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Abstract. This document comprises notes on Banach algebras and C∗-algebras. A por-
tion of these notes was taken during my participation in the Groundwork for Operator
Algebras Lecture Series (GOALS) workshop at IPAM, UCLA. If you come across any
typos, please send corrections to junaid.aftab1994@gmail.com.
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Remark 0.1. Unless otherwise specified, we work over K = C, the field of complex numbers
in these notes.
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Part 1. Banach Algebras

1. Why Banach Algebras?

Banach algebras are perhaps the most general type of operator algebra. They also pro-
vide a natural setting for studying classical topics in functional analysis, such as spectral
theory. Key concepts like the spectrum, resolvent sets, and spectral radius can be exam-
ined within this framework, facilitating the analysis of operator behavior on Hilbert spaces
and beyond. Additionally, C∗-algebras and von Neumann algebras form special classes of
Banach algebras. Therefore, studying Banach algebras is a fundamental step in the broader
study of operator algebras.

2. Definitions & Examples

We begin with a detailed discussion of definitions and examples in Banach algebra theory.
If H is a Hilbert space, note that the Banach space, B(H ), of bounded linear operators
on H has more structure than that of a Banach space. Indeed, if T, S ∈ B(H ), then
T ◦ S ∈ B(H ) such that

∥T ◦ S∥ ≤ ∥T∥∥S∥
This observation motivates the definition of a Banach algebra. We will proceed in multiple
steps.

Definition 2.1. Let V be a complex vector space.

• V is an algebra if the underlying abelian group admits a multiplication operation

· : V × V → V (x, y) 7→ x · y
endowing V with a ring structure compatible with the given scalar multiplication.

• V is a normed algebra if it is equipped with a submultiplicative norm.

Remark 2.2. If V is a (normed) algebra, we say V is a unital (normed) algebra if it admits
an identity element. That is, there exists a e ∈ V such that e · x = x · e = x for all x ∈ V .
It is a simple exercise to check that the identity in a unital algebra is unique. The proof is
identical from group theory.

Remark 2.3. If is V a (normed) algebra, we say V is an abelian (normed) algebra if
x · y = y · x for all x, y ∈ V

Remark 2.4. From now on, we abbreviate the ring multiplication operator x · y as simply
xy for x, y in an algebra.

If V is a normed algebra, then the norm induces a metric on V which in turn induces a
topology on V called the norm topology. Here is a sample proposition:

Lemma 2.5. Let V be a normed algebra. Addition, scalar multiplication and multiplication
are are continuous in the norm topology on V .

Proof. Let’s consider the multiplication operation. Let xn → x and yn → y. The sub-
multiplicativity of the norm implies that

∥xy − xnyn∥ ≤ ∥xy − xyn∥+ ∥xyn − xnyn∥ ≤ ∥x∥∥y − yn∥+ ∥x− xn∥∥yn∥ → 0.

It is clear that addition and scalar multiplication are continuous. □

Definition 2.6. A Banach algebra, A, is a normed algebra that is complete in the metric
topology induced by the norm.
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In other words, a Banach algebra, A, is a Banach space endowed with a sub-multiplicative
operation making X into a normed algebra.

Remark 2.7. If A is unital Banach algebra with identity element e ∈ A, then note that we
have

∥e∥ = ∥ee∥ ≤ ∥e∥∥e∥
Hence, ∥e∥ ≥ 1. In a C∗-algebra, we have ∥e∥ = 1. Observe that for any r ∈ R with r ≥ 1,
(A, r∥ · ∥) remains a Banach algebra. Moreover, note that ∥ · ∥ and r∥ · ∥ are equivalent
norms. Therefore, it is possible to modify the norm of any Banach algebra such that the
unit has a norm of 1 with respect to this new norm.

Notice that a subalgebra is itself an algebra. A subalgebra of a normed algebra is a
normed algebra. The closure of a subalgebra of a normed algebra is a normed algebra.
Therefore the closure of any subalgebra of a Banach algebra is again a Banach algebra.
This observation generates a long list of examples:

Example 2.8. The following is a list of some basic examples of Banach algebras:

(1) Let S be a set, and let ℓ∞(S) be the collection of all bounded complex-valued
functions on S. Then ℓ∞(S) is a Banach algebra with respect to the usual pointwise
operations defined as follows:

(f + g)(s) := f(s) + g(s),

(fg)(s) := f(s)g(s),

(λf)(s) := λf(s)

for all s ∈ S. It is a commutative unital Banach algebra with identity given by the
constant function x 7→ 1. The norm is given by

∥f∥∞ = sup
s∈S

|f(s)|.

(2) Let X be a locally compact Hausdorff space, X. Let Cb(X) denote the space of
bounded continuous complex-valued functions on X. It can be checked that Cb(X)
is a closed subalgebra of ℓ∞(X). Hence, Cb(X) is a unital commutative Banach
algebra.

(3) Let X be a locally compact Hausdorff space, X. Let C0(X) be the the space of
continuous complex-valued functions on X that vanish at infinity. It can be checked
that C0(X) is a closed subalgebra of Cb(X). Hence, C0(X) is a commutative Banach
algebra. It is unital if and only if X is compact.

(4) Let H be a Hilbert space. Then B(H ) is a (generally non-commutative) unital
Banach algebra with multiplication operation given by composition, identity given
by the identity operator, and norm given by the operator norm. In particular, if
H = Cn then Mn(C) is a Banach algebra under matrix multiplication and the
operator norm.

Remark 2.9. If X is locally compact and Hausdorff, then Cb(X) contains many functions
due to Urysohn’s Lemma. If X is locally compact but not compact, then Cb(X) is likely
non-separable. Let X = R. Consider the subset K ⊆ Cb(R) consisting of functions that are
either 0 or 1 at the integers. There is an uncountable subset S of K such that:

∥f − g∥ ≥ 1, whenever f, g ∈ S with f ̸= g.
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Given a countable subset B of Cb(R), it follows that there is an s ∈ S that is at least 1
2

distance away from every element of B. Thus, B is not dense in Cb(R).
Remark 2.10. If X is a locally compact Hausdorff space, we have that C(X) is also a
Banach algebra. In general, we have the following inclusions of Banach algebras:

C0(X) ⊊ Cb(X) ⊊ C(X)

If X is a compact Hausdorff space, then

C0(X) = Cb(X) = C(X)

Definition 2.11. Let A and B be Banach algebras. A morphism ϕ : A→ B is a continuous
C-linear, multiplicative map. Moreover, ϕ is an isometric isomorphism if it has a continuous
inverse and ϕ is an isometry.

Remark 2.12. If A,B are unital Banach algebras, then a morphism ϕ : A → B is unital
morphism if ϕ(eA) = eB.

Example 2.13. Let X be a compact topological space and let Y ⊆ X be a compact
subspace. Then the restriction of functions is a momorphism of Banach algebras from
C(X) to C(Y ). This includes the special case when Y = {x}, consisting of a single element.
In this case, C(Y ) ∼= C, and the restriction is the evaluation homomorphism δx : C(X) → C
mapping f to f(x).

Commutative Banach algebras are much easier to study. In spite of the fact that we are
most interested in algebras modeling B(H ) for some Hilbert space H — which are not
commutative — the theory of commutative Banach algebras plays a very important role
in the sequel. We discuss an important example of a commutative Banach algebras to end
this section:

Example 2.14. Consider L1(R), the Banach space of Lebesgue integrable complex-valued
functions on R. The convolution of two functions f and g in L1(R) is defined as

(f ∗ g)(x) :=
∫
R
f(x− y)g(y) dy.

L1(R) is a commutative Banach algebra. It is easy to check that the + and ∗ operations on
L1(R) satisfy the axioms of an abelian algebra. That is, we have,

(f ∗ g) ∗ h = f ∗ (g ∗ h)
f ∗ (g + h) = f ∗ g + f ∗ h
(f + g) ∗ h = f ∗ h+ g ∗ h

f ∗ g = g ∗ f
Moreover, ∗ is sub-multiplicative. Indeed, we have,

∥f ∗ g∥1 =
∫
R

∫
R
|f(x− y)||g(y)| dy dx

≤
∫
R

∫
R
|f(x− y)||g(y)| dx dy

=

∫
R

[∫
R
|f(x− y)| dx

]
|g(y)| dy

= ∥f∥1
∫
R
|g(y)| dy = ∥f∥1 ∥g∥1
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L1(R) is a non-unital Banach algebra. Assume that there is a f ∈ L1(R) is a unit. For each
g ∈ L1(R), we have by the convolution theorem,

ĝ = f̂ ∗ g = f̂ ĝ

But if g ∈ L1(R) is a Gaussian, then ĝ doesn’t vanish. Hence, f̂ ≡ 1. But the Riemann

Lebesgue lemma implies that f̂ ∈ C0(R). This is a contradiction.

Remark 2.15. The convolution on L1(R) is first defined on the dense subspace Cc(R), and
subsequently be extended by continuity to L1(R).

Example 2.16. Let D = {z ∈ C : |z| ≤ 1} be the open unit disk. Let O(D) ⊆ C(D) be
the subalgebra of holomorphic functions on D◦. By Morera’s Theorem, the uniform limit
of holomorphic functions is holomorphic, which implies that O(D) is a closed subalgebra of
C(D). Let A (D) be the image of O(D) in C(S1) via the restriction map. Since the map
g 7→ g|S1 is isometric by the Maximum Modulus Principle, A (D) is complete and therefore
closed in C (S1). Hence, A (D) is a closed subalgebra of C (S1) and forms a Banach algebra,
commonly referred to as the disk algebra. It consists of those functions in C(S1) that have
holomorphic extensions to D.

3. Unitization

When a Banach algebra, A, does not contain a unit, we can always add one, as follows.
Form the vector space

A′ := A⊕ C,
and make this into an algebra by means of

(a, λ)(b, µ) := (ab+ λb+ µa, λµ)

for each a, b ∈ A and λ, µ ∈ C. In other words, (0, 1) ∈ A′, which can be identified with
1 ∈ C, is the identity, e′, in A′. Furthermore, we can define a norm on A′ by

∥(a, λ)∥A′ := ∥a∥A + |λ|
In particular, ∥e′∥ = |1| = 1. We have,

∥(a, λ)(b, µ)∥A′ ≤ ∥a∥A∥b∥A + |λ|∥b∥A + |µ|∥a∥A + |λ||µ|
= ∥(a, λ)∥A′∥(b, µ)∥A′

Hence, A′ is a unital Banach algebra containing A.

Remark 3.1. If A already has a unit e, then the algebra A′ is isomorphic to the direct
sum A ⊕ C of the algebras A and C, where we define multiplication component-wise. The
isomorphism from A′ to A⊕ C is given by

(a, λ) 7→ (a+ λe)⊕ λ

As a crucial example, we compute the unitization C0(X)′. We recall the one-point com-
pactification X∞ of the space X. Let ∞ denote a new point, and define X∞ = X ∪ {∞},
where X∞ is X with an additional point. A set U ⊆ X∞ is open if it is either open in X
or contains ∞ and the set X \ U is compact in X. Every continuous function in C(X∞)
restricts to a continuous function on X, so C0(X) can be identified with the subspace of
continuous functions on X∞ that vanish at ∞.

Proposition 3.2. Let X be a locally compact non-compact Hausdorff space. There is a
topological (non-isometric) isomorphism of Banach algebras C(X∞) ∼= C0(X)′.
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Proof. Extending every f ∈ C0(X) by zero to X∞, we consider C0(X) as a subspace of
C(X∞). Define ψ : C0(X)′ → C(X∞) by ψ(f, λ) = f + λ1X , where 1(x) = 1 for all
x ∈ X∞. Moreover, define ϕ : C(X∞) → C0(X)′ by ϕ(f) = (f |C(X), 0). Then ψ is an
isomorphism of algebras with inverse ϕ as can be easily checked. For the norms, we have

∥ψ(f, λ)∥C(X∞) = sup
x∈X∞

|f(x) + λ| ≤ sup
x∈X

|f(x)|+ |λ| = ∥(f, λ)∥C(X)′ .

This shows that ψ is continuous. It can also be checked that ϕ is continuous. This proves
the claim. □

4. Ideals

We can define the notion of an ideal in a Banach algebra.

Definition 4.1. Let A be a Banach algebra. A subspace I ⊆ A of a commutative Banach
algebra A is called a left ideal if for any a ∈ I, it follows that ab ∈ I for all b ∈ A. A right
ideal is defined similarly.

Proposition 4.2. Let A be a Banach algebra and let I ⊆ A be a closed two-sided left proper
ideal. The quotient space A/I is a Banach algebra with respect to the quotient norm.

Proof. It is a standard fact from Banach space theory that A/I is Banach space with the
quotient norm. We only show that the quotient norm is sub-multiplicative. For given
a, b ∈ A and for every ϵ > 0, by the definition of the quotient norm, there exist m,n ∈ I
such that

∥a+m∥ ≤ ∥π(a)∥+ ϵ, ∥b+ n∥ ≤ ∥π(b)∥+ ϵ

Since (a+m)(b+ n) ∈ ab+ I, we have

∥π(a)π(b)∥ = ∥π((a+m)(b+ n))∥
≤ ∥(a+m)(b+ n)∥
≤ ∥a+m∥∥b+ n∥
≤ ∥π(a)∥∥π(b)∥+ ϵ(∥π(a)∥+ ∥π(b)∥+ ϵ).

This holds for every ϵ, and so it implies the desired claim. □

Example 4.3. Let A be a Banach algebra.

(1) There are two trivial ideals, the one consisting of the zero element and the one
consisting of A itself.

(2) Any ideal, I, that contains the unit element e is equal to A.
(3) If A is a non-unital algebra, is clear that the embedding of A into A′ is linear and

isometric and that A sits inside of A′ as a closed ideal1. Hence, we can in a way
think of A′ as the smallest unital Banach algebra in which A sits as an ideal.

