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Part 1. Preliminaries

1. Several Complex Variables

A complex manifold is modeled as a topological space where each open subset resembles
an open subset of Cn. Therefore, we first study some fundamentals of several complex
variables theory.

1.1. Definitions. A complex differentiable function f : Cn → C is called analytic or holo-
morphic. Recall that if n = 1, a holomorphic function in one variable admits a local
representation in terms of convergent power series. The purpose of this section is to discuss
the case n > 1 and to elucidate both the similarities and differences across the cases.

Remark 1.1. Let p ∈ Cn. We will find it convenient to consider open discs with respect to
the supremum norm in Cn:

∆ε(p) := {z ∈ Cn : |zk − pk| < ε for k = 1, 2, . . . , n}
1
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Here | · | is the usual metric on C. Such a ∆ε(p) is called a polydisc of radius ε around p.
Let ⟨, ⟩Cn denote the inner product on Cn and let ∥ · ∥Cn denote the corresponding norm.
We denote the open ball of radius ε around p ∈ Cn as

Bε(p) := {z ∈ Cn | ∥z − a∥Cn < ε}

If n = 1, we denote Bε(p) as Dε(p). Note that we have,

∆ε(p) = Dε(p
1)× · · · × Dε(p

n)

The notion of a holomorphic function of one variable can be extended in a straightforward
way.

Definition 1.2. Let U ⊆ Cn be an open subset. A function f : U → C is a holomorphic
in U if for each p = (p1, . . . , pn) ∈ U , it it continuous at p and the partial derivatives

∂f

∂zj
(p) = lim

ξ→0

f(p1, . . . , pj + ξ + · · · , pn)− f(p1, . . . , pn)

ξ
, ξ ∈ C \ {0}

exist for each j ∈ {1, . . . , n}. The limit over some punctured polydisc centered at the origin
in C.

Remark 1.3. More generally, a vector-valued function f : U → Ck is said to be holomorphic
if each of its component functions is holomorphic.

Remark 1.4. If n = 1, it can be easily shown that the continuity assumption can be removed
from Definition 1.2. In fact, the continuity assumption can be removed if n > 1: Hartog
(1906) proved that a function that has complex partial derivatives at every point of an open
subset of Cn is automatically continuous. The proof is involved.

In one complex variable, there are several equivalent ways to characterize holomorphic
functions. There are similar equivalent characterizations for holomorphic functions of sev-
eral variables. We first generalize Cauchy’s integral formula to several variables:

Lemma 1.5. Let ∆ε(p) be polydisc in Cn. Let f : ∆ε(p) → C be a continuous function
such that f is holomorphic with respect to every single component zi at any point of ∆ε(p).
Then for any z ∈ ∆ε(p), we have:

f(z) =
1

(2πi)n

∫
|ζ1−p1|=ε

· · ·
∫
|ζn−pn|=ε

f(ζ1, . . . , ζn)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn.

Proof. Repeated application of the Cauchy integral formula in one variable yields

f(z1, . . . , zn) =
1

2πi

∫
|ζn−pn|=ε

f(z1, . . . , zn−1, ζn)

ζn − zn
dζn

=
1

(2πi)2

∫
|ζn−pn|=ε

∫
|ζn−1−pn−1|=ε

f(z1, . . . , ζn−1, ζn)

(ζn − zn)(ζn−1 − zn−1)
dζn−1dζn

...

=
1

(2πi)n

∫
|ζn−pn|=ε

· · ·
∫
|ζ1−p1|=ε

f(ζ1, . . . , ζn)

(ζn − zn) · · · (ζ1 − z1)
dζ1 · · · dζn

This completes the proof. □
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Remark 1.6. If we let ∂∆ε(p
i) = {ζ ∈ C | |ζi − pi| = ε} and

Γε(p) := ∂∆ε(p
1)× · · · × ∂∆ε(p

n)

Fubini’s theorem implies that the integral in Lemma 1.5 can be written as

f(z) =
1

(2πi)n

∫
Γε(p)

f(ζ1, . . . , ζn)

(ζ1 − z1) · · · (ζn − zn)
dζ1 · · · dζn.

