ X, then the vector bundle is called a

trivial bundle. Every vector bundle locally resembles a trivial bundle, although perhaps
not globally. Hence, a vector bundle can be thought of as a twisted product space.
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Example 2.7. Let’s consider two examples derived from the category of smooth mani-
folds which give examples of smooth vector bundles. However, we will not define smooth
vector bundles here.

(1) Let M be a smooth manifold. The tangent bundle, (TM,M, π), of a smooth
manifold is a (smooth) vector bundle. The map π is the projection map and
the vector space structure on the fibers is the usual one. The local trivialization
are defined as follows. Given any smooth chart (U,φ) for M , define a map
φ : π−1(U)→ U × Rn by

φ(p, vi∂i) = (p, v1, · · · , vn).
The composite map

π−1(U)
φ−→ U × Rn φ×Id−−−→ φ(U)× Rn

is equal to the coordinate map that makes the TM into a smooth manifold.
Since both the coordinate map and φ× Id are diffeomorphisms, so is φ.

(2) (Sketch) Similarly, the normal bundle to a smooth manifold, denoted as NM , is
an example of a (smooth) vector bundle.

Remark 2.8. A number of examples given below are also instances of smooth vector
bundles. However, we will not discuss the nuanced details in these notes.

Example 2.9. Let RPn ∼= Sn/Z2. The rank one bundle over RPn is a vector bundle
with total space

γ1n+1 = {([x], v) ∈ RPn × Rn+1 | v = tx for some t ∈ R×}

endowed with the subspace topology. The map π : γ1n+1 → RPn is just the projection.
For [x] ∈ RPn, let x ∈ U ⊆ Sn be any open set such that U∩a(U) = ∅, where a : Sn → Sn
is the antipodal map. Let Ux denote the image of U in RPn. A homeomorphism
φx : Ux × R→ π−1(Ux) is defined by the requirement that

φx([y], t) = ([y], ty)

for each (y, t) ∈ U × R. The pair (Ux, φx) is a local trivialization of γ1n+1.

Remark 2.10. Rank one vector bundles are called line bundles. The rank one vector
bundle over RPn is called the canonical line bundle.

Definition 2.11. Let Xi, Ei ∈ Top and let (E1, X1, π1) and (E2, X2, π2) be two vector
bundles. A morphism of vector bundles is given by a pair of continuous functions
f : E1 → E2 and g : X1 → X2 such that the following diagram commutes:

E1 E2

X1 X2

f

π1 π2

g

Remark 2.12. The commutativity of the diagram implies that for each x ∈ X, the map
f in a morphism of vector bundles maps each vector space E1,π−1

1 (x1)
linearly onto the

corresponding vector space E2,π−1
2 (g(x1))

An important special case we will consider is when X1 = X2 = X. In this case,
g = IdX .

E1 E2

X

f

π1 π2
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Two vector bundles (E1, X, π1) and (E2, X, π2) (of the same rank) are isomorphic if the
map f from E1 to E2 is a fiber preserving homeomorphism.

Example 2.13. Let X ∈ Top, and let E = X × Kn and F = X × Km be two trivial
bundles over X. Any morphism φ : E → F determines a map

φ : X → Hom(Kn,Km)

by the formula

φ(x)(v) = proj2(φ(x))v

If we give Hom(Kn,Km) ∼= Knm its usual topology, then φ is continuous. Conversely, any
such continuous map φ : X → Hom(Kn,Km) determines a homomorphism φ : E → F .

Note that a the total space of a vector bundle is a topological space such that the
fibers are vector spaces. This begs the question: is it possible to infer properties about a
morphism of vector bundles if only partial information about the action of the morphism
on the fibers is provided. The answer is yes, and here is a sample proposition along these
lines:

Lemma 2.14. Let X ∈ Top, and let (E1, X, π1) and (E1, X, π2) be two vector bundles.
Let f : E1 → E2 be a morphism of vector bundles. For each x ∈ X, if fx := f |π−1

1 (x) is

a linear isomorphism for each fiber π−1
1 (x), then f is an isomorphism of vector bundles.

Proof. The map f is one-to-one and onto, since each fx is a linear isomorphism and f
takes each fiber in E1 to the corresponding fiber in E2. Since continuity is only a local
condition, we may WLOG assume that E1 = X×Kn and E2 = X×Kn are trivial vector
bundles. By Example 2.13, a continuous function f from E1 to E2 yields a continuous
maps of the form

φ : X → Hom(Kn,Kn)

By assumption, φ(X) ⊆ Isom(Kn,Kn), the set of isomorphism from from Kn to Kn.
This allows us to construct

φ′ : X → Hom(Kn,Kn),

which yields a continuous map f ′ : E2 → E1 which is a continuous inverse of f . □

Example 2.15. The following is a list of some examples of isomorphisms of vector
bundles.

(1) Let S1 ⊆ C. The map

f : S1 × R→ TS1

φ(eiθ, t) = (eiθ, tieiθ)

is an isomorphism of vector bundles since fx : R→ TxS1 is a linear isomorphism
for each x ∈ S1.

(2) Similarly, the normal bundle NSn is isomorphic to the trivial vector bundle
Sn × R by the map

f : NSn → Sn × R
(x, tx) 7→ (x, t)

3. Transition Functions

Any vector bundle that is not a trivial (product) bundle requires more than one local
trivialization. Lemma 3.1 shows that the composition of two local trivializations has a
simple form where they overlap:
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Lemma 3.1. Let X,E ∈ Top and let π : E → X be a rank n vector bundle. Suppose

φα : π−1(Uα)→ Uα ×Kn

φβ : π−1(Uβ)→ Uβ ×Kn

are two local trivializations of E with Uα ∩ Uβ ̸= ∅. There exists a continuous map
θαβ : U ∩ V → GL(n,K) called a transition function such that the composition gαβ :=

φα ◦ φ−1
β : (Uα ∩ Uβ)×Kn → (Uα ∩ Uβ)×Kn has the form

φα ◦ φ−1
β (x, v) = (x, gαβ(x)v),

Proof. The following diagram commutes:

(Uα ∩ Uβ)×Kn π−1(Uα ∩ Uβ) (Uα ∩ Uβ)×Kn

Uα ∩ Uβ

proj1

φβ φα

π
proj1

Hence,

φα ◦ φ−1
β (x, v) = (x, ηαβ(x, v))

for some continuous map ηαβ : U ∩ V ×Kn → Kn. For each fixed x ∈ U ∩ V , we have:

(x, v) = IdUα∩Uβ
= (φβ ◦ φ−1

α ) ◦ (φα ◦ φ−1
β )(x, v) = (x, ηβα ◦ ηαβ(x, v))

Hence, (ηβα ◦ηαβ)(x, ·) = IdKn for each fixed x ∈ X. Moreover, each ηαβ(x, ·) is K-linear
since

φα ◦ φ−1
β (x, c1v1 + c2v2) = c1(φα ◦ φ−1

β )(x, v1) + c2(φα ◦ φ−1
β )(x, v2)

for each fixed x ∈ X. So there is a non-singular n×nmatrix gαβ(x) such that ηαβ(x, v) =
gαβ(x)v. Hence, we have a map gαβ : Uα ∩ Uβ → GL(n,K). It can be checked that this
map is continuous. □

The maps gαβ are called transition function. The transition functions satisfy the
following properties:

Lemma 3.2. Let E,X ∈ Top and let π : E → X be a rank n vector bundle with
transition function gαβ’s. The transition functions satisfy the following properties:

(1) gγβgβα(x)(x) = gγα(x), for all x ∈ Uα ∩ Uβ ∩ Uγ.
(2) gαα(x) = IdKn, for all x ∈ Uα.
(3) gβα(x) = g−1

αβ (x), for all x ∈ Uα ∩ Uβ.

Proof. It suffices to prove (1). On Uα ∩ Uβ ∩ Uγ , we have:

(φα ◦ φ−1
β ) ◦ (φβ ◦ φ−1

γ ) = φα ◦ φ−1
γ .

Hence,

gγβgβα(x)(x) = gγα(x)

for all x ∈ Uα ∩ Uβ ∩ Uγ . (2) follows by letting β, γ = α and using the fact that gαα(x)
admits a smooth inverse. (3) follows from (1) and (2). □

Using Lemma 3.1 as motivation, we can also reverse the reasoning and start with an
open cover {Uα}α of X and then patching together different Uα × Kn to form a total
space E using the consistency demanded by the transition functions as in Lemma 3.2.
Considering this, we construct a vector bundle as follows:
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Proposition 3.3. Let X ∈ Top. Assume we are given an open cover {Uα}α of X, and
a family of continuous functions

{gαβ : Uα ∩ Uβ → GL(n,K)}
satisfying the conditions in Lemma 3.2. There is a rank n vector bundle π : E → X
with local trivializations φα : π−1(Uα) → Uα × Kn whose transition functions are the
given maps gαβ’s.

Proof. Let

E′ =
∐
α

{α} × Uα ×Kn

Define an equivalence relation ∼ on E as follows:

(α, x, v) ∼ (β, y, w) ⇐⇒ x = y v = gαβ(x)w

Let us check that ∼ is indeed an equivalence relation.

• The relation is reflexive since

(α, x, v) ∼ (α, x, gαα(x)v) = (α, x, IdKn · v) = (α, x, v).