Definition 4.4. Let A be a Banach algebra. An ideal I ⊆ A is a left (resp. right) maximal
ideal if it is not contained in any other non-left (resp. right) trivial ideal.

Zorn’s lemma implies that maximal ideals always exist.

Proposition 4.5. Let A be a Banach algebra. Any non-trivial left (resp. right) ideal is a
subset of a left (resp. right) maximal ideal.

1In fact, as a maximal ideal, given that its co-dimension is equal to 1.
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Proof. Denote the ideal by I. A partial order among left (resp. right) ideals containing I
is established through inclusion. Consider any chain of such non-trivial left (resp. right)
ideals Iα, i.e., for any α ̸= β, either Iα ⊆ Iβ or Iβ ⊆ Iα. We claim that U =

⋃
α Iα contains

I, is a left (resp. right) ideal, and hence an upper bound. Clearly, U is a subspace since
all Iβ are subspaces. Any x ∈ U is in some Iα, and if y ∈ A is any element, we have that
xy ∈ Iα and thus in U . Since e is not in any of the Iβ, it is not in U , and hence U is
non-trivial. That I ⊆ U is evident. By Zorn’s lemma, there exists a maximal element M ,
i.e., M is an ideal such that whenever V is an ideal that contains I and M , then V = M .
Hence, M is a maximal ideal. □

Corollary 4.6. Let A be a Banach algebra and let I ⊆ A be a left (resp. right) ideal. Then
I is a left (resp. right) ideal. In particular any maximal ideal is closed.

Proof. This follows from the continuity of multiplication and the fact that the closure of a
non-trivial ideal is non-trivial. □

We can extend the notion of a maximal ideal to a non-unital Banach algebra.

Definition 4.7. Let A be a non-unital Banach algebra. A left (resp. right) ideal I ⊆ A is
called regular if A/I contains a unit.

Remark 4.8. A Zorn’s lemma argument can be used to show that a non-unital Banach
algebra contains a maximal regular ideal.

Remark 4.9. Let A be a Banach algebra. The following standard facts from the theory of
ideals of rings in abstract algebra carry over to the theory of ideals in a Banach algebra:

• An element a ∈ A is invertible if and only if it is not contained in a left (resp. right)
maximal ideal.

• A two-sided ideal I ⊆ A is maximal if and only if A/I is a field.

Details omitted.

5. Spectrum

In this section, we consider the notion of the spectrum of an element in a Banach algebra.
The spectrum of an element in a Banach algebra generalizes the notion of eigenvalues of a
matrix. For each element in a Banach algebra, we show that its spectrum is a non-empty,
compact set. We then define the spectral radius of an element of a Banach algebra, and we
prove the spectral radius formula.

Definition 5.1. Let A be a unital Banach algebra with unit e. An element x ∈ A is called
invertible if there exists y ∈ A such that

xy = yx = e

The element y is called the inverse of x, denoted x−1.

Remark 5.2. It can be easily checked that the inverse of an element is unique. Let GL(A)
denote the set of invertible elements of A. Then GL(A) forms a group, and (xy)−1 = y−1x−1

for x, y ∈ GL(A).

Clearly, we need A to have a unit in order to define the notion of invertibility.
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Definition 5.3. Let A be a unital Banach algebra with unit e. The resolvent of a in A,
denoted as ρA(a), is the set,

ρA(a) = {z ∈ C | a− ze such that a− ze is invertible}

The spectrum of a in A, denoted as ρA(a), is the set,

σA(a) = {z ∈ C | a− ze such that a− ze is not invertible}

Remark 5.4. Clearly, we have, σA(a) = ρA(a)
c for each a ∈ A.

When A has no unit, the resolvent and the spectrum are defined through the embedding
of A in its unitization A′ = A⊕ C. Hence, we define σA(a) = σA′(a) for each a ∈ A.

Lemma 5.5. Let A be a non-unital Banach algebra and let A′ be its unitization. Then

σA′(a) = σA(a) ∪ {0}

Proof. Let e′ denote the identity in A′. Then 0 ∈ σA(x) because otherwise e′ = x−1x ∈ A,
a contradiction. Thus, σA(x) ∪ {0} = σA(x) := σA′(x). □

Example 5.6. Here is a list of basic examples of the spectrum of some concrete Banach
algebras.

(1) When A = Mn(C) is the algebra of n × n matrices, the spectrum of a ∈ A is just
the set of eigenvalues of a.

(2) When A = C(X) for some compact topological space,the spectrum of f ∈ A is just
the range of f . Indeed,

σA(f) = {z ∈ C | f − z1 is not invertible }
= {z ∈ C | f − z1 = 0 for some x ∈ X }
= {z ∈ C | z = f(x) for some x ∈ X } = Range(f)

(3) Let X be a locally compact, non-compact topological space and let A = C0(X). We
have that Range(f) ∪ {0} ⊆ σA′(f). If λ ̸= 0 such that λ ∈ f(X), then consider

g(x) =
f(x)

λ(λ− f(x))

g(x) is continuous on X. Moreover, because f ∈ C(X) implies g ∈ C0(X). It is
easily verified that (

1

λ
+ g(x)

)
(λ− f(x)) = 1

Hence,

σA′(f) = Range(f) ∪ {0}
This is consistent with the result we would get if were to apply the characterization
of the unitization of C0(X).

We can establish numerous algebraic properties of the spectrum. Here is a sample propo-
sition:

Proposition 5.7. Let A,B be unital Banach algebras.

(1) If a, b ∈ A, then

σA(ab) ∪ {0} = σA(ba) ∪ {0}.
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(2) If a, u ∈ A, and u is invertible, then

σA(uau
−1) = σA(a).

(3) If ϕ : A→ B is a unital morphism, then

σB(ϕ(a)) ⊆ σA(a)

Proof. The proof is given below:

(1) Indeed, let 0 ̸= λ ∈ ρA(ab) and set u := (ab− λ)−1. Hence abu = uab = 1+ λu, and
from this we obtain

(ba− λ)(bua− 1) = λ

(bua− 1)(ba− λ) = λ.

Thus ba− λ is invertible, and so λ ∈ ρA(ba).
(2) Note that we have

uau−1 − λe = uau−1 − λueu−1 = u(a− λe)u−1

It is then clear that uau−1−λe is invertible if and only if u(a−λe)u−1 is invertible.
The claim follows.

(3) Let λ ∈ σB(ϕ(a)). Then

ϕ(a)− λeB = ϕ(a− λeA)

is not invertible. Since ϕ preserves invertibility, a − λeA is not invertible. Hence,
λ ∈ σA(a).

This completes the proof. □

Remark 5.8. Invertibility sometimes depends on the algebra in which one allows the inverse
to exist. For instance, if A ⊆ B is a unital subalgebra of a unital Banach algebra B, then
by Proposition 5.7(3), ρA(a) ⊆ ρB(a), but the containment may be strict. For example,
consider the Banach subalgebra A (D) ⊆ C(T). Here A (D) is the disk algebra. The function
f(z) = z in C(T) is invertible in C(T) but not in A(D), since its inverse would have to be
1
z , which has a singularity at the origin.

The rest of the section is devoted to proving some crucial properties of the spectrum of
an element in a Banach algebra. We first prove some important properties about invertible
elements in a Banach algebra.

Lemma 5.9. Let A be a unital Banach algebra, and let a ∈ A.

(1) If ∥a∥ < 1, then a− e is invertible with inverse
∑∞

n=0 a
n.

(2) If ∥a− e∥ < 1, then a− e is invertible with inverse
∑∞

n=0(1− a)n

(3) For each z ∈ C \ {0}, (a− ze)−1 always exists when |z| > ∥a∥.
(4) The group GL(A) is an open set.
(5) The inversion map a 7→ a−1 of GL(A) is a homeomorphism.
(6) If a ∈ GL(A), then

σA(a
−1) = {λ−1 | λ ∈ σA(a)}

Proof. The proof is given below:
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(1) We first show that the sum is a Cauchy sequence. Indeed, for n > m, we have∥∥∥∥∥
n∑

k=0

ak −
m∑
k=0

ak

∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=m+1

ak

∥∥∥∥∥ ≤
n∑

k=m+1

∥ak∥ ≤
n∑

k=m+1

∥a∥k

The sum on the right converges to zero by the theory of the geometric series. Since
A is complete, the sum

∑∞
k=0 a

k is a well-defined element of A. Now compute

n∑
k=0

ak(a− e) =
n∑

k=0

(ak − ak+1) = a− en+1.

Hence

∥e−
n∑

k=0

ak(a− e)∥ = ∥an+1∥ ≤ ∥a∥n+1.

which goes to 0 for n→ ∞, as ∥a∥ < 1 by assumption. Thus

lim
n→∞

n∑
k=0

ak(a− e) = e.

By a similar argument,

lim
n→∞

(a− e)
n∑

k=0

ak = e.

So that, by continuity of multiplication in a Banach algebra, one finally has

lim
n→∞

n∑
k=0

ak = (a− e)−1.

(2) This follows from (1).
(3) Note that

(a− ze) = z(z−1a− e)

Since |z| > ∥a∥, we have that |z−1a| < 1. The claim follows from (1).
(4) Given a ∈ GL(A), let b ∈ A for which ∥b∥ < ∥a−1∥−1. Observe that we have,

∥a−1b∥ ≤ ∥a−1∥∥b∥ < 1

Hence

a+ b = a(e+ a−1b)

has an inverse, namely

(e+ a−1b)−1a−1

which exists by (1). It follows that

{y ∈ A | ∥x− y∥ < ∥a−1∥−1∥ ⊆ GL(A).

Indeed, if ∥y − x∥ ≤ ∥a−1∥−1, then if b = y − x, then y = x + b is invertible from
above. This shows that GL(A) is open in A.
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(5) Let a ∈ GL(A). Let b such that ∥a− b∥ < 1
2∥a

−1∥−1. Note that,

∥b−1∥ − ∥a−1∥ ≤ ∥b−1 − a−1∥ = ∥b−1(a− b)a−1∥ ≤ 1

2
∥b−1∥,

Hence, ∥b−1∥ ≤ 2∥a−1∥. If ε ∈ (0, 1), we can now choose b such that ∥a − b∥ <
ε
2∥a

−1∥−2. Since the estimate above continues to hold, we have

∥b−1 − a−1∥ ≤ ∥b−1(a− b)a−1∥ ≤ 2∥a−1∥2∥b− a∥ ≤ ε

This shows that the inversion map is continuous. Since the inversion map is its own
inverse, the claim follows.

(6) If λ ̸= 0, then note that

a− λe = aλ(eλ−1 − a−1) = −aλ(a−1 − eλ−1)

Hence, if a is invertible and λ ̸= 0, then a−λe is invertible if and only if a−1−λ−1e
is invertible. The claim follows from this observation.

This completes the proof. □

Example 5.10. Let A be a Banach algebra. Here is a list of basic examples of the topo-
logical group GL(A):

(1) Let A = Mn(C). Then the unit group GL(A) is the group of invertible matrices.
The continuity of the determinant function in this case gives another proof that A×

is open.
(2) Let A = C(X) for a compact Hausdorff space X. Then the unit group GL(A)

consists of all f ∈ C(X) with f(x) ̸= 0 for every x ∈ X.

Proposition 5.11. Let A be a unital Banach algebra, and let a ∈ A. The spectrum of a is
a compact set contained in the unit ball of radius ∥a∥ in C.

Proof. Lemma 5.9(2) implies that

σA(a) ⊆ {z ∈ C | |z| ≤ |a|}
We show that σA(a) is compact by showing that σA(a) is a closed set. Given a ∈ A, we
now define a function f : C → A by

f(z) := a− ze.

Clearly, f is a continuous function. Because GL(A) is open in A by Lemma 5.9(3), it follows
that f−1(GL(A)) is open in C. But

f−1(GL(A)) = {z ∈ C | such that a− ze is invertible} = ρA(a)

Hence, σA(a) = ρA(a)
c is a closed set. This shows that σA(a) is a compact set. □

Is the spectrum of an element non-empty? The answer is yes, and we now prove it. Since
the spectrum is a generalization of the study of eigenvalues of a complex-valued matrix, it
is expected that some complex analysis will be required to prove the claim.

Definition 5.12. Let A be a unital Banach algebra, and letW ⊆ C. A function f :W → A
is a Banach-algebra valued holomorphic function

∂f

∂z
(z0) := lim

z∈W,z→z0

f(z)− f(z0)

z − z0

exists for each z0 ∈W .
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Remark 5.13. Major results from single-valued complex analysis continue to hold, such as
Cauchy’s integral formula or Liouville’s theorem. However, we don’t include these results
here.

Proposition 5.14. Let A be a Banach algebra and let a ∈ A. Then σA(a) ̸= ∅.

Proof. WLOG, assume that a ̸= 0 because if a = 0, then σA(0) = {0}. Consider the
function,

f : ρA(a) → A z 7→ (a− ze)−1

We show that f is a Banach space-valued holomorphic function. For λ ̸= µ ∈ ρA(a) = C,
we have

(λa− e)−1 = (λa− e)−1(µa− e)(µa− e)−1

= (λa− e)−1((µ− λ)e+ λa− e)(µa− e)−1

= ((µ− λ)(λa− e)−1 + e)(µa− e)−1 = (µ− λ)(λa− e)−1(µa− e)−1 + (µa− e)−1

Therefore, we have,
f(λ)− f(µ)

λ− µ
= −(λa− e)−1(µa− e)−1

Therefore,

lim
µ→λ

=
f(λ)− f(µ)

λ− µ
= −(λa− e)−2 = −f(λ)2

This shows that f is a Banach space-valued holomorphic function. If |λ| > ∥a∥, we have,

f(λ) = (λa− e)−1

= λ−1
(
e− a

λ

)−1
=

1

λ

∞∑
n=0

(a
λ

)n
=

1

λ
e+

1

λ2
a+ · · · .