Lemma 1.5 implies an important point about holomorphic functions in several variables.
The value of f on ∆ε(p) is completely determined by the values of f on the set Γε(p), which
is much smaller than the boundary of the polydisc ∂∆ε(p)!

Proposition 1.7. (Osgood’s Lemma) Let U ⊆ Cn be an open set and f : U → C is a
continuous function. The following are equivalent:

(1) f is holomorphic.
(2) If f(z) = u(z)+iv(z), then f is smooth and satisfies the following Cauchy–Riemann

equations:
∂u

∂xj
=

∂v

∂yj
,

∂u

∂yj
= − ∂v

∂xj
, j = 1, . . . , n,

where zj = xj + iyj.
(3) For each p = (p1, . . . , pn) ∈ U , there exists a neighborhood of p in U on which f is

equal to the sum of an absolutely convergent power series of the form

f(z) =

∞∑
k1,...,kn=0

ak1...kn(z
1 − p1)k1 · · · (zn − pn)kn .

Proof. The proof is given below:

• (1) ⇐⇒ (2): Assume (1) is true. Because f is holomorphic in each variable
separately, complex variable theory shows that it satisfies the Cauchy–Riemann
equations with respect to each variable. If p ∈ U , let ε > 0 such that ∆ε(p) ⊆
U . Smoothness now follows from Lemma 1.5. This is because we can repeatedly
differentiate under the integral sign because ∆ε(p) is compact and the integrand
is smooth. Hence, (1) is also true. Conversely, if (2) is true, then it is certainly
continuous, and complex variable theory implies that it has a complex derivative
with respect to each variable. Hence, (1) is also true.

• (1) ⇐⇒ (3): Assume (1) (and hence (2)) is true. Note that

1

ζj − zj
=

1

(ζj − pj)− (zj − pj)
=

1

ζj − pj
· 1

1− zj−pj

ζj−pj

,

Since |zj−pj |
|ζj−pj | < 1 on the domain of integration in the integral in Lemma 1.5, we can

expand the last fraction on the right in a power series to obtain

1

ζj − zj
=

1

ζj − pj

∞∑
k=0

(
zj − pj

ζj − pj

)k

,

This power series converges uniformly and absolutely for zj in any closed polydisk
∆ε′(p

j) with 0 < ε′ < ε by comparison with the geometric series. Inserting this
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formula for each variable, we conclude that f can be expanded in a power series
with coefficients

ak1...kn =
1

(2πi)n

∫
Γε(p)

f(ζ1, . . . , ζn)

(ζn − pn)kn+1 · · · (ζ1 − p1)k1+1
dζ1 · · · dζn.

Assume (3) is true. Then Weierstrass’ M -test implies that f is continuous, and
complex variable theory implies that f has partial derivatives with respect to each
zj .

This completes the proof. □

Remark 1.8. We could have alternatively defined f : U → C to be holomorphic if and only
if f admits a convergent power series about each point in U . Proposition 1.7 then implies
that f is holomorphic in this new sense if and only if f is holomorphic in each variable
separately. There is no analogue of this result for real variables. Let f : R2 → R be the
function

f(x, y) =

{
2x2y+y3

x2+y2
(x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

This function is everywhere continuous and has well-defined partial derivatives with respect
to x and y everywhere (including at the origin), but it is not differentiable at the origin.
Indeed, we have,

lim
x→0

f(x,mx)− f(0, 0)

x− 0
= lim

x→0

2mx3 +m3x3

x(x2 +m2x2)
= lim

x→0

x3(2m+m3)

x3(1 +m2)
=

2m+m3

1 +m2

Clearly, the limits are different for different values of m.

Remark 1.9. As in one variable, we define the Wirtinger operators

∂

∂zk
:=

1

2

(
∂

∂xk
− i

∂

∂yk

)
,

∂

∂zk
:=

1

2

(
∂

∂xk
+ i

∂

∂yk

)
.