• It is also symmetric since if (α, x, v) ∼ (β, x, w), then it follows

w = g−1
αβ (x)v = gβα(x)v

Hence, (β, x, w) ∼ (α, x, v) and ∼ is symmetric.
• If (α, x, u) ∼ (β, x, v) and (β, x, v) ∼ (γ, x, w), then u = gαβ(x)v and v =
gβγ(x)w. Therefore,

u = gαβ(x)v = gαβ(x)gβγ(x)w = gαγ(x)w

Hence (α, x, u) ∼ (γ, x, w). Hence ∼ is transitive.

Let E = E′/ ∼ and π : E → X that maps [α, x, v] to x. If W is a subset of Uβ ×Kn,
then

q−1 (q(β ×W )) =
∐
α

α× hαβ(W ),

where hαβ : Uα ∩ Uβ ×Kn → Uα ∩ Uβ ×Kn is defined by

hαβ(x, v) = (x, gαβ(x)v).

In particular, if {β} ×W is an open subset of {β} × Uβ ×Kn, then

q−1 (q({β} ×W ))

is an open subset of
∐

α{α} × Uα × Kn. Thus, q is an open continuous map. Since its
restriction qα ≡ q|{α}×Uα×Kn is injective,

(qα({α} × Uα ×Kn), q−1
α )

is an atlas for E. Hence E is a topological manifold. Note that for x ∈ X, the fiber
Eπ−1(x) := π−1(x) is the set of all equivalence classes of the form [(α, x, v)] for arbitrary
v and α such that x ∈ Uα. We can define a vector space structure on Eπ−1(p) by choosing
a fixed Uα containing x and setting

c1[(α, x, v1)] + c2[(α, x, v2)] = [(α, x, c1v1 + c2v2)]

for c1, c2 ∈ K. The fact that the maps v 7→ gαβ(x)v are all linear isomorphisms guar-
antees that this is independent of the choice of α. The projection map π : E → X
is continuous since it induces projection maps on the charts. The local trivialization
condition is met by construction. We conclude that π : E → X is a vector bundle. □

Remark 3.4. It can be showed that the vector bundle constructed above is unique (up
to isomorphism). We skip the details.
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Given a vector bundle (E1, π1, X), recall that can we find transition functions. Is the
vector bundle (E2, π2, X) constructed with these transition functions is isomorphic to
E1? Yes:

Proposition 3.5. Let (E1, X, π1) be a vector bundle with local trivializations

φα : π−1
1 (Uα)→ Uα ×Kn

The vector bundle (E2, X, π2), constructed using the gluing functions

gαβ : Uα ∩ Uβ → GL(n,K), gαβ(x, v) = (x, φαβ(x)v)

is isomorphic to (E1, X, π1).

Proof. Invoking Lemma 2.14, we must ensure we can find a homeomorphism f : E1 → E2

restricting to a linear isomorphism in each fiber. This function f is given by

f : E1 → E2, (x, v) 7→ [α,φα(x, v)],

where α is chosen such that x ∈ Uα. To see that f is well-defined, consider x ∈ Uα∩Uβ,
then

[β, φβ(x, v)] = [α,φαβφβ(x, v)] = [α,φα(x, v)]

We also need to check that f is a homeomorphism. To verify that f is continuous,
consider the composition

Uα ×Kn (φ2
α)

−1

−−−−→ π−1
2 (Uα)

f−→ π−1
1 (Uα)

φ1
α−−→ Uα ×Kn,

which is the identity and hence continuous. Henc, f is continuous. We construct an
inverse:

f−1 : E2 → E1, [α, b, v] 7→ (b, φ−1
α (v)).

By a similar check as before, we see that f−1 is well-defined and continuous. The last
thing to check is that the functions restrict to a linear isomorphism on each fiber. Fix
x ∈ X, then

f |π−1
1 (x) : (x, v) 7→ [α,φα(x, v)],

for x ∈ Uα is a linear isomorphism since φα restricts to a linear isomorphism on π−1
1 (x).

□

4. Sections of Vector Bundles

How does one distinguish between two non-isomorphic vector bundles? This, in gen-
eral, is a difficult topological problem. Studying sections on vector bundles can help us
with this task.

Definition 4.1. Let E,X ∈ Top and let (E,X, π) be a vector bundle. A local section
is a continuous map s : U → E for some open set U ⊆ X such that π ◦ s = IdU . In
other words, a section s : U → E is such that for each x ∈ U , s(x) ∈ π−1(x). The space
of local sections is denoted as Γ(U,E).

Remark 4.2. If U = X, then a local section is called a global section. We simply use
the phrase section in this case.

Remark 4.3. A section is called the zero section if s(x) is the zero vector of π−1(x) for
each x ∈ X. A section is called nowhere zero if s(x) is a non-zero vector of π−1(x) for
each x ∈ X.

Example 4.4. A section of the trivial bundle X × Kn → X is a continuous function
f : X → Kn.
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Note that every vector bundle has a zero section, and a trivial vector bundle has a
nowhere zero section. Thus, if vector bundle has no nowhere zero sections, then the
vector bundle is not isomorphic to the trivial bundle.

Example 4.5. Let s : RPn → γ1n+1 be any section, and consider the composition

Sn → RPn s−→ γ1n+1

which carries each x ∈ Sn to some pair ({±x}, t(x)x) ∈ γ1n+1. The map x 7→ t(x) is
a continuous map Sn → R. Since the composition defined above agrees on antipodal
points, we have t(−x) = −t(x). This follows from the computation:

([x], t(x)x) = ([−x], t(−x)(−x)) = ([x],−t(−x)x)

Since Sn is connected, it follows from the intermediate value theorem that t(x0) = 0
for some x0 ∈ Sn. Hence, s cannot be everywhere non-zero. Thus, γ1n+1 is not a trivial
vector bundle.

Example 4.6. Consider TSn. A section is just a vector field on Sn. By the Hairy Ball
Theorem, Sn has a non-vanishing vector field if and only if n is odd. From this, it follows
that the tangent bundle of TSn is not isomorphic to the trivial bundle if n is even and
nonzero.

Remark 4.7. Let π : E → X be a vector bundle. We show that π is a homotopy
equivalence. Let s be the zero section, we have π ◦ s = IdX . Let x ∈ X, v ∈ Ex, the map
πt(v) = tv is well defined π1 = IdE , s ◦ π = π0. This is equivalent to saying that s ◦ π
is homotopic to IdE.

Let’s push the idea further of studying the classification of vector bundles by studying
sections on a vector bundle. We do this by studying families of sections on a vector
bundle.

Definition 4.8. Let E,X ∈ Top and let (E,X, π) be a vector bundle. Let {s1, . . . , sn}
be a collection of sections. The sections s1, . . . , sn are called nowhere linearly de-
pendent if, for each x ∈ X, the vectors {s1(x), . . . , sn(x)} are linearly independent.

The existence of nowhere dependent sections is rather special:

Proposition 4.9. Let E,X ∈ Top and let (E,X, π) be a rank n vector bundle. Then
(E,X, π) is a trivial vector bundle if and only if it admits n global sections s1, . . . , sn
which are nowhere linearly dependent.

Proof. A n-dimensional trivial vector bundle clearly admits n nowhere linearly depen-
dent global sections. Conversely, let s1, . . . , sn be global sections of the vector bundle
which are nowhere linearly dependent. Define f : X ×Kn → E by

f(x, x) = x1s1(x) + . . .+ xnsn(x).

Evidently, f is continuous and maps each fiber of the trivial bundle is mapped isomor-
phically onto the corresponding fiber of E → X. Lemma 2.14 implies that f is an
isomorphism of bundles, and the vector bundle is trivial. □

Remark 4.10. In fact, the argument in Proposition 4.9 can be adapted to show that
there if E → X is a vector bundle, we have a bijection

{Local Trivializations} ←→ {Existence of Linearly Independent Local Sections}

Example 4.11. TS1 admits one nowhere zero section

s(x1, x2) = ((x1, x2), (−x2, x1)).
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We can rewrite this in terms of complex numbers. If we set z = x1 + ix2, then the
section s is given by

z 7→ iz.

Hence, TS1 is the trivial vector bundle.

Example 4.12. The tangent bundle to the 3-sphere S3 ⊆ R4 admits three nowhere
linearly dependent sections si(x) = (x, si(x)) where

s1(x) = (−x2, x1,−x4, x3),

s2(x) = (−x3, x4, x1,−x2),
s3(x) = (−x4,−x3, x2, x1)

It is easy to check that the three vectors s1(x), s2(x), and s3(x) are orthogonal to each
other and to x = (x1, x2, x3, x4). Hence, s1, s2, and s3 are nowhere linearly dependent
sections of the tangent bundle of S3 in R4 2. Hence, TS3 is the trivial vector bundle.

5. Operations on Vector Bundles

We discuss some constructions allowing us to construct new vector bundles bundles
out of known vector bundles. Most of the ensuing constructions will assume that we
are working over the same base space. Before discussing some elaborate constructions,
we note some easy constructions that allow us to construct new vector bundles. Let
π : E → X be a rank n vector bundle.

(1) (Restriction) If A ⊆ X, then

π|A : π−1(A)→ A

is clearly a vector bundle of rank n. Indeed, if {(Uα, φα)}α be a locally trivializing
cover for π : E → X, the sets Vα = Uα ∩A form an open covering of A, and

φα|π−1(Vα) : π
−1(Vα)→ Vα ×Kn

are the required locally trivializing maps. We call this vector bundle the restric-
tion of E over A.