For r > ∥a∥, let Γr denote a contour that is a circle of radius r. Since

1

2πi

∫
Γr

λmdλ = δm,−1,

we have,

an =
1

2πi

∫
Γr

λnf(λ)dλ

for each n ≥ 0. If σA(a) = ∅, then ρA(a) = C and f is an entire function. Moreover, f is
bounded. Indeed, if |λ| > 2∥a∥, then

∥f(λ)∥ ≤ 1

|λ|
1

1− ∥a∥
|λ|

≤ 1

|λ| − ∥a∥
≤ 1

∥a∥

Hence, f is constant. But then we would have2

0 ≤ ∥e∥ = ∥a0∥ =
1

2π

∫
Γr

∥f(λ)∥dλ ≤ Mr

2π

∫
Γr

dλ = 0

where Mr = maxλ∈Γr ∥f(λ)∥. Hence, e = 0, a contradiction. Hence, σA(a) is non-empty
for each a ̸= 0. □

2Here we assume that a Banach space valued integral exists and is well-defined.
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Definition 5.15. Let A be a unital Banach algebra and let a ∈ A. The spectral radius
of a ∈ A is defined as

r(a) := sup{|z| | z ∈ σA(a)}.

Example 5.16. Let X be a compact Hausdorff space and let A = C(X). Then r(f) =
∥f∥∞.

Remark 5.17. Let A =M2(C). Consider the family of matrices {At | t ∈ R+} such that

At =

(
1 t
0 1

)
Note that σA(At) = {1} and r(At) = {1}. A is a C∗-algebra, and we can compute the norm
of At as,

∥At∥2 = r(AT
t A

T )

Note that,

AT
t At =

(
1 t
t 1 + t2

)
Note that r(AT

t At) = 1/2(2 + t2 + t
√
4 + t2). We see that thin this case, r(At) < ∥At∥ for

t > 0. Hence, we have that the spectral radius can be less than the norm of an element.

We end with a non-example of a Banach algebra.

Example 5.18. Let A = C[x], the algebra of complex polynomials in one variable, x. Let
w ∈ C and p ∈ C[x] be a non-constant polynomial. Then p−w is a non-constant polynomial,
and so has a zero zw by the fundamental theorem of algebra. This means that p(zw) = w.
Hence, p is surjective. That is, σA(p) = C. Hence, A = C[x] is not a Banach algebra since
σA(a) is a non-compact set.

Remark 5.19. Similarly, B = C(x), the field field of quotients for A = C[x] is not a
Banach algebra.

6. Polynomial Functional Calculus

We discuss polynomial functional calculus.

Proposition 6.1. Let A be a unital Banach algebra, and let a ∈ A.

(1) (Polynomial Spectral Mapping Theorem) For a polynomial p(z) on C[z], define
p(σA(a)) as {p(z) | z ∈ σA(a)}. Then

p(σA(a)) = σA(p(a)).

(2) (Spectral Radius Formula) We have,

r(a) = lim
n→∞

∥an∥1/n

Proof. The proof is given below:

(1) We may suppose that p is not constant. If µ ⊆ C, there are elements λ0, . . . , λn ∈ C,
where λ0 ̸= 0, such that

p(z)− µ = λ0(z − λ1e) · · · (z − λne),

This follows because C is algebraically closed. Therefore,

p(a)− µ = λ0(a− λ1e) · · · (a− λne).
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Note that p(a) − µ is invertible if and only if all a − λ1, . . . , a − λn are invertible.
Therefore, we have

p(a)− µ is invertible ⇐⇒ at least one of a− λie is not invertible

⇐⇒ λi ∈ σA(a) for some i

⇐⇒ µ = p(λi) for some λi ∈ σA(a)

The last statement follows since p(λ) = µ for each λ = λ1, · · · , λn. The claim now
follows.

(2) If λ ∈ σA(a) and n ∈ N, (1) implies that we have λn ∈ σA(a
n). Therefore,

|λn| ≤ r(an) ≤ ∥an∥
Thus |λ| ≤ ∥an∥1/n. Taking supremum as λ ranges over σA(a) yields

r(a) ≤ lim inf
n→∞

∥an∥1/n

Let Mr as in Proposition 5.11. Using the formula for an as in Proposition 5.11, we
have ∥an∥ ≤ rn+1Mr. Thus,

lim sup
n→∞

∥an∥
1
n lim

n→∞
r

n+1
n M

1
n
r = r

for r > ∥a∥. Since |λ| > r(a) implies that λ ∈ ρA(a), it follows that if r, r′ > r(a),
then Γr and Γr′ are homotopic in ρA(a). Thus, the formula for an in Proposition 5.11
holds for all r > r(a). It follows that

lim sup
n→∞

∥an∥
1
n ≤ r(a).

This completes the proof. □

Remark 6.2. Consider the algebra homomorphism

π : C[z] → A

such that π(1) = e and π(z) = a for some a ∈ A. We then have,

π
( n∑

i=0

ciz
i
)
=

n∑
i=0

cia
i

This homomorphism is called the polynomial functional calculus for a. Hence, Proposi-
tion 5.11(1) is a statement about the spectrum of the polynomial functional calculus for
a.

Remark 6.3. There is also holomorphic functional calculus that is not discussed in the
notes.

Corollary 6.4. (Gelfand-Mazur) Let A be a unital Banach algebra in which every non-
zero element is invertible. Then A is isometrically isomorphic to C.

Proof. Let a ∈ A. Since σA(a) ̸= ∅, there is some λa ∈ C such that a − λae = 0 is not
invertible. By assumption, a− λae. Hence, a = λa · e. Define the map,

h : A→ C h(a) = λa

It is easy to check that h is a linear map. Moreover, we have,

ab− λaλb · e = ab− λa · b+ λa · b− λaλb · e = (a− λa · e)b+ λa(b− λb · e) = 0
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This shows that h(ab) = h(a)h(b). Hence, h is an algebra morphism. Clearly, h is a
bijective. Moreover, a− λa · e = 0 implies that |λa| = ∥a∥. Hence, h is an isometric algebra
isomorphism. □

Remark 6.5. Most of the results presented above hold for a non-unital Banach algebra by
passing to its unitization. For example, if A is a non-unital algebra, A′ is its unitization,
a ∈ A and p ∈ C[z], then

σA(p(x)) := σA′(p(x)) = p(σA′(x)) := p(σA(x))

by the proof of the polynomial spectral mapping theorem.

7. Gelfand Transform

The Gelfand transform is a fundamental tool in the theory of Banach algebras, providing
a powerful method for analyzing the structure of commutative algebras. It is crucial in the
study of the spectrum of operators and in representation theory. The Gelfand transform
also plays a central role in understanding the duality between a Banach algebra and its
space of continuous functions. The Gelfand transform is also the first step in establishing
that the category of C∗-algebras is equivalent to the category of locally compact Hausdorff
spaces.

How should one study an arbitrary unital commutative Banach algebra? A key tenet of
modern mathematics is that an abstract object should be studied by examining the algebra
of continuous functions on it.

Definition 7.1. Let A be a Banach algebra. The character space, denoted as Â, is the
set of all non-zero linear maps,

ω : A→ C,
that are also group homomorphisms. Each such ω is called a character.

Lemma 7.2. Let A be a unital Banach algebra, and let Â be its character space. The
following statements are true:

(1) If ω ∈ Â, then ω(e) = 1.
(2) If x ∈ GL(A), then ω(x) ̸= 0.

(3) If ω ∈ Â, then

|ω(a)| ≤ ∥a∥
for each a ∈ A. In particular, ω is continuous.

(4) If A is commutative, then there is a bijective correspondence between Â and the set
of all two-sided maximal ideals in A (which are closed in A).

(5) For every λ ∈ σA(a), there is a character ω ∈ Â such that ωλ(a) = λ.

Proof. The proof is given below:

(1) Let a ∈ A such that ω(a) ̸= 0. Then,

ω(a) = ω(ae) = ω(a)ω(e)

This implies that

ω(a)(1− ω(e)) = 0

Since ω(a) ̸= 0, we must have that ω(e) = 1.
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(2) We have

ω(x−1)ω(x) = ω(x−1x) = ω(e) = 1

Hence ω(x) ̸= 0.
(3) For each a ∈ A, we have that σA(a) ⊆ B(0, ∥a∥). Therefore, if |z| > ∥a∥, then a−ze

is invertible. Hence,

ω(a)− z = ω(a)− zω(e) = ω(a− ze) ̸= 0

Therefore, if |z| > ∥a∥, then we cannot have that ω(a) = z. Hence,

|ω(a)| ≤ ∥a∥
In particular, this implies that ω is continuous.

(4) Let ω ∈ Â. Clearly, kerω is a closed subsapce since ω is continuous. Since ω is
multiplicative, kerω is a two-sided ideal. Since the kernel of every linear map into
C has codimension one, kerω is a maximal ideal.

Conversely, let I be a two-sided maximal ideal of A. Proposition 4.2 implies
that A/I is a Banach algebra. It is a standard algebraic fact that every element
in A/I is invertible. Hence, Corollary 6.4 implies that A/I ∼= C. Hence, there is a
homomorphism ψ : A/I → C. We can define a map ω : A→ C by ω = ψ ◦ τ , where
τ is the canonical projection map. This map is clearly linear, since τ and ψ are.
Also,

ω(a)ω(b) = ψ(τ(a))ψ(τ(b))

= ψ(τ(a)τ(b))

= ψ(τ(ab))

= ω(ab),

Therefore, ω is multiplicative; it is nonzero because ω(b) ̸= 0 for each b /∈ I. Hence

ω ∈ Â. Finally, I ⊆ ker(ω) since I = ker(τ); but if b /∈ I we know that ω(b) ̸= 0.
Hence, I = kerω. This also shows that I is closed.

(5) Since a − λe is not invertible, it generates a proper ideal I = ⟨a − λe⟩ in A. I is

contained in a maximal ideal, M , which is the kernel of some character ωλ ∈ Â.
Moreover,

ωλ(a) = λ ⇐⇒ λ− ae ∈ kerωλ ⇐⇒ λ− ae ∈M

The last condition is true. Hence, ωλ(a) = λ.

This completes the proof. □

Remark 7.3. Let A be a non-unital Banach algebra. In this case, the proof of Lemma 7.2

can be modified. For instance, we can still show that for each ω ∈ Â, we have that ∥ω∥ ≤ 1.
For every a ∈ A and n ∈ N, we have

|ω(a)| = |ω(an)|1/n ≤ ∥ω∥1/n∥an∥1/n

Thus

|ω(a)| ≤ lim sup
n→∞

∥ω∥1/n∥an∥1/n = r(a) ≤ ∥a∥3.

3Note that the spectral radius is defined by passing to the unitzation of A.
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Therefore, ∥ω∥ ≤ 1. Recall that a left (resp. right) ideal I ⊆ A is called regular if A/I

contains a unit. We can show that there is bijection between Â and the set of all regular
two-sided maximal ideals. The proof in Proposition 5.11(3) now goes through since we can
apply the Gelfand-Mazur theorem under the assumption that I is a maximal regular ideal.

Remark 7.4. If A is a commutative Banach algebra, Lemma 7.2 implies that Â ̸= ∅ since
Zorn’s lemma guarantees the existence of at least one non-zero maximal ideal if A is unital,
and the existence of a non-zero maximal regular ideal if A is non-unital. In order to produce
a non-trivial maximal ideal, we have to assume that A is a commutative Banach algebra
Indeed, the statement above does not hold if A =M(2,C). This follows because M(2,C) is
a simple ring.

If A is a (unital) commutative Banach algebra, Lemma 7.2 also implies that

Â ⊆ A∗,

where A∗ is the dual space of A. Recall that A∗ is usually considered endowed with the

weak-∗ topology. Hence, the topology on Â is the relative weak-∗ topology. In fact, we can

say a bit more about the topological properties of Â.

Proposition 7.5. Let A be a unital commutative Banach algebra. Then Â is a compact

Hausdorff subspace of A∗ in the relative weak-∗ topology on Â.

Proof. Clearly, Â is a weak-∗ Hausdorff space since A∗ is a weak-∗ Hausdorff space. We now

show that Â is weak-∗ closed. Let (ωn)n∈N ⊆ Â such that ωn → ω in the weak-∗ topology
for some ω ∈ A. That is, ωn(a) → ω(a) for all a ∈ A. We have,

|ω(ab)− ω(a)ω(b)| = |ω(ab)− ωn(ab) + ωn(a)ωn(b)− ω(a)ω(b)|
≤ |ω(ab)− ωn(ab)|+ |ωn(a)ωn(b)− ω(a)ω(b)|
≤ |ω(ab)− ωn(ab)|+ |(ωn(a)− ω(a))ωn(b) + ω(a)(ωn(b)− ω(b))|
≤ |ω(ab)− ωn(ab)|+ |ωn(a)− ω(a)|∥b∥+ ∥a∥ωn(b)− ω(b)|.

Since ωn → ω in the weak-∗ topology, we obtain that

|ω(ab)− ω(a)ω(b)| = 0

Hence, ω ∈ Â. Hence, Â is weak-∗ closed. By Lemma 7.2(2), we have Â is contained in the
unit ball in A∗. By the Banach-Alaoglu theorem, the unit ball in A∗ is weak-∗ compact.

Since, Â is weak-∗ closed set of a weak-∗ compact set, Â is a weak-∗ compact set since A∗

is Hausdorff. □

The motivation behind the Gelfand transform is that a Banach algebra, A, should be
studied by invoking the principle of duality: elements in a Banach algebra can be studied
can by studying the collection of evaluation maps. More precisely, we consider the map

Γ̃ : A→ A∗∗ Γ(a)(ϕ) = ϕ(a)

When ω ∈ Â, this defines Γ̃(a) as a function on Â for each a ∈ A. The definition of the

weak-∗ topology implies that Γ̃(a) ∈ C(Â).

Definition 7.6. Let A be a unital commutative Banach algebra. The map Γ defined as,

Γ : A→ C(Â) Γ(a)(ω) = ω(a),

is the Gelfand transform.
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Proposition 7.7. Let A be a unital commutative Banach algebra, and let Γ : A → C(Â)
denote the Gelfand transform.

(1) The Gelfand transform is an algebra homomorphism.
(2) The spectrum of a ∈ A is:

σA(a) = {ω(a) | ω ∈ Â}

(3) The Gelfand transform is a contraction, that is,

∥Γ(a)∥∞ ≤ ∥a∥.

for each a ∈ A.

Proof. The proof is given below:

(1) This is clear.
(2) For a ∈ A and z ∈ C, consider the element a − ze. If a − ze is invertible, then

ω(a− ze) ̸= 0 for each ω ∈ Â. If a− ze is not invertible, then a− ze is contained in

a proper maximal ideal of A. Invoking Lemma 7.2(3), we have that there is a ω ∈ Â
such that ω(a− ze) = 0. Hence a− ze is invertible if and only if ω(a− ze) ̸= 0 for

all ω ∈ Â if and only if ω(a) ̸= ω(z) for all ω ∈ Â. Hence,

ρA(a) = {z ∈ C | z ̸= ω(a) for all ω ∈ Â}

Taking the complement, we have,

σA(a) = {z ∈ C | z = ω(a) for some ω ∈ Â}

= {ω(a) | ω ∈ Â}

(3) We have,

∥Γ(a)∥∞ = sup
ω∈Â

|ω(a)| = r(a) ≤ ∥a∥

This completes the proof. □

Remark 7.8. Note that x ∈ GL(A) if and only if Γ(a) never vanishes. Observe that

a is not invertible ⇐⇒ I = ⟨a⟩ is proper

⇐⇒ a is contained in a maximal ideal

⇐⇒ ω(a) = 0 for some ω ∈ Â

⇐⇒ Γ(a) has a zero.

There are examples non-unital Banach algebras. It turns out that we can extend the
results discussed to the case of non-unital Banach algebras.

Proposition 7.9. Let A be a non-unital commutative Banach algebra and let A′ denote its
unitization. Let Γ denote the Gelfand transform as in Proposition 7.7.

(1) We have,

Â′ = Â ∪ {ϕ0},
where we have define ϕ0((a, λ)) = λ

(2) Â is a locally compact, Hausdorff space.

(3) The Gelfand transform is a contractive, algebra homomorphism into C0(Â).
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(4) The spectrum of a ∈ A is

σA(a) = {ω(a) | ω ∈ Â} ∪ {0}
for each a ∈ A.

Proof. (Sketch) The proof is given below:

(1) It is clear that there can be no other elements of Â′. If ϕ ∈ Â′, then the restriction
of ϕ to A has a unique multiplicative extension to A′ (see Proposition 11.6), unless
it identically vanishes on A. In the latter case, ϕ0 is clearly the only possibility.

(2) Since Â′ is a compact Hausdorff space, Â = Â′\{ϕ0} is a locally compact, Hausdorff
space by the characterization of locally compact, Hausdorff spaces.

(3) Note that Γ(a)(ϕ0) = ϕ0(a) = 0 This means that Γ(A) ⊆ C0(Â).
(4) We have,

σA(a) := σA′(a) = {ω(a) | ω ∈ Â′} = {ω(a) | ω ∈ Â} ∪ {0}
This completes the proof. □

Remark 7.10. If A is a (unital) commutative Banach algebra, we have proved that the
Gelfand transform is a contractive (hence injective) algebra homomorphism. The Gelfand
transform becomes an isometric ∗-isomorphism if A is a commutative C∗-algebra.

We end with some examples. We first compute Ĉ(X) when X is a compact Hausdorff
space.

Example 7.11. Let X be a compact Hausdorff space. We find Ĉ(X). By Lemma 7.2(3),
it suffices to compute the set of maximal ideals of C(X). For each x ∈ X, define Ix by

Ix = {f ∈ C(X) : f(x) = 0}
Let I be a proper ideal in C(X). We claim that I ⊆ Ix for some x ∈ X. Assume this
is not the case. Then for each x ∈ X, we can find a fx ∈ I such that fx ̸∈ Ix. That is,
fx(x) ̸= 0. Since fx is continuous there is a open neighbourhood x ∈ Ux that fx|Ux ̸= 0.
Since X is compact, the open cover (Ux)x∈X admits a finite sub-cover. Hence, we can find
x1, . . . , xn ∈ X such that X = ∪n

i=1Uxi . Consider the function

f(x) =

n∑
i=1

|fxi(x)|2 =
n∑

i=1

fxi(x)fxi(x)

Clearly, f ∈ I. But by construction f > 0 on X. Hence, f is invertible, so that I contains
an invertible element, contradicting that I is a proper ideal. Hence, we have that for every
proper ideal, I, there exists a xI ∈ I such that I ⊆ IxI . Moreover, let x ̸= y. Since X is
compact and Hausdorff, X is a normal space. By Urysohn’s lemma, there exists f, g ∈ C(X)
such that f |{x} = 0, f |{y} = 1, and g|{y} = 1, g|{y} = 0. This shows that Ix ⊊ Iy and Iy ⊊ Ix.
Hence, we can conclude that the set of maximal ideas, M . is of the form

M = {Ix | x ∈ X}

In particular, we can conclude that Ĉ(X) = X as sets. In fact the map

φ : X → Ĉ(X)

x 7→ Evx
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is a homemorphism. It is clear that each Evx ∈ Ĉ(X), and Evx ̸= Evx for x ̸= y as above.
If xα → x, then f(xα) → f(x) for each f ∈ C(X), which implies that Evxα → Evx in the
weak-∗topology. This shows that φ is a continuous injection. It is also surjective by the
discussion above. Since these spaces are compact Hausdorff, the claim follows.

In fact, one can generalize Example 7.11.

Example 7.12. Let X be a locally compact Hausdorff space. We claim that

φ : X → Ĉ0(X)

x 7→ Evx

is a homeomorphism. Continuity follows as in Example 7.11. Injectivity follows as in

Example 7.11 by applying Uryhson’s lemma to X∞. We show φ is onto. Let ω ∈ Ĉ0(X).
By the Riesz representation theorem , there exists a positive Radon measure µ on X such
that

ω(f) =

∫
X
f(x) dµ(x) for all f ∈ C0(X).

Thus, we have

0 = ω
(
(f − ω(f))(f − ω(f))

)
=

∫
X
|f(x)− ω(f)|2dµ(x).

This means that, for every f ∈ C0(X), f equals the constant function ω(f) µ-almost
everywhere. Hence, there is a point x0 ∈ X such that

ω(f) = f(x0) for all f ∈ C0(X).

In other words, ω = Evx0 . One can φ to a continuous and bijective map from X∞ onto Â′.
This is a homemorphism as in Example 7.11. Hence, so is φ.
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Classical Mathematics Quantum Mathematics

Groups Quantum groups
Cohomology Quantum Cohomology
Topology C∗-algebras

Differential Geometry Non Commutative Geometry
Probability Theory Free Probability
Information Theory Quantum Information Theory

Correspondence of some topics in classical mathematics and quantum math-
ematics.

Part 2. C∗-Algebras I: Basic Theory

8. Why C∗-Algebras?

Linear algebra studies linear operators which are linear maps T : Cn → Cn. If T, S :
Cn → Cn are two such linear operators, then T ◦ S ̸= S ◦ T in general. This is perhaps
the first instance where one encounters the phenomenon of ‘non-commutativity’ in mathe-
matics. More generally, functional analysis studies infinite-dimensional linear spaces with
additional analytic structures. A key example is that of a Hilbert spaces. If H is an
infinite-dimensional Hilbert space, we consider the Hilbert space of bounded/continuous
linear operator on H :

B(H ) := {T : H → H | T is linear and bounded},
Once again, elements of B(H ) are non-commutative, in general. The phenomenon of non-
commutativity is prevalent in different topics of mathematics and physics. Examples include
quantum physics, linear algebra, representation theory of groups, etc. The theory of opera-
tor algebras (including C∗-algebras) attempts to capture the essence of non-commutativity.
The pioneers of operator algebras, Francis Murray and John von Neumann, wrote in their
very first article on operator algebras4 in 1936 that

“various aspects of the quantum mechanical formalism suggest strongly the elucidation of
this subject.”

Hence, the study of operator algebras can be considered an essential part of non-commutative
mathematics, which is also called quantum mathematics5 more colloquially and popularly.

Why C∗-algebras, though? C∗-algebras can be thought of as a non-commutative or
quantum version of topology. This is the content of a result of Gelfand and Naimark (to be
proved later):

Theorem 8.1. (Gelfand & Naimark) Let A be a C∗-algebra. Then A is commutative if
and only if A is isometrically ∗-isomorphic to C0(X) for some locally compact Hausdorff
topological space, X.

Corollary 8.2. Let A be a unital C∗-algebra. Then A is commutative if and only if A is
isometrically ∗-isomorphic to C(X) for some compact Hausdorff topological space, X.

4It was an article on von Neumann algebras
5Thus, phrases such as quantum groups, quantum cohomology, etc., are used to describe objects studied in
quantum mathematics.
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Hence, any locally compact Hausdorff topological space gives rise to a commutative C∗-
algebra. On the other hand, any commutative C∗-algebra is exactly of this form. In this
sense, commutative C∗-algebras correspond to “commutative-topology,” and we may view
the theory of non-commutative C∗-algebras as a kind of “non-commutative topology.” This
duality is also the basis for other topics in non-commutative/quantum mathematics. Refer
to Table 1.

9. ∗-Algebras

We first define ∗-algebras. The ∗-operation on a algebra is analogous to taking adjoints
in complex matrix algebras.

Definition 9.1. Let V be an C-algebra. Then V is a ∗-algebra if there is a map ∗ : A→ A
is an antiautomorphism and an involution. More precisely, ∗ is required to satisfy the
following properties:

(1) (x+ y)∗ = x∗ + y∗,
(2) (xy)∗ = y∗x∗,
(3) (x∗)∗ = x,
(4) (kx)∗ = kx∗

for all x, y ∈ V and k ∈ C.

A Banach ∗-algebra is a Banach algebra with a ∗ map.

Definition 9.2. A Banach ∗-algebra is a Banach algebra that is a ∗-algebra. A morphism
ϕ : A→ B between two Banach ∗-algebra A and B is a morphism of the underlying Banach
algebras that that is ∗-preserving. That is, ϕ(a∗) = ϕ(a)∗ for each a ∈ A.

We end with some properties of Banach ∗-algebra.

Proposition 9.3. Let A be a unital Banach ∗-algebra.
(1) e = e∗.
(2) If x ∈ GL(A), then x∗ ∈ GL(A), and (x∗)−1 = (x−1)∗.

(3) σA(a
∗) = σA(a) for each a ∈ A.

Proof. The proof is given below:

(1) By definition, we have e∗e = e∗. Applying ∗, this implies e∗ = e∗e = e.
(2) This is clear.
(3) By (1)

a∗ − λe = a∗ − (λe)∗ = (a− λe)∗

The claim follows by (2) now.

This completes the proof. □

10. C∗-Algebras

We have seen that the canonical example of a non-commutative Banach algebra if B(H ),
where H is some Hilbert space. It turns out that B(H ) has even more structure. Recall
that the if T ∈ B(H ), the adjoint of T , denoted as T ∗, is in B(H ) defined by the property

⟨Ψ, T ∗Φ⟩H := ⟨TΨ,Φ⟩H
for all Ψ,Φ ∈ H . For T, S ∈ B(H ) and λ ∈ C, it is well-known that the adjoint operator
satisfies the following properties:
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(1) (T + S)∗ = T ∗ + S∗;
(2) T ∗∗ = T ;
(3) (TS)∗ = S∗T ∗;
(4) (λT )∗ = λT ∗.

Remark 10.1. Since the adjoint operation, denoted as ∗, is idempotent (T ∗∗ = T ), we say
that ∗ is an involution.

This makes B(H ) into a Banach ∗-algebra. How does the adjoint operation interact
with the norm? Pick Ψ ∈ H, and use the Cauchy-Schwarz inequality to estimate

∥TΨ∥2 = ⟨TΨ, TΨ⟩ = ⟨Ψ, T ∗TΨ⟩ ≤ ∥Ψ∥∥T ∗TΨ∥ ≤ ∥T ∗T∥∥Ψ∥2.
Using the definition of the operator norm and the sub-multiplicative nature of the operator
norm, we infer that

∥T∥2 ≤ ∥T ∗T∥ ≤ ∥T ∗∥∥T∥. (1)

This implies to ∥T∥ ≤ ∥T ∗∥. Replacing T by T ∗ and the fact that T ∗∗ = T implies
∥T ∗∥ ≤ ∥T∥. Hence,

∥T ∗∥ = ∥T∥,
for each T ∈ B(H ). Substituting this in Equation (1), we derive the crucial property

∥T ∗T∥ = ∥T∥2 (2)

for each T ∈ B(H ). This is called that C∗ identity. This discussion motivates the definition
of a C∗-algebra.

Definition 10.2. A C∗-algebra, A, is a Banach ∗-algebra that is a ∗-algebra that satisfies
the C∗ identity:

∥a∗a∥ = ∥a∥2

for each a ∈ A. A morphism ϕ : A → B between two C∗ algebras A and B is a morphism
of the underlying Banach ∗-algebras.

Example 10.3. The following is a list of some basics examples of C∗ algebras:

(1) As discussed above, B(H ) is a C∗ algebra for any Hilbert space, H .
(2) If X is a locally compact Hausdorff topological space, then C0(X) is a C∗ algebra

with involution given by complex conjugation. This is an example of a non-unital
C∗ algebra.

(3) If X is a locally compact Hausdorff topological space, Cb(X) is also a C∗ algebra
with involution given by complex conjugation.

Remark 10.4. More interesting examples and constructions will be discussed later on.