(2) (Subbundle) (Sketch) If F ⊆ E is subspace with the subspace topology such
that Fπ−1(x)∩Eπ−1(x) is a vector subspace of Eπ−1(x) of fixed dimension for each
x ∈ X, then the restriction

πF : F → X

is a vector bundle. As in (1), it can be easily checked that this is a vector bundle.
We call this a vector sub-bundle of E.

(3) (Products) If π1 : E1 → X and π2 : E2 → X are two vector bundles of ranks
n1 and n2, respective, then

π1 × π2 : E1 × E2 → X ×X
is a vector bundle of rank n1+n2. This is called a product vector bundle. Indeed,
if {(Uα, φα)}α be a locally trivializing cover for π1 : E1 → X, and let {(Vβ, ψβ)}β
be a locally trivializing cover for π2 : E2 → X. Consider the maps

φα × ψβ : (π1 × π2)−1(Uα × Vβ)→ (Uα × Vβ)×Kn1+n2

Then {(Uα × Vβ, φα × ψβ)}α,β is the required local trivialization.

We now discuss some other interesting constructions of vector bundles.

2The above formulas come in fact from the quaternion multiplication in R4. If we identify H with R4

via the coordinates (x1, x2, x3, x4), then we can describe the three sections s1, s2, and s3 of the tangent
bundle of S3 in H by the formulas s1(z) = iz, s2(z) = jz, and s3(z) = kz.
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(1) (Quotient Bundle) Let π : E → X be a rank n vector bundle, and let E′ ⊆ E
be a rank n′ subbundle. We can form a quotient bundle, E/E′ → X, such that

(E/E′)π−1(x) = Eπ−1(x)/E
′
π−1(x)

for each x ∈ X. Since E′ is a subbundle, we can choose a system of trivializations
{(Uα, φα)}α such that

φα : π−1(Uα)→ Uα × (Kn′ × {0}) ⊆ Uα ×Kn

if a diffeomorphism. Let qn′ : Kn → Kn−n′
be the projection onto the last (n−n′)

coordinates. Then, the trivializations for E/E′ are given by {(Uα, {Id × qn′} ◦
φα)}.

(2) (Dual Bundle) Let π : E → X be a rank vector bundle with local trivialization
{(Uα, φα)}α. Let

{gαβ : Uα ∩ Uβ → GL(n,K)}
be the gluing functions. Consider the gluing functions:

{g∗αβ : Uα ∩ Uβ → GL(n,K)}

where g∗αβ is (g−1)Tαβ if K = R and (g−1)†αβ if K = C. It is easy to see that these

gluing functions satisfy the condition of Proposition 3.3. The corresponding
vector bundle E∗ → X is the dual bundle of E → X.

(3) (Whitney Sum) Let π1 : E1 → X and π2 : E2 → X be two vector bundles of
ranks n1 and n2 respectively. Let {(Uα, φ

1
α)}α and {(Uβ, φ

2
β)}β be local trivial-

izations for E1 and E2 respectively. Then {Uα ∩ Uβ}α,β is an open cover for X.
We write Wα,β = Uα ∩ Uβ. Let

{giαβα′β′ :Wαβ ∩Wα′β′ → GL(ni,K)}

be the gluing functions of Ei for i = 1, 2. Consider the gluing functions given by

{g1αβα′β′ ⊕ g2αβα′β′ :Wαβ ∩Wα′β′ → GL(n1 + n2,K)}.

Utilizing the isomorphism Kn1 ⊕Kn2 ∼= Kn1+n2 , we can express g1αβα′β′ ⊕ g2αβα′β′

in matrix form:

g1αβα′β′ ⊕ g2αβα′β′ =

(
g1αβα′β′ 0

0 g2αβα′β′

)
.

It is easy to see that these gluing functions satisfy the condition of Proposi-
tion 3.3. The corresponding vector bundle E1 ⊕ E2 → X the direct sum or
Whitney sum of E1 and E2.

(4) (Tensor Bundle) This is the same as (2). Just replace ⊕ with ⊗ and n1 + n2
by n1n2.

(5) (Hom Bundle) If π1 : E1 → X and π2 : E2 → X are two vector bundles, we
can define the vector bundle Hom(E1, E2)→ X by

Hom(E1, E2) := E∗
1 ⊗ E2,

Remark 5.1. We have a bijection

{Sections of Hom(E1, E2)→ X} ←→ {Vector Bundle MorphismsE1 → E2}

Indeed, if f : E1 → E2 is a vector bundle morphism, then there is an associated section

σ : X → Hom(E1, E2)

x 7→ fx.
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Conversely, if σ : X → Hom(E1, E2) is a section of π, then we obtain a vector bundle
morphism

f : E1 → E2

e1 7→ σ(π1(e1))(e1).

It is clear that this defines a bijection.

Remark 5.2. Here is another way to consider the Whitney sum of two vector bundles.
Let π1 : E1 → X and π2 : E2 → X be two vector bundles of ranks n1 and n2 respectively.
The Whitney sum is the restriction of the product E1 × E2 over the diagonal ∆ =
{(x, x) ∈ X ×X} is exactly E1 ⊕ E2.

Example 5.3. The following is a basic list of examples of the Whitney sum construction:

(1) The direct sum of two trivial bundles is again a trivial bundle.
(2) The direct sum of nontrivial bundles can also be trivial. For example, we have,

TSn ⊕NSn ∼= Sn ×Kn+1

The map yield the desired isomorphism is simply given by (x, v, tx) 7→ (x, v+tx).

Example 5.4. If E → X is a line bundle, then Hom(E,E) ∼= E∗⊗E is a trivial bundle.
Indeed, it suffices to show that there exists a non-vanishing global section and the global
section

σ : X → Hom(E,E)

x 7→ IdEx

does the job.

We can also invoke categorical constructions two construct new vector bundles out of
previously known vector bundles. We now discuss one such construction, the pullback
of a vector bundle.

Proposition 5.5. (Pullback) Let X,Y be topological spaces, and let π : E → X be
a vector bundle. Given a continuous map f : X → Y , there exists a vector bundle
f∗π : f∗E → X with a map f∗ : f∗E → E taking the fibers of f∗E isomorphically onto
the corresponding fibers of E.

f∗E E

X Y

f∗

f∗π π

f

Proof. Consider
f∗E := {(x, e) ∈ X × E | f(x) = π(e)},

Let f∗π and f∗ be projections onto the first and second coordinates, respectively. Con-
sider the product vector bundle

IdX ×π : X × E → X × Y
Consider the graph of f :

Γf = {(x, y) ∈ X × Y | y = f(x)}
Note that we have

(x, e) ∈ (IdX ×π)−1(Γf ) ⇐⇒ f(x) = π(e).

Hence, the inverse image of Γf is f∗E. Uniqueness follows from categorical nonsense.
Indeed, the pullback bundle is nothing other than the fibered product in a category-
theoretic sense. □
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Example 5.6. The following is a basic list of examples of the pullback:

(1) The restriction of a vector bundle π : E → X over a subspace A ⊆ X can be
viewed as a pullback with respect to the inclusion map A ↪→ X.

(2) Let f be a constant map, having an image as a single point y ∈ Y . Then f∗(E)
is just the product X × π−1(y), a trivial bundle.

(3) The tangent bundle TSn is the pullback of the tangent bundle TRPn via the
quotient map Sn → RPn. Indeed, we define a map

TSn TRPn

Sn RPn

dF

F

Here dF is the differential of the quotient map F . Note that dF sends (p, v) ∈
TSn to the corresponding equivalence class ([p], v) in TRPn. The diagram clearly
commutes. The claim then follows by uniqueness of the pullback bundle con-
struction.

Remark 5.7. As anticipated, the pullback construction behaves as expected with respect
to the composition of functions, direct sum, and tensor product:

(f ◦ g)∗(E) ∼= g∗(f∗(E)),

1∗(E) ∼= E,

f∗(E1 ⊕ E2) ∼= f∗(E1)⊕ f∗(E2),

f∗(E1 ⊗ E2) ∼= f∗(E1)⊗ f∗(E2).

In each case, it is necessary to verify that the vector bundle on the right satisfies the
characteristic property of a pullback. For instance, in the last case there exists a natural
map from f∗(E1)⊗f∗(E2) to E1⊗E2, which is an isomorphism on each fiber. Therefore,
f∗(E1)⊗ f∗(E2) satisfies the condition to be the pullback f∗(E1 ⊗ E2).

6. Vector Bundles Over Paracompact Spaces

The purpose of this technical section is to discuss various properties of vector bundles
over compact Hausdorff spaces. First, let’s use the direct sum construction to argue that
over a compact Hausdorff base space, every sub-bundle of a vector bundle is a direct
summand of the vector bundle.