Analogously with the algebraic characterization of operators in B(H ) , we have the
following special class of elements a in a C∗-algebra, A

• a is normal if a∗a = aa∗,
• a is self-adjoint if a = a∗,
• a is a projection if a = a∗ = a2,
• a is a unitary if a∗a = aa∗ = 1,
• a is an isometry if a∗a = 1,

Proposition 10.5. Let A be a non-zero C∗-algebra. The following is a list of some ele-
mentary properties of a C∗-algebra.
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(1) ∥a∥ = ∥a∗∥ for each a ∈ A,
(2) A Banach ∗-algebra is a C∗-algebra if and only if ∥a∥2 ≤ ∥a∗a∥ for each a ∈ A
(3) If A is unital and e is the identity element, then ∥e∥ = 1.
(4) Any element a in a C∗-algebra is the sum of two self-adjoint operators.
(5) If A is unital and a ∈ A is unitary, then σA(a) ⊆ S1.
(6) If A is unital, and a ∈ A is a self-adjoint element, then r(a) = ∥a∥.
(7) If A is unital, and a ∈ A is a normal element, then r(a) = ∥a∥.
(8) If A is unital, then the norm on A is unique.
(9) A linear map between C∗-algebras is ∗-preserving if and only if it maps self-adjoint

elements to self-adjoint elements.
(10) Let A,B be two unital C∗ algebras. A ∗-homomorphism π : A → B is contrac-

tive (i.e. ∥π(a)∥ ≤ ∥a∥ for each a ∈ A) and hence continuous. Moreover, a ∗-
isomorphism between C∗ algebras is isometric.

(11) If ϕ ∈ Â and a ∈ A is self-adjoint, then ϕ(a) ∈ R.
(12) If ϕ ∈ Â, then ϕ is ∗-preserving with ∥ϕ∥ = 1.

(13) If ϕ ∈ Â, then ϕ(a∗a) ≥ 0.

(14) If A is unital, and ϕ ∈ Â, and a is a unitary, then |ϕ(a)| = 1.

Proof. The proof is given below:

(1) We use the C∗-identity. We have,

∥a∥2 = ∥aa∗∥ ≤ ∥a∥∥a∗∥
Hence, we have ∥a∥ ≤ ∥a∗∥. Similarly, we have ∥a∗∥ ≤ ∥a∗∗∥ = ∥a∥. The result now
follows.

(2) If A is a Banach ∗-algebra satisfying the given assumption, we have,

∥a∥2 ≤ ∥a∗a∥ ≤ ∥a∗∥∥a∥ ≤ ∥a∥∥a∥
The last inequality follows since (1) holds in a Banach ∗-algebra. Hence, we have
an equality above, which implies that the C∗ identity holds. The converse is clear.

(3) The C∗ identity implies that

∥e∥ = ∥ee∥ = ∥e∗e∥ = ∥e∥2

Hence, ∥e∥ = 16.
(4) Simply note that, a = Re(a) + i Im(a), where

Re(a) =
1

2
(a+ a∗) Im(a) =

1

2i
(a− a∗)

It is clear that Re(a) and Im(a) are self-adjoint elements.
(5) Recall that for any invertible element, a, in a Banach algebra,we have

σA(a
−1) = {λ−1 | λ ∈ σA(a)}

Since a and a∗ are unitary, we have,

∥a∥2 = ∥a∗a∥ = ∥e∥ = 1 = ∥e∥ = ∥aa∗∥ = ∥a∗∥2,
Hence, ∥a∥ = ∥a∗∥ = 1. Therefore, if λ ∈ σA(a), we have |λ| ≤ 1. Similarly, for
any λ ∈ σA(a), we have that λ−1 ∈ σA(a

−1) = σA(a
∗). Hence, |λ−1| ≤ 1. Hence,

|λ| = 1.

6Note that ∥e∥ ≠ 0 since e ̸= 0 since A is a non-zero C∗ algebra.
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(6) The C∗-identity implies that

∥a∥2 = ∥a∗a∥ = ∥a2∥

Repeated use of the C∗ identity implies that,

∥a∥2n = ∥a2n∥

Hence,

r(a) = lim
n→∞

∥an∥
1
n = lim

n→∞
∥a2n∥

1
2n = lim

n→∞
∥a∥

2n

2n = ∥a∥.

(7) The C∗ identity implies that,

∥a2∥2 = ∥(a2)(a2)∗∥ = ∥(a∗a)∗(a∗a)∥ = ∥a∗a∥2 = (∥a∥2)2

holds. The remaining argument is same as in (8).
(8) If a ∈ A is any element, then,

∥a∥2 = ∥a∗a∥ = r(a∗a)

Hence, we see that the spectral radius intrinsically determines the norm of any
element in a C∗ algebra. Hence, the norm is uniquely defined.

(9) A ∗-preserving map clearly sends self-adjoint elements to self-adjoint elements. Con-
versely, let ϕ : A→ B be a linear map that maps self-adjoint elements to self-adjoint
elements. Using (5), we have,

ϕ(a) = ϕ(Re(a)) + iϕ(Im(a))

ϕ(a∗) = ϕ(Re(a))− iϕ(Im(a)).

Since Re(a) and Im(a) are self-adjoint, ϕ(Re(a)) and ϕ(Im(a)) are self-adjoint by
assumption. So

ϕ(a)∗ = ϕ(Re(a) + i Im(a))∗

= (ϕ(Re(a)) + iϕ(Im(a)))∗

= ϕ(Re(a))− iϕ(Im(a))

= ϕ(a∗).

(10) Let a ∈ A. Then a∗a is a normal element in A, which means ∥a∗a∥ = r(a∗a) by (9).
By Proposition 5.7(3) , we have, r(π(a∗a)) ≤ r(a∗a). Hence,

∥a∥2 = ∥a∗a∥
= r(a∗a)

≥ r(π(a∗a))

= r(π(a∗)π(a))

= ∥π(a)∗π(a)∥ = ∥π(a)∥2.

If π is a ∗-isomorphism, then a symmetric argument shows the inequality above is
an equality.
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(11) Let a = a∗, and let ϕ(a) = α + iβ ∈ C. Note that ϕ(a) + iλ = ϕ(a + iλ) and
|ϕ(x) + iλ| ≤ ∥a+ iλ∥ for all λ ∈ R. Hence:

α2 + (λ+ β)2 = |ϕ(a) + iλ|2

≤ ∥a+ iλ∥2

= ∥(a+ iλ)∗(a+ iλ)∥
= ∥a2 + λ2∥
≤ ∥a∥2 + λ2

Thus, α2 + 2λβ + β2 ≤ ∥a∥2, for all λ ∈ R, which implies β = 0.
(12) We already know that ∥ϕ∥ ≤ 1. But ϕ(e) = 1 implies that ∥ϕ∥ = 1. The ∗-preserving

condition follows from (10) and (12).
(13) We have,

ϕ(a∗a) = ϕ(a∗)ϕ(a) = ϕ(a)ϕ(a) ≥ 0

The last equality follows by (13).
(14) We have,

|ϕ(a)|2 = ϕ(a)ϕ(a) = ϕ(a∗)ϕ(a) = ϕ(a∗a) = ϕ(e) = 1

This completes the proof. □

Let’s end with a non-example of a C∗-algebra.

Example 10.6. Let A (D) be the disk algebra. It is clear that A (D) is a Banach ∗-algebra
with the ∗-operation given by

f∗(z) := f(z̄)

We show that A (D) is not a C∗-algebra. Let f(z) = eiz ∈ A (D). We have f∗(z) = e−iz.
For z ∈ D

f∗f(z) := f∗(z)f(z) = e−izeiz = ei(z−z̄) = 1

Therefore ∥f∗f∥ = 1. On the other hand, we have

∥f∥2 = sup{|eiz|2 : z ∈ D}
= sup{e−iz+iz : z ∈ D}
= sup{e−2Im z : z ∈ D}

= sup{e−2b : b ∈ [−1, 1]}
= e2.

Hence, the C∗-identity is not satisfied.

11. Unitization

Not all C∗-algebras have units. The primary example is C0(R). In this case, we can
consider the unitization of a non-unital C∗ algebra.

Definition 11.1. Let A be a non-unital C∗-algebra. The (smallest) unital C∗-algebra
containing A is called its unitization, A′. defined A′ as follows:

A′ := A⊕ C
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with algebraic operations given by

(a, α) · (b, β) = (ab+ αb+ βa, αβ)

(a, α)∗ = (a∗, α)

∥(a, α)∥ = sup
b∈A,∥b∥≤1

∥ab+ αb∥

Remark 11.2. Consider the map,

Φ : A→ B(A) a 7→ La,

where La is the left-multiplication operator on A. It is easy to check that Φ is a ∗-
homomorphism. We have that ∥La∥ = ∥a∥. Indeed, if x ∈ A such that ∥x∥ ≤ 1, then

∥ax∥ ≤ ∥a∥∥x∥

Hence,

∥La∥ = sup
∥x∥≤1

∥ax∥ ≤ sup
∥x∥≤1

∥a∥∥x∥ = ∥a∥

If x = a∗/∥a∥, then ∥x∥ = 1, and

La(x) = ∥aa∗/a∥ = ∥a∥

This shows that Φ is an isometric ∗-homomorophism. Hence, A can be identified with a
∗-subalgebra of B(A). If we identify a ∈ A with the left multiplication operator La ∈ B(A),
and we identify (a, α) with the operator La+α IdA, then the norm on A′ is the norm induced
from B(A) on the ∗-subalgebra ⟨La, Id | a ∈ A⟩.

Remark 11.3. We have already seen that the norm on a C∗ algebra is unique. Thus, the
norm defined above is the ‘right’ choice.

Let’s verify that A′ is indeed a unital C∗-algebra. The unit is (0, 1), and clearly A′ is
a∗-algebra. It is a norm by the remark made above. Moreover, note that the identification
a 7→ La is isometric. Indeed, using the C∗-identity in A, we have for any nonzero a ∈ A,

∥a∥ =
∥∥∥a( a∗∥a∥

)∥∥∥ ≤ sup
∥b∥≤1

∥ab∥ ≤ ∥a∥ sup
∥b∥≤1

∥b∥ = ∥a∥.

So, ∥(a, 0)∥A′ = ∥a∥A, and the embedding of A into A′ is isometric. Since B(A) is complete

{La + α idA : a ∈ A,α ∈ C}

is complete since it is a closed subspace of B(A). Hence, A′ is a Banach algebra.
It remains to show that the given norm satisfies the C∗-identity. To that end, we compute

for a ∈ A and α ∈ C, oh

∥(a, α)∥2 = sup
∥b∥≤1

∥ab+ αb∥2

= sup
∥b∥≤1

∥b∗(a∗a+ αa∗ + αa+ |α|2 IdA)b∥

≤ sup
∥b∥≤1

∥a∗a+ αa∗ + αa+ |α|2 IdA ∥

= ∥(a, α)∗(a, α)∥ ≤ ∥(a, α)∗∥∥(a, α)∥.
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So ∥(a, α)∥ ≤ ∥(a, α)∗∥, and a symmetric argument yields ∥(a, α)∗∥ = ∥(a, α)∥. Then the
above inequality gives

∥(a, α)∥2 ≤ ∥(a, α)∗(a, α)∥ ≤ ∥(a, α)∥2.
This proves the C∗ identity in A′.

Remark 11.4. We denote the identity element in A′ as e′.

Remark 11.5. Properties of unital C∗ algebras discussed in Proposition 10.5 can be ex-
tended to the case of non-unital C∗ algebras by passing to the unitization of non-unital C∗

algebras.

One thing that makes unitizations nice to work with is that a ∗-homomorphism always
has a unique and natural extension to the unitization.

Proposition 11.6. Let A, B be C∗-algebras with B unital and A non-unital and π : A→ B
a ∗-homomorphism. Then there is a unique extension of π to a unital ∗-homomorphism
π̃ : A′ → B given by

π̃(a+ λe′) = π(a) + λeB

Proof. We just need to check that the given formula is a ∗-homomorphism. Linearity and
∗-preserving are immediate. For a, b ∈ A and λ, η ∈ C, we compute

π̃(a+ λe′)π̃(b+ ηe′) = (π(a) + λeB)(π(b) + ηeB)

= π(ab) + λπ(b) + ηπ(a) + ληeB

= π̃(ab+ λb+ ηa+ ληe′).

The uniqueness is forced by the fact that we require π̃ to be linear and e′ 7→ eB. □

Remark 11.7. Note that the proof of Proposition 11.6 works also when we have π : A→ B
with B non-unital. Moreover, we did not actually use the fact that π was ∗-preserving in
the proof. Indeed, it suffices to assume that π is linear and multiplicative map. Moreover,
essentially the same proof works if A and B are assumed to be Banach algebras.

12. Gelfand-Naimark Theorem

We prove the Gelfand-Naimark Theorem for commutative C∗-algebras.

Theorem 12.1. (Gelfand & Naimark) Let A be a C∗-algebra. Then A is commutative if
and only if A is isometrically ∗-isomorphic to C0(X) for some locally compact Hausdorff
topological space, X.

We have already observed that if A is considered as a Banach ∗-algebra, the Gelfand
transform,

Γ : A→ C0(Â)

defines a contractive (and hence continuous) algebra homomorphism. The purpose of the
remainder of the section is to show that Γ is ∗-preserving surjective isometry.

Proof. We first show that Γ is an isometry. Since A is commutative, every element in A is
normal. Hence,

∥Γ(a)∥∞ = sup
ω∈Â

|ω(a)| = r(a) = ∥a∥

The last equality follows from Proposition 10.5(8). Hence, Γ is isometric and injective. We
now show that Γ is ∗-preserving. By Proposition 10.5(10), it suffices to show that Γ maps
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self-adjoint elements to self-adjoint elements. But if a ∈ A is any self-adjoint element, we
have that

σA(a) = {ω(a) | ω ∈ Â} ⊆ R

by Proposition 10.5(12). Hence, range(Γ(a)) ⊆ R, which means Γ(a) = Γ(a) is self-adjoint.
This shows that Γ is ∗-preserving. We now show that Γ is surjective. We have that Γ(A) is a

∗-subalgebra of C0(Â). Γ(A) separates points. Indeed, if ω1 ̸= ω2 ∈ Â, there is some a ∈ A
such that ω1(a) ̸= ω2(a). Hence, Γ(a)(ω1) ̸= Γ(a)(ω2). Moreover, Γ(A) vanishes no-where.

Indeed, if ω ∈ Â, since ω is non-zero, then there is a a ∈ A such that Γ(a)(ω) ̸= 0. The

Stone–Weierstrass theorem7 now implies that Γ(A) = C0(Â). But since A is a closed set

of itse,f Γ is a linear isometry and C0(Â) is a normed space, general Banach space theory

shows that Γ(A) is in fact closed8. Hence, Γ(A) = C0(Â). □

13. Continuous Functional Calculus

Recall that Proposition 6.1 we characterized the spectrum of an element of a Banach
algebra obtained by applying a polynomial function to an element of a Banach algebra. This
is an example of polynomial functional calculus, which deals with the study of polynomials
of functions of elements in a Banach algebra. Note that polynomial functional calculus can
be extended to holomorphic functional calculus in a Banach algebra. In this section, we
establish a more general functional calculus for C∗-algebras: continuous functional calculus,
which is a functional calculus which allows the application of a continuous function to normal
elements of a C∗-algebra.

13.1. Motivation. We already know how to apply polynomial functional calculus for poly-
nomials defined on the spectrum of any element a of a Banach algebra. If we wish to extend
polynomial functional calculus to continuous functions defined on spectrum, it seems obvi-
ous to approximate a continuous function by polynomials according to the Stone-Weierstrass
theorem, and insert the element into these polynomials and to show that this sequence of
elements converges in A. In particular, we shall approximate continuous functions on the
spectrum of an element by Laurent polynomials, i.e., by polynomials of the form

p(z, z) =

N∑
k,l=0

ck,lz
kzl ck,l ∈ C

Here, z denotes the complex conjugation, which is an involution on the complex numbers.
To be able to insert a in place of z in this kind of polynomial, Banach ∗-algebras are
considered, i.e., Banach algebras that also have an involution ∗, and a∗ is inserted in place
of z. In order to obtain a homomorphism

C[z, z] → A,

a restriction to normal elements, i.e., elements with a∗a = aa∗, is necessary, as the polyno-
mial ring C[z, z] is commutative. If

(pn(z, z))n

7The complex version for locally compact Hausdorff spaces.
8The claim is that the image of a closed set under a linear isometry from a Banach space to a normed vector
space is closed.
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is a sequence of polynomials that converges uniformly on the spectrum of a to a continuous
function f , the convergence of the sequence

(pn(a, a
∗))n∈N

in A to an element f(a) must be ensured. A detailed analysis of this convergence problem
shows that it is necessary to resort to C∗-algebras. These considerations lead to the so-called
continuous functional calculus.

13.2. Construction. Let A be a C∗ algebra. For any a ∈ A that is a normal element, we
write C∗(a) for the C∗-algebra generated by a. This can be identified as the norm closure
of the set of all polynomials in a, a∗ with zero constant term, i.e.,

C∗(a) = {p(a, a∗) | p ∈ C[z1, z2], p(0, 0) = 0}.
When A is unital with unit e, C∗(a, e) can be identified with the closure of the set of all
polynomials on a, a∗

C∗(a, e) = {p(a, a∗) | p ∈ C[z1, z2]}.
Moreover, we denote as C(σA(a)) the C∗-algebra of continuous functions on σA(a), the
spectrum of a. Note that all of these C∗ algebras are commutative.

Proposition 13.1. Let A be a unital C∗ algebra and let a be a normal element of A. Then
there exists a unique ∗-isometric algebra isomomorphism

Φa : C(σA(a)) → C∗(e, a)

with Φa(1σA(a)) = e for 1σA(a)(z) = 1 and Φa(IdσA(a)) = a for the identity. The mapping Φa

is called the continuous functional calculus of the normal element a. Usually it is suggestively
set f(a) := Φa(f).

We first need to prove the following lemma.

Lemma 13.2. Let A be a unital C∗-algebra, and let B be a C∗-subalgebra containing the
identity of A. Then for all b ∈ B, we have

σB(b) = σA(b).

Proof. Clearly, we have that have

σA(b) ⊆ σB(b),

and the reverse inclusion will follow if we can show that b is invertible in A, implies that it
is already invertible in B. First assume that b = b∗. Let,

E = C∗(b, b−1) ⊆ A,

D = C∗(e, b) ⊆ E ∩B.

We show that E = D. This readily implies that b−1 ∈ B. Since (b−1)∗ = b−1, E is
the closure of the algebra generated by {b, b−1}. In particular, E is a unital commutative
C∗-algebra. Hence,

E ∼= C(Ê)

Let D′ ⊆ C(Ê) denote the image of D under the Gelfand transform. D′ is a closed9

∗-subalgebra of C(Ê). Furthermore, if ϕ, ψ ∈ Ê are such that ϕ ̸= ψ, we must have
ϕ(a) ̸= ψ(a) since otherwise ϕ, ψ agree on a, a−1 and hence everywhere. Since Eva ∈ D′,

9[Junaid:Why is it closed? Is D a ∗-closed subalgebra of E?]
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D′ separates the points of Ê. By Stone-Weierstrass, D′ = C(Ê). Since D′ is also closed, it

follows that D′ = C(Ê). Hence,

C(D̂) ∼= D′ = C(Ê)

Hence, D̂ = Ê, which in turn implies that D = E. If b is not necessarily self-adjoint, note
that b∗b is invertible in A since b is invertible in A. Then

(b∗b)−1b∗b = e,

and

b−1 = (b∗b)−1b∗.

By the argument above, (b∗b)−1 ∈ B. Hence, b−1 ∈ B. □

Proof. (Proposition 13.1) (Existence) Let B = C∗(a, e). Since B is a unital commutative
C∗-algebra, the Gelfand transform gives us an isometric ∗-isomorphism

Ψ : B → C(B̂).

The key argument is to explicitly identity B̂ for B = C∗(a, e). Note that any non-zero,
linear and multiplicative map on B is uniquely defined by its action on a. Hence, the map

τ : B̂ → σA(a) τ(ω) := ω(a)

is a continuous bijection. Since B̂ and σA(a) are compact and Hausdorff, τ is a homeomor-
phism. Then we get an isometric ∗-isomorphism

Θ : C(σA(a)) → C(B̂)

by

Θ(f)(ω) = f(τ(ω)) = f(ω(a)) f ∈ C(σA(a)), ω ∈ B̂

The desired conclusion follows by letting Φ = Ψ−1 ◦Θ. Indeed, note that Θ(IdσA(a))(ω) =

τ(ω) = ω(a). Therefore, Θ(IdσA(a)) = Eva. Hence, Ψ
−1 ◦Θ(IdσA(a)) = a as required.

(Uniqueness) Since Φa(1σA(a)) and Φa(IdσA(a)) are fixed, Φa is already uniquely defined
for all Laurent polynomials since Φa is a ∗-homomorphism. These polynomials form a dense
subalgebra of C(σA(a)) by the Stone-Weierstrass theorem. Thus Φa is unique. □

Proposition 13.1 shows that continuous functional calculus can be used to reduce some
abstract problems involving normal elements of a (not necessarily commutative!) C∗-algebra
to problems about function algebras.

Remark 13.3. In what follows, we shall write f(a) for Ψa(f) from time to time.

Corollary 13.4. Let A be a unital C∗-algebra A, and let a be a normal element of A. Let
f ∈ C(σA(a)). We have the following:

(1) f(a) ∈ A is normal
(2) (Spectral Mapping Theorem) f(σA(a)) = σA(f(a))

Proof. The proof is given below:

(1) We have,

f(a)∗f(a) = Φa(f)
∗Φa(f) = Φa(ff) = Φa(ff) = Φa(f)Φa(f)

∗ = f(a)f(a)∗
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(2) Since f(a) ∈ C∗(a, e) and Ψa is a ∗-isometric isomorphism, we have

σA(f(a)) := σA(Φa(f)) = σA(f) = f(σA(a)).

The last equality follow since the spectrum of f is simply its range.

This completes the proof. □

We now present some applications of Proposition 13.1 and Corollary 13.4. We first
present a complete characterization of self-adjoint, unitary and projection elements in a
unital C∗-algebra.

Corollary 13.5. Let A be a unital C∗-algebra, and let a ∈ A be a normal element. Then:

(1) a is self-adjoint if and only if σA(a) ⊆ R.
(2) a is unitary if and only if σA(a) ⊆ S1.
(3) a is a projection if and only if σA(a) ⊆ {0, 1}.

Proof. The proof is given below:

(1) If a is self-adjoint, we first show that eia is unitary. Since the ∗ operation is isometric
and hence continuous, we have

(eia)∗ =

( ∞∑
k=0

ikak

k!

)∗

=
∞∑
k=0

(−i)kak

k!
= e−ia = (eia)−1

This shows that eia is unitary. By Proposition 10.5(5), we have σA(e
ia) ⊆ S1. Let

λ ∈ σA(a). Define

b :=
∞∑
n=1

in

n!
(a− λ)n−1.

Note that b commutes with a. We have

eia − eiλe =
(
ei(a−λ) − e

)
eiλ = (a− λe)beiλ.

Since b commutes with a, and hence with (a−λe), and since (a−λe) is not invertible,
we conclude that eia − eiλ is not invertible10. Therefore, eiλ ∈ σA(e

ia) ⊆ S1. So we
must have λ ∈ R. Conversely, assume that σA(a) ∈ R. Then,

a∗ = Φa(IdσA(a))
∗ = Φa(IdσA(a)) = Φa(IdσA(a)) = a.

Hence, a is self-adjoint.
(2) The forward direction was proved in Proposition 10.5(5). Conversely, assume that

σA(a) ⊆ S1. Then,

a∗a = Φa(IdσA(a))
∗Φa(IdσA(a)) = Φa(IdσA(a) IdσA(a)) = Φa(1σA(a)) = e

Similarly, aa∗ = e. Hence, a is a unitary.
(3) If a is a projection, then a2 = a. By Corollary 13.4(2), we have

{0} = σA(0) = σA(a
2 − a) = {λ2 − λ | λ ∈ σ(A)}

This shows that σA(A) ⊆∈ {0, 1}. The converse follows as in (2).

This completes the proof. □

Here is another application:

10Here we have used the fact that if xy = yx and xy is invertible, then x and y are invertible. This statement
is true in any ring with a unit.
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Corollary 13.6. Let A be a unital C∗-algebra. If a ∈ A is unitary such that σA(a) ⊊ S1,
then there exists a self-adjoint b ∈ A such that a = eib.

Proof. WLOG, we can assume that −1 /∈ σA(a). Let ln : C \ (−∞, 0] → C denote the

principal branch of the logarithm function. Note that we have eln(·) = IdσA(a)(·). Since
|IdσA(a)| = 1, the real part of ln restricted to σA(a) vanishes. Hence, ln |σA(a) = ih for some
real-valued function h ∈ C(σA(a)). Let b = Φa(h). Since h is real-valued, b is self-adjoint.
Moreover, we have

a = Φa(IdσA(a)) = Φa(e
ih) = eiΦa(h) = eib.

□

Here is another application:

Corollary 13.7. Let A,B be unital C∗-algebras and let φ : A → B be a unital ∗-
homomorphism. If a ∈ A is normal element, then for every f ∈ C(σA(a)), we have
φ(f(a)) = f(φ(a)).

Proof. Note that φ(a) is normal and σB(φ(a)) ⊆ σA(a), and so the restriction of f to σB(a)
is continuous. Define two unital ∗-homomorphisms Φ1,Φ2 : C(σA(a)) → B by

Φ1(f) := φ(Φa(f)) = φ(f(a)),

and
Φ2(f) := Φφ(a)(f |σB(φ(a))) = f |σB(φ(a))(φ(a)).

It is easy to check that they both map 1σA(a) and IdσA(a) to 1B and φ(a), respectively.
Thus they agree on all polynomials of two variables z and z over σA(a) and since they are
continuous, they agree on all of C(σA(a)). □

14. Positive Elements

Continuous Functional Calculus (CFC) is a powerful tool for manipulating normal ele-
ments of a C∗-algebra. Granted, every element of a non-commutative C∗-algebra is not
normal. Nonetheless, we can associate a self-adjoint element for every element in a non-
commutative C∗-algebra, allowing us to spread the influence of the functional calculus to
an entire non-commutative C∗-algebra. In this section, we discuss how positive elements
can be defined via CFC.

Definition 14.1. Let A be a C∗-algebra. A self-adjoint element a ∈ A is positive if
σA(a) ⊆ R+.

Remark 14.2. If A is a C∗-algebra, the subset of positive elements is denoted by A+, and
if a ∈ A+ we write a ≥ 0.

Example 14.3. Let A = C0(X) for some locally compact topological space. Positive
elements in are non-negative real-valued functions.

We now discuss applications of CFC to produce new elements in a C∗-algebra.

Proposition 14.4. Let A be a unital C∗-algebra.

(1) If a ∈ A is a self-adjoint element, then a can be written uniquely as

a = a+ − a− a∓a± = 0

for a± ∈ A+. The elements a± are called the positive/negative parts of a.
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(2) Every a ∈ A+ and n ≥ 1, there exists a unique element b ∈ A+ such that a = bn.
The element b is called the n-th root of a.

Proof. The proof is given below:

(1) Consider the functions

f+(t) = max(t, 0), f−(t) = −min(t, 0)

We have that f± ∈ C(σA(a)) and f
+(t)− f−(t) = t11. By CFC, we have that,

a = a+ − a−

such that a± = Ψa(f
±). Since f± are non-negative real-valued functions, we have

that σA(a±) ⊆ R+ by the spectral mapping theorem, Hence, a± are positive ele-
ments. Moreover, note that f∓ · f± = 0. Hence, a∓a± = 0 by CFC.