Proposition 6.1. Let X be a paracompact Hausdorff topological space3, π : E → X be a
rank n vector bundle. Let F ⊆ E be a subspace such that dimFπ−1(x)∩Eπ−1(x) = m ≤ n
for each x ∈ X. Let πF be the associated sub-bundle. Then there exists a sub-bundle

πF
⊥
defined by F⊥ ⊆ E such that

πF ⊕ πF⊥ ∼= π

Proof. Let {(Uα, φα)}α be a locally trivial cover. The local trivializations,

φα : π−1(Uα)→ Uα ×Kn,

induce an inner product, ⟨, ⟩α, on π−1(Uα) by pulling back the standard inner product
on Kn. Since E is paracompact and Hausdorff, a partition of unity {ρα}α exists that is

3We need the topological space to be both paracompact and Hausdorff for it to admit a partition of
unity.
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subordinate to the open cover {Uα}α. An inner product on all of E is then obtained by
setting

⟨v, w⟩E =
∑
α

ρα(π(v))⟨v, w⟩α

Note that here v, w are assumed to be in the same fiber. Define F⊥ such that,

F⊥
π−1(x) := (Fπ−1(x))

⊥ ⊆ Eπ−1(x)

for each x ∈ X. We have

Eπ−1(x) = F⊥
π−1(x) ⊕ Fπ−1(x)

for each x ∈ X. We show that the natural projection

πF
⊥
: F⊥ → X

is a vector bundle. Note that πF : F → X admits m independent local sections,
{s1, · · · , sm} over each Uα. We can enlarge this set of m independent local sections
of to a set of n independent local sections4. We can now apply the Gram-Schmidt
orthogonalization process to {s1, . . . , sm, sm+1, . . . , sn} in each fiber, using the given
inner product, to obtain new sections

{s′1, . . . , s′m, s′m+1, . . . , sn}
We have a new local trivialization for for Uα:

ψα : π−1(Uα)→ Uα ×Kn

This ψα carries Fπ−1(x) to U × Km and F⊥
π−1(x) to U × Kn−m. So (ψα)F⊥ is a local

trivialization of F⊥. □

Remark 6.2. It can be checked that specifying a inner product on a vector bundle
E → X is equivalent to choosing a section of the bundle E∗ ⊗ E∗ → X whose value at
each point x ∈ X gives a positive-definite inner product on Ex.

One might wonder if given an rank n vector bundle π : E → X, can one provide an
embedding of E into a trivial bundle? Here is an answer:

Proposition 6.3. Let X be a compact Hausdorff space, and let π : E → X be a vector
bundle. There exists a vector bundle π′ : E′ → X such that π ⊕ π′ is isomorphic to a
trivial bundle.

Remark 6.4. By Proposition 6.1 it suffices to show that an arbitrary vector bundle
over a compact, Hausdorff space is a sub-bundle of a trivial vector bundle. The idea
is to find, using Urysohn’s lemma, a finite (assuming compactness) cover of the base
space X and bump functions, and use the functions given to us by Urysohn’s lemma to
construct projections of the local trivializations to build an isomorphism between E and
a subbundle of X ×Kn for some N ∈ N.

Proof. Let {(Ui, φi)}mα=1 be a finite locally trivializing cover and let {ρi}mi=1 be a partition
of unity subordinate to the finite open cover. Since

∑m
i=1 ρi ≡ 1, the sets

{ρ−1
i ((0, 1])}mi=1

is a cover of X. Define ψi : π
−1(Ui)→ Kn by

ψi(v) = (ρi(π(v))) · (proj2 ◦ φi(v)),

4First choose sm+1, . . . , sn in the fiber π−1(x), and then take the same vectors for all nearby fibers. This
is sufficient since if s1, . . . , sm, sm+1, . . . , s

′
n will remain independent for points near x by continuity of

the determinant function.
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Then ψi is a linear injection on each fiber over ρ−1
i (0, 1]. Let

ψ := (ψ1, . . . , ψm) : E → KN

for some N ∈ N. Now, ψ is a linear injection on each fiber. Finally, consider

f := (π, ψ) : E → X ×KN

The image of f is a sub-bundle of X ×KN Thus we have E isomorphic to a sub-bundle
of X ×Kn. The claim now follows from Proposition 6.1. □

We now show that over a paracompact Hausdorff space, two pullback bundles induced
by two homotopic maps are isomorphic. To prove this claim, we need a few preliminary
results.

Lemma 6.5. Let E,X be topological spaces, and let π : E → X × [a, b] be a vector
bundle which restricts to trivial bundles onto E|X×[a,c] and E|X×[c,b] for some c ∈ (a, b).
Then π : E → X × [a, b] is a trivial vector bundle.

Proof. The proof of can be found in [Hat03]. □

Lemma 6.6. Let E,X be topological spaces and let π : E → X × I be a vector bundle.
Then there exists an open cover {Uα}α of X such that each restriction

π|π−1(Uα×I) : π
−1(Uα × I)→ Uα × I

is a trivial vector bundle.

Proof. Let {Wα}α be a locally trivial cover for E. Fix x0 ∈ X. The open cover {Wα}α
also covers {x0} × I. By compactness of I, we can extract a finite subcover of {Wα}α
covering {x0} × I, which we label as {Wi}i∈J(x0) where J(x0) is a finite set. Using the
Lebesgue number lemma, let

0 = t0 < t1, · · · , tk < 1

be a partition of I such that each {x0}× [tj , tj+1] is contained in one of Wi(j). Now each
{x0} × [tj , tj+1] is an open subset of Wi(j). By the Tube lemma, there exist open sets
x0 ∈ Ux0,j such that Ux0,j × [tj , tj+1] is contained in Wi(j). By construction, E is trivial
over each Ux0,j × [tj , tj+1]. Hence, if we set

Ux0 = Ux0,1 ∩ · · · ∩ Ux0,k

then E is trivial over Ux0 ∩ [tj , tj+1]. Lemma 6.5 implies that E is trivial over Ux0 × I.
Repeat this construction for all x ∈ X to obtain the desired open cover. □

Having these two technical lemmas we can go on and prove the following result.

Proposition 6.7. Let X be a paracompact Hausdorff topological space, and let π : E →
X × I be a vector bundle. Its restrictions over X × {0} and X × {1} are isomorphic
vector bundles.

Remark 6.8. The idea is to “push along” the restricted bundle over X × {1} to the
restricted bundle over X × {0}. By Lemma 6.6, we can choose an open cover {Uα}α of
X such that E is trivial over {Uα × I}α. If X is compact, we can find a finite subcover
and relabel this cover as {Ui}. Using Urysohn’s Lemma, we find a partition of unity {ρi}
subordinate to {Ui} which makes the “push along” argument to work. This argument
can be generalized to a paracompact Hausdorff space.
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Proof. First assume that X is compact. Let the cardinality of {Ui}mi=1 be as in Re-
mark 6.8. For each i, we define functions

ψi : X → R
x 7→ γ1(x) + . . .+ ρi(x)

In particular, ψ0 = 0 and ψm = 1. Define

Xi = {(x, ψi(x)) |x ∈ X} ⊆ X × I

Notice X0 = X ×{0} and Xm = X ×{1}. Let Ei denote the vector bundle restricted to
Xi. Now we define isomorphisms fi : Ei → Ei−1 between the restricted vector bundles.
The isomorphisms fi are given by

fi(x, ψi(x), v) = (x, ψi−1(x), v).

Essentially, fi is the identity outside π−1(Ui×I)∩Ei and on π−1(Ui×I)∩Ei, it projects
each fiber π−1(x, ψi(x)) to the fiber π−1(x, ψi−1(x)). This can be seen by considering a
point outside Ui and computing

ψi(x) = ψi−1(x) + ρi(x) = ψi−1(x),

which holds since supp(ρi) ⊆ Ui. For fi to be an isomorphism of vector bundles, we need
to check it is a homeomorphism and a linear isomorphism on each fiber. For continuity,
we remark that fi is a composition of continuous functions. The inverse of fi is given
by

f−1
i (x, ψi−1(x), v) = (x, ψi(x), v),

which is continuous by the same reasoning. Outside π−1(Ui × I) ∩ Ei, the function fi
is the identity and thus maps fibers isomorphically to each other. On π−1(Ui × I) ∩Ei,
we can use the fact that E trivializes over Ui × I, which yields the trivialization hi :
π−1(Ui × I)→ Ui × I ×Kn. The composition

hi ◦ fi ◦ h−1
i : (Ui × I) ∩Xi ×Kn → (Ui × I) ∩Xi−1 ×Kn

(x, ψi(x), v) 7→ (x, ψi−1(x), v)

is a linear isomorphism on each fiber, and thus, fi must be as well. Since fi is a
homeomorphism and a linear isomorphism on each fiber, fi is an isomorphism of vector
bundles. The composition

f := f1 ◦ . . . ◦ fm
is an isomorphism of vector bundles. In particular, it is an isomorphism between the
restrictions of E over Xm = X × {1} and X0 = X × {0}. This argument can be
generalized to the case where X is paracompact and Hausdorff. See [Hat03, Proposition
1.7.]. □

Corollary 6.9. Let X be a paracompact Hausdorff space, and let π : E → X be a
vector bundle. Given homotopic maps g0, g1 : A→ X, where A is compact, the pullback
bundles g∗0(E) and g∗1(E) are isomorphic.

Proof. Let G : A× I → X be the homotopy from g0 to g1. If we consider the pullback
bundle G∗(E), then the vector bundles g∗0(E) and g∗1(E) are isomorphic to the restric-
tions of G∗(E) over A× {0} and A× {1}. By Proposition 6.7, these vector bundles are
isomorphic. □

Corollary 6.10. Every vector bundle over a contractible topological space is homotopic
to a trivial vector bundle.

Proof. This follows at once from Proposition 6.7. □
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7. Vector Bundles Over Spheres

In this section, we will develop tools to classify vector bundles over spheres. We will
see that we can use results from from algebraic topology, in particular homotopy theory,
to study vector bundles. This will be an instructive exercise before we deal with the
general case in the next section.

Let X = Sk for some k ≥ 0. Note that Sk can be covered by two contractible open
sets5, U± such that U+∩U− is homotopic to the equator Sk−1. Since U± is contractible,
Corollary 6.10 implies that any vector bundle over U± is trivial, which means any vector
bundle over Sk can be identified with a single transition function

f : U+ ∩ U− → GL(n,K)

Since U+ ∩U− is homotopic to Sk−1, we need to only consider gluing functions f of the
form

f : Sk−1 → GL(n,K)

Definition 7.1. A map f : Sk−1 → GL(n,K) is called a clutching function for the
vector bundle Ef constructed using f as a transition function.

Complex vector bundles over spheres turn out to have slightly better behavior than
in the real case, so we will prove the following basic result about the complex case before
dealing with the real case.

Proposition 7.2. Let VectCn(Sk) denote the set of isomorphism classes of rank n complex
vector bundles over Sk. The map

Φ : [Sk−1,GL(n,C)]→ VectCn(Sk),
[f ] 7→ [Ef ]

is a bijection. Here [Ef ] is the isomorphism class of the vector bundle Ef as in Propo-

sition 3.3 and [Sk−1,GL(n,C)] is the set of homotopy class of continuous maps between
Sk−1 and GL(n,C).

Proof. We first prove Φ is well-defined. Given two homotopic maps f0, f1 : Sk−1 →
GL(n,C), there exists a homotopy

F : Sk−1 × I → GL(n,C)

We can use F to construct a vector bundle p : EF → Sk × I. The vector bundle
EF will restrict to Ef0 over Sk × {0} and to Ef1 over Sk × {1}. By Corollary 6.10, the

bundles Ef0 and Ef1 are isomorphic since Sk is compact, and we conclude that Φ is well-
defined. We now show that Φ is a bijection. We construct an inverse Ψ. Given a vector
bundle p : E → Sk, its restrictions E+ and E− over the upper and lower hemispheres
respectively are trivial by contractibility of Sk± ∼= Dk

±. Choosing trivializations

h± : E± → Dk
± × Cn,

the composition h+ ◦ h−1
− induces a function f : Sk−1 → GL(n,C). We define Ψ(E) to

be the homotopy class of f . We must check that Ψ(E) is independent of the choice of
trivializations and hence well-defined. Two trivializations, h±0,1 : E± → Dk

± × Cn, differ
by a map

h̃± : Dk
± → GL(n,C)

5Take the northern and southern hemispheres Sk
+ and Sk

− respective and enlarge them slightly to open
balls U+ and U−.
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Since Dk
± is contractible, h̃± is homotopic to a constant map

c± : Dk
± → GL(n,C)
x 7→ A±

By path-connectedness of GL(n,C), any constant map is homotopy equivalent to the
map that sends everything to the identity in GL(n,C) by composing with a path going
from A± ∈ GL(n,C) to Idn ∈ GL(n,C). We obtain

[h±0 ] = [h̃± ◦ h±1 ] = [c± ◦ h±1 ] = [Id ◦ h±1 ] = [h±1 ]

Since h±0 and h±1 are homotopy equivalent, the compositions

h+0 ◦ (h
−
0 )

−1, h+1 ◦ (h
−
1 )

−1

are homotopy equivalent as well and induce homotopy equivalent clutching functions
f0 and f1. We conclude that Ψ is well-defined. Clearly, Φ and Ψ are inverses to each
other. □

Recall that GL(n,C) deformation retracts onto U(n). Therefore, we have that

[Sk−1,GL(n,C)] ∼= [Sk−1,U(n)] ∼= πk−1(U(n)).

for k ≥ 1 as sets. Thus, the classification of complex vector bundles over spheres is
inherently linked to the classification of homotopy groups of unitary groups.

Remark 7.3. Since πk−1(U(n)) is a group, this suggest that VectCn(Sk) or an associated
object should have the structure of a group. This will be taken up in Section 9 when we
get to K-theory.

Example 7.4. We have the following examples:

(1) Since U(n) is path-connected, π0(U(n)) = 0 is the trivial group. Hence, VectCn(S1)
is a set with one element. Therefore, each rank n complex vector bundle over
S1 is homotopy equivalent to the trivial bundle S1 × Cn.

(2) Consider 1-dimensional complex vector bundles over S2. Since U(1) ∼= S1, we
have π1(U(1)) = Z. Hence, VectC1 (S2) ∼= Z as a set.

(3) Consider 1-dimensional complex vector bundles over Sk for k ≥ 3. Since πk−1(S1) =
0 for k ≥ 3, we have Hence, VectC1 (S3) is a set with one element. Hence, every
rank 1 complex bundle over Sk for k ≥ 3 is homotopy equivalent to the trivial
line bundle.

The preceding analysis does not quite work for real vector bundles since GL(n,R) is
not path-connected. GL(n,R) has exactly two path components, GL±n (R). The closest
analogy with the complex case is obtained by considering oriented real vector bundles.

Definition 7.5. Let E,X ∈ Top and let be a rank n real vector bundle. The vector
is called orientable if each fiber can be given an orientation such that there exists an
open cover {Uα}α of X such that the local trivializations φα : π−1(Uα)→ Uα×Rn carry
the orientation of the fibers π−1(b) to the standard orientation of Rn.

The set of isomorphism classes of rank n real oriented vector bundles over a base
space X is denoted VectR,+n (X). Note that the morphisms in this category are required
to preserve orientations. We now consider real oriented vector bundles over spheres.
Since Sk is connected for k ≥ 1, all fibers must have the same orientation and the
clutching function can be taken to map only into GL(n,R)+ if k ≥ 2.

Proposition 7.6. For k ≥ 2, there exists a bijection of sets

[Sk−1,GL(n,R)+] ∼= VectR,+n (Sk)
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Proof. The proof is analogous to Proposition 7.2. □

We can deal with the case k = 1 separately:

Example 7.7. Since GL(n,R) has two path-components, we have π0(GL(n,R)) = Z2.
Hence, VectRn(S1) is a set with two elements. When n = 1, the corresponding bundles
are the trivial bundle and the canonical line bundle over RP1. When n > 1, the Mobius
bundle is replaced by direct sum of the canonical bundle over RP1 with n − 1 trivial
bundles.

Let k ≥ 2. Recall that GL±(n,R) deformation retracts onto SO(n). Therefore, we
have that

[Sk−1,GL±(n,R)] ∼= [Sk−1,SO(n)] ∼= πk−1(SO(n)).

for k ≥ 2 as sets. Thus, the classification of real oriented vector bundles over spheres
is inherently linked to the classification of homotopy groups of the special orthogonal
group.

Remark 7.8. Since πk−1(SO(n)) is a group for k ≥ 2, this suggest that VectR,+n (Sk)
or an associated object should have the structure of a group. This will be taken up in
Section 9 when we get to K-theory.

Example 7.9. Consider 2-dimensional real vector bundles over S2. Since SO(2) ∼= S1,
we have π1(SO(2)) = Z. Hence, VectR,+2 (S2) ∼= Z as a set.

8. Classification of Vector Bundles

We would like to classify rank n-vector bundles of over a fixed topological space
up to isomorphism. We have made partial progress toward this goal by relating the
classification of vector bundles over spheres to questions in homotopy theory. The
purpose of this section is to extend the discussion to an arbitrary compact topological
space.

Remark 8.1. We assume that let n ∈ N and m ∈ N is such that m ≥ n.

8.1. Grassmannian. We briefly discuss the Grassmannian in this section. Later, we
will see that the Grassmannian plays a crucial role in the classification problem for
vector bundles.

Definition 8.2. Let K = R,C. The (n,m)-Stiefel set, Vn(Km), consists of the set of n-
frames. In other words, the set of ordered orthonormal set of vectors {v1, . . . , vn} ⊆ Km.

Note that an element of Vn(Km) can be thought of as a m × n matrix by writing a
n-frame as a matrix of n column vectors in Km. We then have

Vn(Km) =
{
A ∈ Km×n : A∗A = In

}
.

We endow Vn(Km) with the subspace topology inherited from Km×n. Note that Vk(Km)
is a compact topological space since it is a closed subspace of (Sm−1)n.

Remark 8.3. It can then be shown that Vk(Km) is a (smooth) manifold using subman-
ifold theory. It customary to refer to Vn(Km) as a (n,m)-Stiefel manifold. We simply
abbreviate a (n,m)-Stiefel manifold as simply a Stiefel manifold.

Definition 8.4. Let K = R,C. The (n,m)-Grassmannian, Gn(Km), is the set of all
n-dimensional subspaces of Km,

Remark 8.5. We refer to a (n,m)-Grassmannian as simply the Grassmannian.

Let’s now verify that Gn(Km) is indeed a topological space.
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Proposition 8.6. The Grassmannian, Gn(Km), is a compact, Hausdorff topological
space.

Proof. There is a natural surjection

p : Vn(Km)→ Gn(Km)

sending an n-frame to the subspace it spans. Hence, Gn(Km) can be topologized by
giving it the quotient topology with respect to this surjection. So, Gn(Km) is a compact
topological space since Vn(Km) is compact. To show Grn(Km) is Hausdorff, it suffices
to show that for any two n-planes P1, P2 in Grn(Km), there is a linear functional

φP1,P2 : Grn(Km)→ K

that assumes different values on P1 and P2. Fix x0 ∈ P1 \ P2 and let φP1,P2 be the
Euclidean distance function from a n-plane to x0. Clearly, φP1,P2 is a well-defined
continuous function on such that φP1,P2(P1) = 0 and φP1,P2(P2) > 0. □

Remark 8.7. It can be checked that Grn(Km) has the structure of a (smooth) manifold.