(2) For each n ∈ N, consider the function

fn : R+ → R+, x 7→ n
√
x,

which is a continuous function on σA(a) ⊆ R+. Define, b = Φa(fn). Then

bn = Φa(fn)
n = Φa(f

n
n ) = Φa(IdσA(a)) = a

by CFC. By the spectral mapping theorem. we have

σA(b) = σA(fn(a)) = fn(σA(a)) ⊆ R+

i.e., b is positive. If c ∈ A+ is another positive element such that cn = a = bn, then

c = Φa(fn) = Φa(fn) = b

by uniqueness of the inverse of the square root function defined on σA(a). This
proves uniqueness.

This completes the proof. □

If X is compact and f ∈ C(X)+, then notice that |f(x) − t| ≤ t for every real number
t ≥ ∥f∥. Conversely, if |f(x)− t| ≤ t for some t ≥ ∥f∥, then f(x) ≥ 0 for all x and so f ≥ 0.
These observations are behind some of the statements in the next result.

Lemma 14.5. Let A be a unital C∗-algebra, and let a be a self-adjoint element. Then the
following are equivalent.

(1) a ≥ 0
(2) ∥αe− a∥ ≤ α for all α ≥ ∥a∥
(3) ∥αe− a∥ ≤ α for some α ≥ ∥a∥.

Proof. We first prove (1) implies (2). Since a ≥ 0, a = a∗. Hence, C∗(a) is abelian. Recall
that C(σA(a)) ∼= C∗(a), such that the identity function in C(σA(a)) corresponds to a. Since
a ≥ 0, we have that the identity function is in C(σA(a))+. Since σA(a) is compact, the
discussion preceding the statement of the proposition then implies that (2) is true if we
take f to be the identity function. Clearly, (2) implies (3). (3) implies (1) follows from an
argument similar to that that implies (1) implies (2). □

Lemma 14.5 gives us a nice characterization of positive elements. We have the following
corollaries.

Corollary 14.6. Let A be a unital C∗-algebra.

11Since a is self-adjoint, we can assume that t ∈ R.
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(1) Then A+ is closed.
(2) If a, b ∈ A+, then a+ b ∈ A+.
(3) If a, b ∈ A+ and a and b commute, then ab ∈ A+.
(4) a is positive if and only if a = b∗b for some b ∈ A.

Proof. The proof is given below:

(1) Suppose (an) ∈ A+ converges to a ∈ A. Then

∥a∗n − a∗∥ = ∥an − a∥ → 0,

and so (a∗n) = (an) ∈ A+ converges to a∗. Hence a∗ = a. Moreover, we have that
(∥an∥) converges to ∥a∥. By Lemma 14.5

∥∥an∥e− an∥ ≤ ∥an∥
for each n ∈ N. Hence,

∥∥a∥e− a∥ ≤ ∥a∥
for each n ∈ N. By Lemma 14.5, we have that a ≥ 0.

(2) Clearly, a+ b is self-adjoint. It suffices to assume that ∥a∥, ∥b∥ ≤ 112. But

∥1− 1

2
(a+ b)∥ =

1

2
∥(1− a) + (1− b)∥ ≤ 1

by Lemma 14.5. Hence, 1
2(a+ b) ≥ 0 by Lemma 14.5, which implies that a+ b ≥ 0.

(3) Note that,
(a+ b)2 = a2 + 2ab+ b2

By the spectral mapping theorem and (2) above, a2, b2, (a + b)2 ∈ A+. Hence,
2ab ∈ A+ which in turn implies that ab ∈ A+.

(4) The forward implication follows from Proposition 14.4(2) by simply taking the
square root of a. Conversely, clearly a is self-adjoint. We show that a = b∗b implies
that σA(a) ⊆ R+. Note that a = b∗b. Hence, we shall apply CFC to a = b∗b. Define

f(t) =

{√
t if t ≥ 0,

0 otherwise
g(t) =

{
0 if t ≥ 0,√
−t otherwise.

Then for all t ∈ R, we have f(t)g(t) = 0 and f(t)2 − g(t)2 = t. Since f and g
both vanish at 0, we get self-adjoint elements of u = Φb∗b(f) and v = Φb∗b(g) of
A such that

Φb∗b(g)Φb∗b(f) = Φb∗b(g)Φb∗b(f) = 0, Φb∗b(f)
2 − Φb∗b(g)

2 = b∗b

But then

Φb∗b(g)(Φb∗b(f)
2 − Φb∗b(g)

2)Φb∗b(g) = −Φb∗b(g)
4.

Thus13

σA((bv)
∗bv) = σA(−Φb∗b(g)

4) ⊆ (−∞, 0].

Thus −Φb∗b(g)
4 = 0. Since v is self-adjoint, this means Φb∗b(g) = 0. But then

b∗b = Φ2
b∗b(f), and Φ2

b∗b(f) is positive by the spectral mapping theorem for normal
elements.

This completes the proof. □

12This because is a positive-scalar of a positive element is a positive element
13Here we use the result that if a ∈ A and σA(a

∗a) ⊆ (−∞, 0], then a = 0.
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Remark 14.7. Note that Corollary 14.6(3) is not true in general. Indeed, let

A =

(
1 1
1 1

)
, B =

(
1 0
0 0

)
A,B ∈M2(C) are positive. However, AB is not positive since

AB =

(
1 0
1 0

)
is not even self-adjoint.

Remark 14.8. All claims about positive elements are true in a non-unital C∗-algebra.
These facts can be proved by passing to the unitization of a non-unital C∗-algebra.

15. States

We discuss states in this section. These will be useful in the GNS construction to be
discussed later on.

Definition 15.1. Let A be a C∗-algebra. A state on A is a linear functional such that:

(1) φ is positive. That is, φ(A+) ⊆ R+. Equivalently, φ(a∗a) ≥ 0 for each a ∈ A
(2) The norm of φ is one. That is,

∥φ∥ := sup{|φ(a)| : ∥a∥ = 1} = 1.

The subset S(A) ⊆ A∗
≤1 consisting of states is called the state space.

Proposition 15.2. Let A be a C∗-algebra, and let φ be a positive linear functional on A.

(1) φ is ∗-preserving. That is,

φ(a∗) = φ(a)

(2) (Cauchy-Schwartz) For a, b ∈ A, we have,

|φ(b∗a)|2 ≤ φ(b∗b)φ(a∗a)

such that we have equality if and only if φ(a∗b) = φ(b∗a).
(3) If A is unital, φ(e) = ∥φ∥.

Proof. The proof is given below:

(1) Note that Proposition 10.5 that it suffices to show that φ maps self-adjoint elements
to self-adjoint elements. If a ∈ A is a self-adjoint element, then a = a+ − a− for
some a± ∈ A+. Note that

φ(a) = φ(a+)− φ(a−) ∈ R,
since φ is a positive linear functional. The claim follows.

(2) Let λ ∈ C. Since φ is positive, it follows that

φ((λa+ b)∗(λa+ b)) = |λ|2φ(a∗a) + λφ(a∗b) + λφ(b∗a) + φ(b∗b) ≥ 0.

Because this expression must be real for all λ ∈ C, it follows that φ(a∗b) = φ(b∗a).
Hence, we get the inequality,

|λ|2φ(a∗a) + 2Re(λφ(b∗a)) + φ(b∗b) ≥ 0.

Let γ ∈ S1 such that γφ(b∗a) = |φ(b∗a)|. Given t ∈ R, put λ = tγ. Hence, we get
the inequality,

t2φ(a∗a) + 2t|φ(b∗a)|+ φ(b∗b) ≥ 0.
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As we can do this for any t ∈ R and this is a real quadratic, for this to be always
non-negative we need b2 ≤ 4ac, i.e.,

4|φ(b∗a)|2 ≤ 4φ(a∗a)φ(b ∗ b)
The desired result now follows.

(3) Clearly, φ(e) ≤ ∥φ∥. Using b = e in (2), we have

|φ(a)|2 ≤ φ(a∗a)φ(e) ≤ ∥φ∥∥a∗a∥φ(e) = ∥φ∥∥a∥2φ(e)
Taking the supremum over all a of norm one, we get

∥φ∥2 ≤ ∥φ∥φ(e)
It follows that

∥φ∥ ≤ φ(e).

Hence, φ(e) = ∥φ∥.
This completes the proof. □

16. Representations of C∗-Algebras

Definition 16.1. Let A be a C∗-algebra. A representation of A is a pair, (π,H ), where
H is a Hilbert space and π : A→ B(H ) is a ∗-homomorphism.

Definition 16.2. Let A be a C∗-algebra. Two representations of A, (π1,H1), (π2,H2),
are unitarily equivalent if there is a unitary operator U : H1 → H2 such that

Uπ1(a) = π2(a)U,

for all a in A. In this case, we write (π1,H1) ∼U (π2,H2) or π1 ∼U π2.

Remark 16.3. We usually write that π is a representation of A on H .

An important problem is representation theory is to understand irreducible representa-
tions of an abstract mathematical object.

Definition 16.4. Let A be a C∗-algebra and let (π,H ) be a representation of A. A
subspace N ⊆ H is said to be invariant if π(a)N ⊆ N , for all a in A. The representation
(π,H ) is said to be irreducible if the only invariant subspaces of {0} and H .

An important technique in representation theory is to construct ‘larger’ representations
from ‘smaller’ representations by means of algebraic operation.

Definition 16.5. Let A be a C∗-algebra and (πι,Hι), ι ∈ I, be a collection of represen-
tations of A. The direct sum representation is (

⊕
ι∈I πι,

⊕
ι∈I Hι), where

⊕
ι∈I Hι

consists of tuples, x = (xι)ι∈I satisfying
∑

ι∈I ∥xι∥2 <∞ and

(
⊕
ι∈I

πι(a)x)ι = πι(a)xι, ι ∈ I.

Proposition 16.6. Let A be a C∗-algebra, and let (π,H ) be a representation of A. A
closed subspace N ⊆ H is invariant if and only if N ⊥ is invariant.

Proof. Assume that N ⊆ H is a closed invariant subspace. Let x in N ⊥ y ∈ N and
a ∈ A. We have

⟨π(a)x, y⟩ = ⟨x, π(a)∗y⟩ = ⟨x, π(a∗)y⟩ = 0,

since π(a∗)N ⊆ N . Hence, π(a)xN ⊥, showing that N ⊥ is invariant. The converse follows
from the observation that (N ⊥)⊥ = N . □
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The previous proposition shows that it is possible to define two representations of A by
simply restricting the operators to either N or N ⊥. Moreover, the direct sum of these two
representations is unitarily equivalent to the original representation. That is, we have

(π,H ) ∼U (π|N ,N )⊕ (π|N ⊥ ,N ⊥).

We now discuss a characterizion irreducible representations of a C∗-algebra.

Definition 16.7. Let A be a C∗-algebra, and let (π,H ) be a representation of A. A vector
x ∈ H is cyclic if

span{π(a)x | a ∈ A} = H .

Remark 16.8. We say that the representation is a cyclic representation if each non-zero
vector in H is a cyclic vector.

Remark 16.9. A representation, (π,H ) of a C∗-algebra A is non-degenerate if the only
x ∈ H such that π(a)x = 0 for all a in A is x = 0. Otherwise, the representation is
degenerate. It can be easily showed that a representation (π,H ) of a unital C∗-algebra is
non-degenerate if and only if π(a) = IH implies that a = e.

Proposition 16.10. Let A be a C∗-algebra, and let (π,H ) be a non-degenerate represen-
tation of A. (π,H ) is an irreducible representation if and only if the representation (π,H )
is cyclic.

Proof. Assume that (π,H ) is irreducible. Let x be a non-zero vector, then

span{π(a)x | a ∈ A}
is an invariant subspace and its closure is a closed invariant subspace. If it is 0, then the
representation is degenerate, which is impossible. Otherwise, it must be H , meaning that
x is a cyclic vector for π. Conversely, suppose that (π,H ) is non-degenerate, but reducible.
Let N be a proper closed invariant subspace which is neither 0 nor H . If x is any non-zero
vector in N , then

Span{π(a)x | a ∈ A} ⊆ N

Hence, it cannot be dense in H . This shows that (π,H ) is not a cyclic representation. □

We end this section give a more useful criterion for a representation to be reducible.

Proposition 16.11. (Schur’s Lemma) Let A be a C∗-algebra, and let (π,H ) be a non-
degenerate representation of A. Then (π,H ) is irreducible if and only if the only positive
operators which commute with its image are scalar multiplies of the identity operator.

Proof. First assume that (π,H ) is a reducible representation. Let N ⊆ H be a non-trivial
proper closed invariant subspace of H . Let p be the orthogonal projection onto N . We
have that p = p∗ and σA(p) ∈ {0, 1}, which means that p is positive. We check that it
commutes with π(a), for any a in A. If x ∈ N , we know that π(a)x ∈ N and so

(pπ(a))x = p(π(a)x) = π(a)x = π(a)(px) = (π(a)p)x.

On the other hand, if x is in N ⊥, then so is π(a)x and

(pπ(a))x = p(π(a)x) = 0 = π(a)(0) = π(a)(px) = (π(a)p)x.