Example 8.8. We check that Grn(Km) ∼= Grm−n(Km). Consider the map

f : Grn(Km)→ Grm−n(Km)

P 7→ P⊥

The orthogonal complement is taken with respect to, for example, the standard inner
product on Km. It is clear that f is a bijection. Consider the commutative diagram:

Vn(Km) Vm−n(Vm)

Grn(Km) Grm−n(Km)

f ′

f

It is clear that f is continuous if f ′ is continuous. The map f ′ corresponds to computing
the orthogonal complement of an ordered orthonormal basis of vectors by, say, the
Gram-Schmidt process. This process is clearly continuous. Hence, f is continuous.
Since Grn(Km) is compact and Grm−n(Km) is Hausdorff, f is a homeomorphism.

Since a Grassmannian is a space encoding information about vector subspaces it comes
with natural vector bundle.

Definition 8.9. The universal/tautological bundle vector bundle over Gn(Km) is
set

γnm := {(ω, v) ∈ Gn(Km)×Km | v ∈ ω}
along with a map which is a projection onto the first coordinate.

Example 8.10. Let n = 1. Then G1(Km+1) is the m-dimensional projective space
KPm and γ1m+1 is the canonical line bundle over KPm.

Proposition 8.11. Let n ∈ N and m ≥ n. The projection

π : γnm → Gn(Km)

(ω, v) 7→ ω

is a vector bundle.

Proof. For ω ∈ Grn(Km), let πω : Km → ω be the orthogonal projection, and let

Uω = {ω′ ∈ Grn(Km) | dimπω(ω
′) = n}
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In particular, ω ∈ Uω. We show that Uω is open in Grn(Km). Note that Uω is open if
and only if its pre-image in Vn(Km) is an open set. The pre-image is the set:

p−1(Uω) = {{v1, . . . , vn} ∈ Vn(Km) | πω(v1), . . . , πω(vn) are linearly independent}

If [πω] denotes the matrix representation of πω, then p
−1(Uω) consists of {v1, . . . , vn} ∈

Vn(Km) such that the n× n matrix with columns

[πω]v1, . . . , [πω]vn

has a non-zero determinant. Since the value of this determinant is a continuous function,
it follows that Uω is an open set. Define the map

φω : π−1(Uω)→ Uω ×Kn

(ω′, v) 7→ (ω′, πω(v))

It is clear that φω is a bijection that is a linear isomorphism on each fiber. Furthermore,
φω is continuous since its two coordinate functions are continuous. One can check that
φ−1
ω is continuous. This shows that {(Uω, φω)}ω∈Grn(Km) is a local trivialization. □

Remark 8.12. We can also define other vector bundles over the Grassmannian. For
instance, the universal/tautological quotient bundle over Grn(Km), denoted as βm−n

m ,
is such that the fiber of the universal/tautological quotient bundle ω ∈ Grn(Km) is the
quotient Km/ω. It can be checked that this is a well-defined vector bundle.

8.2. Grassmanian as a Classifying Space. A vector bundle π : E → X is a family
of K-vector spaces parametrized by the points of X. A natural question arises: does
there exist a universal such family? More precisely, does there exist a vector bundle
Euniv → Y such that every vector bundle E → X arises as the pullback of Euniv → Y
along a suitable map? If such a universal bundle exists, what is the corresponding
parameter space Y for vector bundles? This question exemplifies a moduli problem,
and the space Y that provides a universal solution is referred to as the classifying space
for vector bundles. We see that the Grassmannian will solve this moduli problem.
Indeed, Suppose we have a rank n vector bundle E → X. For each x ∈ X, the fiber Ex

is isomorphic to Kn, which can be identified with an element of Gn(Km) for somem ≥ n.
This suggests that the Grassmannian naturally arises whenever we have a vector bundle
in sight. In fact, we can show that any vector bundle over a compact base is isomorphic
to the pullback of a vector bundle over a Grassmannian.

Proposition 8.13. Let X be a compact topological space and let π : E → X be a rank-n
vector bundle. Then there exists a M ≥ n and smooth maps f, f ′ which express π as the
pullback.

E βM−n
M

X Grn(KM )

π

f ′

f

Proof. There exists a finite locally trivial open cover {(Uα, φα)}α∈A of X and a collection
of local sections sα,1, . . . , sα,n : Uα → E forming a basis over each Uα. Let {ρα}α∈A be
a partition of unity subordinate to the open cover. For each α ∈ A and i = 1, · · · , n,
the sections

s̃α,i = ραsα,i

define global sections that vanish outside Uα. Define

V = Span{s̃α,i | α ∈ A, i = 1, · · · , n}
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Then V ∼= KM for some M ∈ N. For each x ∈ X, consider the evaluation map

evx : KM → Ex,

s̃α,i 7→ s̃α,i(x).

This map is surjective and induces an isomorphism

KM/ ker evx ∼= Ex.

The inverses of these isomorphisms fit together to form the map f ′, where f is defined
by x 7→ ker evx. It is clear that the diagram commutes. □

Proposition 8.13 shows that every vector bundle π : E → X over a compact topo-
logical space is pulled back from the Grassmannian, but it does not provide a single
classifying space for all vector bundles since the choice of KM depends on π. Further-
more, we might like to drop the assumption that X is compact. This can be done by
considering the infinite Grassmannian as a model space for a classifying space. For fixed
n ∈ N andm ≥ n, the definition of the infinite Grassmannian is based on the observation
that the inclusions

Km ⊆ Km+1 ⊆ . . .
give inclusions

Gn(Km) ⊆ Gn(Km+1) ⊆ . . .

Definition 8.14. Let n ∈ N. The infinite Grassmannian is defined as the colimit:

Gn(K∞) := lim−→
m≥n

Gn(Km) =

∞⋃
m=1

Gn(Km)

As a set, Gn(K∞) is the set n-dimensional subspaces of the vector space Km for some
m ≥ n. Note that Gn(K∞) is endowed with the weak topology, so a set in Gn(K∞) is
open if and only if its intersects with Gn(Km) is an open set for all m ≥ n.

Remark 8.15. We will abbreviate Gn(K∞) as simply Gn.

For n ∈ N and m ≥ n, we similarly have the inclusions

γnm ⊆ γnm+1 ⊆ · · ·

This yields the following definition:

Definition 8.16. Let n ∈ N. The infinite universal/tautological bundle is defined
over Gn as the colimit:

γn := γn∞ := lim−→
m≥n

γnm =
∞⋃

m=1

γnm

endowed with with the weak topology.

We can now state and prove that the infinite Grassmannian is the classifying space
for vector bundles.

Proposition 8.17. Let X be a paracompact Hausdorff topological space. There is a
bijection of sets

VectKn (X) ∼= [B,Gn]

Proposition 8.17 is a fundamental result, establishing that isomorphism classes of
vector bundles correspond bijectively to homotopy classes of maps into Grassmannians.
This provides a crucial insight that homotopical invariants contain significant geometric
information. We begin by proving a lemma.
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Lemma 8.18. Let X be a topological pace and let π : E → X be a rank n-vector bundle.
The data of a continuous function f : X → Gn such that E ∼= f∗γn is equivalent to the
data of a continuous function g : E → K∞ which is a linear injection on each fiber.

Proof. Assume we are given a continuous function f : B → Gn and an isomorphism
E ∼= f∗γn. We have the data of this diagram below. The map g is the composite along
the top row of this diagram.

E f∗γn γn K∞

X Gn

∼=

π

f

Conversely, given a continuous function g : E → K∞ that is a linear isomorphism on
each fiber, define

f(x) := g(π−1(x)) ∈ Gn.

The map is well-defined since π−1(x) is an rank n vector space, and applying g we get
an rank n subspace of K∞. The vector bundle isomorphism

E → f∗γn,

e 7→ (π(e), g(e)).

Note that g(e) ∈ g(π−1(π(e))) since e ∈ π−1(π(e)). This is an isomorphism because g is
a linear injection and hence bijection on the fibers. □

We now prove Proposition 8.17.

Proof. (Proposition 8.17)

(1) (Injectivity). Suppose that E ∼ f∗γn ∼= (f ′)∗γn. Let g and g′ : E → K∞ be the
corresponding maps as in Lemma 8.18. It suffices to show that g ∼= g′. Suppose
that

H : E × I → K∞

is a homotopy from g to g′ such that Ht is a linear injection on each fiber. Then
we may define a homotopy between f and f ′ given by

F : X × I → Gn

F (x, t) = H(π−1(x), t)

We construct a homotopy between g to g′. Consider the homotopy

A : K∞ × I → K∞

((x1, x2, . . .), t) 7→ (1− t)(x1, x2, . . .) + t(x1, 0, x2, 0, . . .).

Similarly, consider the homotopy

B : K∞ × I → K∞

((x1, x2, . . .), t) 7→ (1− t)(x1, x2, . . .) + t(0, x1, 0, x2, . . .).

For each t ∈ I, Lt, Bt : K∞ → K∞, are injective linear maps. We have g0 ∼=
A1 ◦ g0 =: H0 (putting g0 into the odd coordinates), g1 ∼= B1 ◦ g1 =: H1 (putting
g1 into the even coordinates), and H0

∼= H1 via (1 − t)H0 + tH1 (all through
maps that are linear injections on each fiber).