Since every vector in H is the sum of two as above, we see that

pπ(a) = π(a)p
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for each a ∈ A. As both N and N ⊥ are non-empty, this operator is not a scalar multiple
of the identity operator on H . Conversely, suppose that p is a positive that is not a scalar
multiple of the identity operator on H , but commutes with every element of π(a) for each
a ∈ A. We must have that

σA(p) = {0, 1}
We may then find non-zero continuous functions14 f , g on σA(p) whose product is zero. By
CFC, f(p) and g(p) are well-defined operators in B(H ). Since f is non-zero, the operator
Φp(f) is non-zero. Let N denote the closure of its range, which is a non-zero subspace of
H . On the other hand, Φp(g) is also a non-zero operator, but it is zero on the range of
Φp(f) and hence on N . This implies that N is a proper subspace of H. Note that Φa(f)
commutes with π(a) for each a ∈ A. Let a ∈ A. Indeed, for any ϵ > 0, we may find a
polynomial q(x) ∈ C(σA(p)) such that

∥f − q∥∞ < ϵ

in C(σA(p)), This means that

∥Φp(f)− Φp(q)∥ < ϵ

It is clear that Φp(q) will commute with π(a), since p commutes with π(a). A triangle
inequality type argument now shows tht Φp(f) must also commute with π(a). Finally, we
claim that N is invariant under π(a). In fact, it suffices to check that the range of Φp(f)
is invariant. But if x ∈ H , we have

π(a)(Φp(f)x) = π(a)Φp(f)x = Φp(f)π(a)x ∈ Φp(f)H ,

Hence, N is a proper, closed invariant subspace of H . This completes the proof. □

17. Gelfand-Naimark-Segal Construction

In this section, we explicitly construct a representation of a given C∗-algebra. The basic
idea is that multiplication allows one to see the elements of a C∗-algebra acting as linear
transformations of itself. The problem is, of course, that the C∗-algebra does not usually
have the structure of a Hilbert space. To produce an inner product or bilinear form, we use
the linear functionals on the C∗-algebra in a clever way, leading to the Gelfand-Naimark-
Segal (GNS) construction. First consider the following example.

Example 17.1. Let A be a unital C∗-algebra, and (π,B(H )) be a non-degenerate repre-
sentation of A. Let x ∈ H such that ∥x∥ = 1, and consider the linear functional

φ(a) := ⟨π(a)x, x⟩

on A. Note that,

φ(a∗a) = ⟨π(a∗a)x, x⟩
= ⟨π(a∗)π(a)x, x⟩

= ⟨π(a)†π(a)x, x⟩
= ⟨π(a)x, π(a)x⟩
≥ 0

14Use Uryshon’s lemma or simply consider bump functions.
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Here † denote the Hilbert space adjoint operator. Moreover, note that,

∥φ(a)∥ = |⟨π(a)x, x⟩|
≤ ∥π(a)x∥H ∥x∥H

≤ ∥π(a)∥B(H )∥x∥H ∥x∥H

= ∥π(a)∥B(H )∥x∥2H
≤ ∥a∥A∥x∥2H = ∥a∥A

The last inequality follows since π is a ∗-algebra which are known to be contractive. Hence,
∥φ∥ ≤ 1. But note that,

φ(e) = ⟨π(e)x, x⟩ = ⟨IH x, x⟩ = ⟨x, x⟩ = 1.

Hence, ∥φ∥ = 1. This shows that φ is a state.

Example 17.1 implies that we can associate a state corresponding to a non-degenerate
representation of a C∗-algebra. We now show that the converse is true as well, which is the
GNS construction.

Proposition 17.2. (GNS Construction) Let A be a C∗-algebra. If φ is any state on A,
there is a non-degenerate representation (πφ,Hφ) and a unit vector xφ ∈ Hφ such that

φ(a) = ⟨πφ(a)xφ, xφ⟩φ
for any a ∈ A. Moreover, the representation is unique up to unitary equivalence. That is,
if π : A→ B(H ) is another representation with cyclic unit vector x ∈ H satisfying

φ(a) = ⟨πx, x⟩
for all a ∈ A, then there exists a unique unitary U : Hφ → H such that

Uxφ = x

and
Uπφ(a) = π(a)U

for all a ∈ A.

Proof. If φ is a state, then φ defines a sesqui-linear form. Define the set,

Nφ = {a ∈ A | φ(a∗a) = 0}
We first show that φ is a closed left ideal. Clearly, φ is closed since φ is continuous15.
Moreover, Nφ is a vector subspace. Indeed, if a, b ∈ Nφ, and λ ∈ C, then

φ((λa+ b)∗(λa+ b)) = |λ|2φ(a∗a) + λφ(b∗a) + λφ(a∗b) + φ(b∗b) = 0

The first and fourth terms are zero by assumption. The second and third terms are zero by
Proposition 15.2(2). If a ∈ Nφ and b ∈ A, consider the functional

ψ(c) = φ(a∗ca)

for any c ∈ A. This is clearly another positive linear functional, and so we have

∥ψ∥ = ψ(1) = φ(a∗a) (*)

Then we have

0 ≤ φ((ba)∗ba) = φ(a∗b∗ba) = ψ(b∗b) ≤ ∥ψ∥∥b∗b∥ = φ(a∗a)∥b∥2 = 0

15Note that φ is the composition of the maps a 7→ (a, a∗) 7→ φ(a∗a) which is indeed continuous.
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This shows that ba ∈ Nφ. Hence, Nφ is a closed left ideal. Consider the map,

(, ) : A×A→ C
(a, b) 7→ φ(a∗b)

Our discussion above shows that the map defined above is a sesquilinear form. Indeed, it
is easy to check that the map is linear in the second argument. Moreover, it is conjugate
symmetric since,

(a, b) = φ(a∗b) = φ((ba∗)∗) = φ(ba∗) = (b, a)

But it might not be an inner product since Nφ ̸= ∅. Consider Vφ = A/Nφ. We can now
define an honest inner product on Vφ by the formula:

⟨a+ Nφ, b+ Nφ⟩φ := φ(b∗a).

To see that this is well-defined, note that, for any x, y ∈ Nφ and a, b ∈ A,

φ((b+ y)∗(a+ x)) = φ(b∗a+ b∗x+ y∗a+ y∗x)

= φ(b∗a) + φ(b∗x) + φ(y∗a) + φ(y∗x)

= φ(b∗a).

The last equality follows since Nφ is a left ideal. Let Hφ to be the completion of Vφ with
respect to the norm induced by ⟨·, ·⟩φ. The action of A on A by left multiplication induces
a representation πφ : A→ B(Hφ) is given by left multiplication:

πφ(a)(b+ Nφ) = ab+ Nφ.

The fact that Nφ is an ideal ensures that πφ(a) is a well-defined map from Vφ to Vφ for
each a ∈ A. Moreover, the map πφ(a) is bounded from Vφ to Vφ for each a ∈ A. Indeed,

∥πφ(a)∥2 = sup{⟨πφ(a)(x+ Nφ), πφ(a)(x+ Nφ)⟩φ | x ∈ A,φ(x∗x) = 1}
= sup{φ((ax)∗(ax)) | x ∈ A,φ(x∗x) = 1}
= sup{φ(x∗a∗ax) | x ∈ A,φ(x∗x) = 1}
≤ sup{φ(x∗x)∥a∗a∥ | x ∈ A,φ(x∗x) = 1}
= ∥a∗a∥ = ∥a∥2.

We have used the information in (∗). It is clear that πφ(a) is linear and multiplicative from
Vφ to Vφ for each a ∈ A. We check that πφ(a) is ∗-preserving from Vφ to Vφ for each a ∈ A.
For a, b, c ∈ A, we have

⟨πφ(a∗)b+ Nφ, c+ Nφ⟩φ = ⟨a∗b+ Nφ, c+ Nφ⟩φ
= φ(c∗(a∗b))

= φ((ac)∗b)

= ⟨b+ Nφ, ac+ Nφ⟩φ
= ⟨b+ Nφ, πφ(a)c+ Nφ⟩φ
= ⟨πφ(a∗)b+ Nφ, c+ Nφ⟩φ.

Since this holds for arbitrary b and c ∈ A, we conclude that πφ(a)
∗ = πφ(a)

∗. A standard
density argument now shows that the map πφ : A → B(Hφ) is a well-defined, linear,
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multiplicative and ∗-preserving map. Consider the vector xφ = 1 + Nφ. Note that,

∥xφ∥ = ∥1 + Nφ∥

= φ(1∗1)1/2

= φ(1)1/2

= 1.

If b is any element of A, it is clear that

πφ(b)xφ = b · 1 + Nφ = b+ Nφ.

It follows then that πφ(A)xφ contains A/Nφ and is therefore dense in Hφ. Note that we
have,

⟨πφ(a)xφ, xφ⟩φ = ⟨a+ Nφ, 1 + Nφ⟩ = φ(a)

for each a ∈ A. This proves existence. Let π : A → B(H ) be another representation with
cyclic unit vector x ∈ H satisfying

φ(a) = ⟨π(a)x, x⟩

for all a ∈ A. Let V denote the set

V = {π(a)x : a ∈ A} ⊆ H .

Define

U : Vφ → V,

πφ(a)xφ 7→ π(a)x

We first show that U is well-defined. Assume that πφ(a)xφ = πφ(b)xφ. We must show that
π(a)x = π(b)x. Certainly, using that π is a ∗-morphism:

⟨π(a− b)x, π(a− b)x⟩ = ⟨π((a− b)∗(a− b))x, x⟩
= φ((a− b)∗(a− b))

= ⟨πφ((a− b)∗(a− b))xφ, xφ⟩φ
= ⟨πφ(a− b)xφ, πφ(a− b)xφ⟩φ
= ∥πφ(a− b)x∥2φ = 0.

Hence, we have π(a)x = π(b)x. This shows that U is a well-defined map. We now check
that U is an injective map. Assume that π(a)x = π(b)x for some a, b ∈ A. Invoking the
above calculation, we have,

∥πφ(a− b)x∥2φ = ∥π(a− b)∥2

Hence, πφ(a)x = πφ(b)x, implying that U is injective. By a simple inspection, U is surjec-
tive. Hence, U is a bijection. To see that U preserves the inner product, notice that for
a, b ∈ A, the following holds:

⟨U(πφ(a)xφ), U(π(b)xφ)⟩ = ⟨π(a)x, π(b)x⟩
= ⟨π(b∗a)x, x⟩
= φ(b∗a).
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A verbatim argument shows that

⟨πφ(a)xφ, π(b)xφ⟩ = φ(b∗a)

This implies that U preserves inner products. Since U preserves inner products, it follows
that U is also bounded. Moreover, it is a simple matter to check that U is a linear map.
Hence, we see that

U : Vφ → V

πφ(a)xφ 7→ π(a)x

is a is unitary map. Using the density of Vφ in Hφ (and that of V in H ), we may uniquely
extend U to a bounded linear operator

Ũ : Hφ → H

Simple density arguments can be used to show that Ũ is surjective, preserves the inner

product and is a unitary equivalence. The claim follows at once if we replace Ũ by U . □

Remark 17.3. A state, φ, is called a pure state if φ cannot be written as a non-trivial
convex combination of states. With a bit more work, one can show that the representation
constructed in Proposition 17.2 is irreducible if and only if φ is a pure state.

18. Gelfand-Naimark-Segal Theorem

The study of C∗-algebras is motivated by the prime example of norm closed ∗-algebras
of operators on Hilbert space. With this in mind, it is natural to find ways that a given
abstract C∗-algebra may act as operators on Hilbert space. Such an object is called a
representation of a C∗-algebra, and the study of representations of a C∗-algebra leads to
the proof of the Gelfand-Naimark-Segal theorem:

Theorem 18.1. (Gelfand, Naimark & Segal) Let A be a C∗-algebra. Then A is isometri-
cally ∗-isomorphic to a ∗-closed subalgebra of B(H ) for some Hilbert space, H .

In order to prove Theorem 18.1, we will take the direct sum of a lot of the representations
given in Proposition 17.2 to produce a faithful representation of a C∗-algebra. We must
take into account one caveat, though. Proposition 17.2 is proved under the assumption that
there exists a state defined on A. In order to take a direct sum of a lot of representations
given in Proposition 17.2, we need to show the existence of a lot of states on A.

Lemma 18.2. Let A be a unital C∗-algebra.

(1) If φ is a bounded linear functional on A which satisfies

1 = ∥φ∥ = φ(e),

then φ is a state.
(2) Let a be a non-zero, self-adjoint (hence normal) element of A. Then there is a state

ψ on A such that

|ψ(a)| = ∥a∥.

Proof. The proof is given below:

(1) Skipped.
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(2) Let B = C∗(a, e) ⊆ A. Let λ = r(a)16. Let Evλ : C(σA(a)) → C be given by
evaluation at λ. Since Evλ is a character on C(σA(a)), it is, in particular, a state
on C(σA(a)). Since B ∼= C∗(a, e), we have furnished a state on B. Since B is a
closed subspace of A, the Hahn-Banach theorem allows us to extend it to a linear
functional ψ ∈ A∗ with the same norm (i.e., ∥ψ∥ = 1). As

ψ(1) = Evλ(1) = 1,

(1) tells us that ψ is also a state. Since the Gelfand transform takes a to the function
f(z) = z, it follows that

|ψ(a)| = |λ| = r(a) = ∥a∥
The last equality follows since a is self-adjoint.

This completes the proof. □

We are now ready to prove Theorem 18.1.

Proof. (Theorem 18.1) Let D ⊆ A be a dense subset. For each a ∈ D, let φa ∈ S(A)
be such that |φa(a

∗a)| = ∥a∗a∥ = ∥a∥2. Let (πa,Ha, xφa) representation constructed in
Proposition 17.2. Consider the direct sum representation:

π :=
⊕
a∈D

πa : A→ B

(⊕
a∈D

Ha

)
:= B(H ).

Assume a ̸= 0 ∈ A such that π(a) = 0. Then

∥πa(a)xφa∥2 = ⟨πa(a∗a)xφa , xφa⟩φa = φa(a
∗a) = ∥a∗a∥ ≠ 0

This shows that π is non-zero, a contradiction. Hence, π is injective. It is clear that π is a
∗-homomorphism since each πa is a faithful ∗-homomorphism. □

Remark 18.3. With a bit more work, one can show that each state constructed in Lemma 18.2
can be taken to be a pure state. Hence, π in the proof of Theorem 18.1 can be taken to be
a direct sum of irreducible representations of A.

16We know this exists since σA(a) is a non-empty, closed subset.
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Part 3. C∗-Algebras II: Examples & Constructions

19. Universal C∗-Algebras

20. Group C∗-Algebras

21. Crossed Product C∗-Algebras

22. Tensor Products of C∗-Algebras

23. Colimits of C∗-Algebras
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