(2) (Surjectivity) Suppose π : E → X is an rank-n vector bundle. Let {Uα}α
be an open cover of X such that E is trivial over each Uα for each α. Since
X is a paracompact Hausdorff topological space, we can assume WLOG that
the open cover is countable [Hat03, Lemma 1.21]. Since X is paracompact
Hausdorff, we can find a partition of unity {ρα}α with ρα supported in Uα. Let
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gα : π−1(Uα) → Kn be the composition of a trivialization π−1(Uα) → Uα × Kn

with projection onto Kn. The map

(ϕα ◦ π)gα : E → Kn,

e 7→ ϕα(π(e))gα(e).

extends gα to a map on E → Kn that is zero outside π−1(Uα). Then we can
define

g : E → K∞ ∼= (Kn)∞,

e 7→ (g1(e), g2(e), . . .).

By Lemma 8.18 this corresponds to the required map f : E → Gn. This shows
surjectivity.

This completes the proof. □

Remark 8.19. An explicit calculation of [X,Gn] is usually beyond the reach of what
is possible technically, so Proposition 8.17 is of limited use for computational purposes.
Its main importance is due more to its theoretical implication that topological K-theory
is representable.

Example 8.20. Consider π : TSn → Sn. Each fiber π−1(x) is a point in G1(Rn+1), so
we have a map

Sn → Gn(Rn+1)

x 7→ π−1(x)

Via the inclusion Rn+1 ↪→ R∞, we can view this as a map f : Sn → Gn(R∞), and
π : TSn is the pullback of γn.

Remark 8.21. There is also a version of Proposition 8.17 for oriented vector bundles.

Let G̃n(Km) be the space of oriented n-planes in Km, the quotient space of Vn(Km)
obtained by identifying two n frames when they determine the same oriented subspace

of Km. We can define G̃n as above. The universal oriented bundle

γ̃n → G̃n

consists of pairs (ω, v) ∈ G̃n × K∞ with v ∈ ω. Note that γ̃n is the pullback of γn via
the natural projection map:

G̃n → Gn

One can show that we have

Vect+,K
n (K, X) ∼= [X, G̃n]

There are several important points to consider:

(1) Both G̃n(Km) and G̃n are path-connected since VectKn (X) and Vect+,K(X) have
a single element when X is a point.

(2) A vector bundle E ≈ f∗γn is orientable if and only if its classifying map f : X →
Gn lifts to a map f̃ : X → G̃n. Orientations of E → X correspond bijectively

with lifts f̃ .
(3) The natural projection

G̃n → Gn

yields a 2-1 covering map. In fact, G̃n is the universal covering space of Gn

since G̃n(K∞) is simply connected because of the triviality of

Vect+,K
n (S1) ∼= [S1, G̃n]
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Part 2. K-Theory

All topological spaces are implicitly assumed to be connected, paracompact Hausdorff
topological spaces from now on. We denote the category of such spaces as ParaHaus.
We will additionally assume that a topological space is compact if we wish to invoke
Proposition 6.3. We denote the category of such spaces as CHaus. Pointed and homotopy
versions of these categories are written appropriately.

9. Unreduced and Reduced K-Theory

9.1. Grothendieck Group of a Commutative Semigroup. A semigroup is a nonempty
set equipped with an associative binary operation. We adopt the convention that the
semigroup contains an identity element, denoted by e. In other words, it is an algebraic
structure resembling a group but without the requirement of inverses. There exists a
universal construction that associates to any commutative semigroup an abelian group,
known as its Grothendieck group.

Proposition 9.1. Let A be a commutative semigroup. Then there exists an abelian
group G(A) and a semigroup homomorphism i : A → G(A) satisfying the following
universal property: if B is an abelian group and ϕ : A→ B a semigroup homomorphism,
then there is a unique group homomorphism ϕ̄ : G(A)→ B such that the diagram

A G(A)

B

i

ϕ
ϕ̄

Proof. (Sketch) Define G(A) = A×A/ ∼ where ∼ is the equivalence relation6:

(a, b) ∼ (a0, b0) ⇐⇒ there exists c ∈ A such that a+ b0 + c = a0 + b+ c.

It can be checked that ∼ is an equivalence relation. Denote the equivalence class of
(a, b) by [a, b]. We can define the addition on G(A) by

[a, b] + [a0, b0] = [a+ a0, b+ b0].

It can be checked that addition is well-defined. Note that G(A) also has the structure
of an abelian group: (e, e) is the identity, and the inverse of [a, b] is [b, a]. Let

i : A→ G(A)

a 7→ [a, e],

If ϕ : A→ B is a semigroup homomorphism, then define

ϕ̄ : G(A)→ B

ϕ̄[a, b] = ϕ(a)− ϕ(b)

ϕ̄ is well-defined on equivalence classes because ϕ is a semigroup homomorphism. More-
over, ϕ̄ is also a group homomorphism. Moreover, ϕ̄ is unique because the requirement
ϕ̄[a, e] = ϕ(a), but this automatically determines ϕ̄ on all of G(A), since

ϕ̄[a, b] = ϕ̄([a, e] + [e, b])

= ϕ̄([a, e]) + ϕ̄([e, b])

= ϕ̄([a, e])− ϕ̄([b, e])
= ϕ(a, 0)− ϕ(b, 0)

6We need to add c because A might not be cancellative: a + c = a + c′ does not imply c = c′. Thus,
just as with localization of rings, we need to add an extra term to actually get an equivalence relation.
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This completes the proof. □

Remark 9.2. It can be checked that G is a covariant functor from the category of
commutative semigroups to the category of abelian groups. In fact, G is left-adjoint to
the forgetful functor from the category of abelian groups to the category of commutative
semigroups.

Remark 9.3. If A is a commutative semiring, then G(A) is a commutative ring with
multiplication

[a, b] · [a0, b0] = [a · a0 + b · b0, a · b0 + b · a0].

Example 9.4. Let A = (N,+). Then A = N is semigroup under addition. Then
(Z,+) together with the inclusion map ι : N → Z satisfies the universal property in
Proposition 9.1. Hence,

G(N) ∼= Z

9.2. K0: Unreduced K-Theory. We are now prepared to define the (unreduced) K0

group associated with a topological space. Throughout, we assume that the underlying
topological space is compact and Hausdorff. For K = R,C, let

VectK(X) =

( ⊔
n∈N

VectKn (X)

)
∪ {ε0}

be the set of isomorphism classes of vector bundles over X. Here ε0 is the rank-0 vector
bundle X ∼= X ×K0.

Remark 9.5. By abuse of notation, we write an isomorphism class of a vector bundle
E → X in VectK(X) as simply E.

The set VectK(X) is endowed with the structure of a commutative semigroup under
the operation of direct sum of vector bundles. The identity is given by ε0. Moreover, it
forms a commutative semiring when equipped with the additional operation of tensor
product of vector bundles. The unit is given by ε1 is the rank-1 vector bundle X ×K.

Definition 9.6. Let X be a topological space. The K-theory of X, denoted as K0
K(X),

is the commutative ring
K0

K(X) = G(VectK(X))

We can explicitly describe elements of K0
K(X). Every element of K0

K(X) is of the
form

[E,F ] = [E, ε0] + [ε0, F ]

= [E, ε0]− [F, ε0]

:= [E]− [F ],

where E,F → X are (isomorphism classes of) vector bundles over X. An element of
K0

K(X) is called a virtual vector bundle. If X is a compact topological space, we can
say a bit more.

Proposition 9.7. Let be X is in fact compact Hausdorff topological space.

(1) Every element of K0
K(X) can be represented as [H] − [εn], where H → X is a

(isomorphism class of) vector bundle and n ∈ N.
(2) We have

[E]− [εn] = [F ]− [εm] ⇐⇒ E ⊕ εm+k = E ⊕ εn+k

for some k ∈ N.

Proof. The proof is given below:
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(1) Let [E,F ] ∈ K0
K(X). By Proposition 6.3 we can always find a vector bundle

G→ X such that F ⊕G ∼= εn for some n ∈ N. Then we have

[E,F ] = [E ⊕G,F ⊕G]
= [E ⊕G, εn]
= [E ⊕G, ε0] + [ε0, εn]

= [E ⊕G, ε0]− [εn, ε0]

= [E ⊕G]− [εn] := [H]− [εn]

(2) We have [E]− [εn] = [F ]− [εm] if and only if there exists a vector bundle G→ X
such that E ⊕ εm ⊕G ∼= F ⊕ εn ⊕G. Let G′ → X be a vector bundle such that
G⊕G′ ∼= εk for some k ∈ N. Then, E ⊕ εm ⊕G ∼= F ⊕ εn ⊕G implies that

E ⊕ εm ⊕G⊕G′ ∼= F ⊕ εn ∼= G⊕G′ ⇐⇒ E ⊕ εm ⊕ εk ∼= F ⊕ εn ⊕ εk

This completes the proof. □

Proposition 9.7(2) motivates us to introduce the definition of stable equivalence of
vector bundles; that is, two vector bundles E and F are stably equivalent if and only if

E ⊕ εk ∼= F ⊕ εk

for some k ∈ N. Let VectKStable(X) denote the equivalence class of stable vector bundles

over X. We write an equivalence class in VectKStable(X) as [E]s. Note that Vect
K
Stable(X)

is a commutative semigroup. We have the following result.

Corollary 9.8. Let X be a paracompact Hausdorff topological space. We have a homo-
morphism of commutative semigroups:

VectKStable(X) −→ K0
K(X)

[E]s 7→ [E, ε0] (1)

If X is a compact Hausdorff space, then the map is an isomorphism on its image.

Proof. This is clear. □

Example 9.9. The following is a basic list of computations of K0
K(X).

(1) Let X = {∗}. A rank n vector bundle is the trivial vector bundle {∗} × Kn.
Hence, VectK(X) ∼= N. Therefore,

K0
K({∗}) = G(N) ∼= Z

(2) Let X =
∐n

i=1Xi, where each Xi is a paracompact Hausdorff (second countable)
space. A vector bundle on X is a choice of a vector bundle on each X1, · · · , Xn.
The same is true for isomorphism classes of vector bundles on X. Therefore,

VectK(X) ∼=
n⊕

i=1

VectK(Xi)

Since G is a left adjoint functor and ⊕ is a coproduct, we have that G commutes
with direct sums. Hence, we obtain an isomorphism

K0
K(X) = G

(
n⊕

i=1

VectK(Xi)

)

=
n⊕

i=1

G(VectK(Xi)) =
n⊕

i=1

K0
K(Xi).

In particular, if X is a discrete set consisting n points, then K0
K(X) ∼= Zn
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We now argue that the construction of K-theory is functorial. Indeed, note that

K0
K : ParaHausOp → CRing

X 7→ K0
K(X).

is a functor because if f : X → Y is continuous map between two paracompact Hausdorff
space, then pullback operation induces a map

f∗ : VectK(Y )→ VectK(X)

[E] 7→ [f∗E]

Remark 5.7 verifies that f∗ is a map between commutative semi-rings. By functoriality
of G (Proposition 9.1), we get a map

f∗ : K0
K(X)→ K0

K(Y ),

which we also denote by f∗. Since the induced homomorphism between K0
K(·) groups

depends only on the homotopy class of f (Corollary 6.9) , the functorK0
K : ParaHausOp →

CRing descends to a contravariant functor

K0
K : hParaHausOp → CRing

9.3. K̃0: Reduced K Theory. We now discuss the reduced K0
K group that are as-

sociated with pointed topological spaces. By way of motivation, if (X,x) is a pointed
paracompact, Hausdorff topological space, then we have a sequence of maps

x
i−→ X

p−→ x

These maps induce maps

Z ∼= K0
K(x)

p∗−→ K0
K(X)

i∗−→ K0
K(x)

∼= Z
Since p ◦ i = Id{x}, we have that i∗ ◦ p∗ = IdZ. This shows that Z is a direct summand

of K0
K(X). We attempt to analyze the complement in the following manner:

Definition 9.10. Let (X,x) be a pointed paracompact, Hausdorff topological space.
Let i : {x} → X denote the inclusion map. The reduced K-theory of X, denoted as

K̃0
K(X) is the kernel

K̃0
K(X) := ker(i∗ : K0

K(X)→ K0
K(x)

∼= Z),

Remark 9.11. Since K0
K(X) is a commutative ring, K̃0

K(X) is a proper ideal of K0
K(X)

Definition 9.10 implies that we have a short exact sequence of abelian groups:

0→ K̃0
K(X)→ K0

K(X)
i∗−→ Z→ 0,

Since Z is a free abelian group, we have an isomorphism:

K0
K(X) ∼= K̃0

K(X)⊕ Z.
of abelian groups. Hence, the complement of Z in K0

K(X) is precisely the reduced K-
theory of a pointed paracompact, Hausdorff topological space. Additionally, note that
the map

i∗ : K0
K(X)→ K0

K(x)
∼= Z

sends [E] := [E, ε0] to dimE. Hence, a [E] − [F ] is sent to dimE − dimF , called the
virtual rank.

Corollary 9.12. K̃0
K defines a contravariant functor

K̃0
K : hParaHausOp

∗ → CRng,

where CRng is the category of non-unital commutative rings
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Proof. Functorility of K0
K and the kernel implies the functorality of K̃0

K. □

We now specialize to the case of compact, pointed topological space. If (X,x) is
pointed compact Hausdorff topological space a general element of K0

K(X) can be written

as [E] − [εn] for some n ∈ N and is mapped to dimE − n. Hence, K̃0
K(X) consists of

elements of the form [E]− [εdimE ]. In fact, we have

[E]− [εdimE ] = [F ]− [εdimF ] ⇐⇒ E ⊕ εdimF+k = F ⊕ εdimE+k

for some k ∈ N. We would like to Grothenedieck completion of the image of the map in

Equation (1) to be isomorphism to K̃0
K. This motivates us to introduce a more general

definition of stable vector bundles. We say two vector bundles E and F are eventually
stably equivalent if and only if

E ⊕ εk ∼= F ⊕ εk′

for some k, k ∈ N. Let VectKeStable(X) denote the equivalence class of eventually stable

vector bundles over X. We write an equivalence class in VectKeStable(X) as [E]es. Note

that VectKeStable(X) is a commutative semigroup. We have the following result.

Proposition 9.13. Let (X,x) is a pointed compact Hausdorff topological space. There
is a map of commutative semigroups

ϕ : VectKeStable(X) −→ K0
K(X)

[E]s 7→ [E, εdimE ]

such that

G(ϕ(VectKeStable(X))) ∼= K̃0
K(X)

Proof. It is straightfoward to verify that ϕ is a homomorophism of commutative semi-

groups onto K̃0
K(X). It is easy to verify using the definition of eventually stably iso-

morphic that this map is injective. The claim now follows by the universal property of
Grothendieck completion. □

Remark 9.14. Note that K0
K(X) can be recovered from K̃0

K(X) because:

K0
K(X) ∼= K̃0

K(X+),

where X+ = X
∐
{∗}. Hence, K̃0

K of compact Hausdorff space can be thought of as the
K0

K group of locally compact Hausdorff spaces.

10. Representability of K-Theory

We have constructed functors

K0
K : hCHausOp → CRing,

K̃0
K : hCHausOp

∗ → CRng.

These functors can be thought of as set-valued functors. We now argue that these set-
valued functor are representable. For k ∈ N, we know from Proposition 8.17 that there
is a bijection of sets:

VectKn (X) ∼= [X,Gn(K∞)]

Recall the following facts:

(1) If K = R, then Gn(K∞) ∼= BO(n), where BO(n) is the classifying space of
principal O(n)-bundles. Hence, we interchangeably write BO(n) for Gn(R∞)
from now on.
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(2) If K = C, then Gn(C∞) ∼= BU(n), where BU(n) is the classifying space of
principal U(n)-bundles. Hence, we interchangeably write BU(n) for Gn(C∞)
from now on.

Note that we have the inclusions

Gn(Km) ⊆ Gn+1(Km+1)

for m,n ∈ N such that n ≥ m. Therefore, we have the inclusions

Gn(K∞) = lim−→
m≥n

Gn(Km) ⊆ lim−→
m≥n

Gn+1(Km+1) = Gn+1(K∞)

If K = R, we write BO := lim−→n∈NGn(R∞), and K = C, BU := lim−→n∈NGn(C∞).

Remark 10.1. The notation above is suggested as follows. If K = R, we have inclusions

O(n) ⊆ O(n+ 1) ⊆ · · ·

Hence, we can consider the colimit:

O := O(∞) = lim−→
n∈N

O(n)

Here O := O(∞) is the infinite orthogonal group. It can be shown that Gn(R∞) is
the classifying space for principal-O(∞) bundles. This motivates the notation above.
Similar remarks apply if K = C. The infinite unitary group is denoted as U := U(∞).

We have the following result:

Proposition 10.2. Let (X,x) be a pointed compact Hausdorff topological space. If
K = R, we have:

K̃0
R(X) ∼= [X,BO]

K0
R(X) ∼= [X+,Z×BO]

as sets. If K = C, we have:

K̃0
C(X) ∼= [X,BU ]

K0
C(X) ∼= [X+,Z×BU ]

as sets.

Proof. We only prove the case K = R. Let {ε0} := VectK0 (X). Using the definition of
eventually stably equivalent vector bundles, note that VectK(X) can be regarded as a
filtered colimit.

VectK(X) = lim−→
n∈N∪{0}

VectKn (X)

Identifying K̃0
R(X) with the Grothendieck completion of eventually stably equivalent

vector bundles, we have

K̃0
R(X) = lim−→

n∈N∪{0}
G(VectKn (X))

= G( lim−→
n∈N∪{0}

[X,Gn(K∞)])

= G(lim−→
n∈N

[X,Gn(K∞)])

= G([X, lim−→
n∈N

Gn(K∞)]) = G([X,BO]) = [X,BO]
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Note that lim−→n∈N commutes with [X,Gn(K∞)] becauseX is compact. Moreover, G([X,BO]) =

[X,BO] since [X,BO] is a because BO is a topological group. We also have

K0
K(X) ∼= Z⊕ K̃0

K(X) ∼= [X,Z]⊕ [X,BO] ∼= [X,Z×BO]

The case K = C is similar. □

If K = R, we write K0
R(X) as KO(X) and K̃0

R(X) as K̃O(X). Similarly, if K = C,
we write K0

C(X) as KU(X) and K̃0
C(X) as K̃U(X). We use this notation from now on.
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