An alternative definition is to say that a continuously differentiable function f : U → C
is holomorphic if it satisfies the Cauchy–Riemann equations

∂f

∂zk
= 0 for k = 1, 2, . . . , n.

This follows readily from Proposition 1.10(3).

1.2. Properties. We now prove some properties of holomorphic functions of several vari-
ables that extend the properties of holomorphic functions of one variable.

Proposition 1.10. Let U ⊆ Cn and let f : U → C be a holomorphic function.

(1) If g : U → C is a holomorphic function, then f ± g fg are holomorphic on U and
f/g is holomorphic on U \ g−1(0).

(2) Let W ⊆ Cm be open. If g : W → U is a holomorphic, then f ◦ g is holomorphic.
(3) We have

∂f

∂zj
=

∂f

∂xj
=

1

i

∂f

∂yj
.
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(4) If p ∈ U and ∆ε(p) ⊆ U , then the power series representation of f is given explicitly
by the following formula

f(z) =
∞∑

k1,...,kn=0

1

k1! · · · kn!
∂k1+···+knf(p)

(∂z1)k1 · · · (∂zn)kn
(z1 − p1)k1 · · · (zn − pn)kn .

(5) (Cauchy Estimate) If p ∈ U and ∆ε(p) ⊆ U , then∣∣∣∣∣ ∂k1+···+knf(p)

(∂z1)k1 · · · (∂zn)kn

∣∣∣∣∣ ≤ ∥f∥∞
k1! · · · kn!
εk1+···+εn

,

where ∥f∥∞ is the bounded on |f | on ∆ε(p).
(6) (Identity Theorem) If U is connected and g : U → C is anther holomorphic

function that agrees with f on a non-empty open subset of V ⊆ U , then f = g on
U .

(7) (Liouville’s Theorem) If U = Cn and f is bounded, then f is constant.
(8) (Maximum Principle) If |f | attains a maximum value at some point in U , then

f is constant.
(9) Let fk : U → C be a sequence of holomorphic functions that converge uniformly on

compact subsets of U to a function f : U → C. Then f is holomorphic.
(10) (Montel’s Theorem)

Remark 1.11. Recall that Proposition 1.10(7) is false for real-analytic functions.

Proof. The proof is given below:

(1) This is clear.
(2) Certainly f ◦ g is continuous. Let z = (z1, . . . , zm) denote the coordinates on W ,

and w = (w1, . . . , wn) those on U . Then wj = gj(z
1, . . . , zm). By the chain rule, we

have
∂(f ◦ g)
∂z̄k

=
∑
j

(
∂g

∂wj

∂fj
∂z̄k

+
∂g

∂w̄j

∂f̄j
∂z̄k

)
= 0,

This is zero because
∂fj
∂z̄k

= 0 and ∂g
∂w̄j = 0 by Remark 1.9. This is sufficient to infer

that that f ◦ g is holomorphic.
(3) Compute the limits:

∂f

∂zj
(p) = lim

h→0, h∈R

f(p1, . . . , pj + h, . . . , pn)− f(p1, . . . , pn)

h
=

∂f

∂xj
(p),

∂f

∂zj
(p) = lim

k→0, k∈R

f(p1, . . . , pj + ik, . . . , pn)− f(p1, . . . , pn)

ik
=

1

i

∂f

∂yj
(p).

Now simply note that the limits are equal.
(4) Simply differentiate the expression in Proposition 1.7(3) repeatedly term-by-term

and evaluate at z = p to determine the coefficients ak1,··· ,kn . This is justified by
results concerning power series in several variables.

(5) Note that we have

ak1···kn =
1

k1! · · · kn!
∂k1+···+knf(p)

(∂z1)k1 · · · (∂zn)kn

=
1

(2πi)n

∫
Γε(p)

f(ζ1, . . . , ζn)

(ζn − pn)kn+1 · · · (ζ1 − p1)k1+1
dζ1 · · · dζn.
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From the obvious bounds on the integrand of this integral, it follows that

|ak1···kn | ≤
∥f∥∞

εk1+···+εn

The Cauchy estimate now follows.
(6) Set h = f − g, so h ≡ 0 on a nonempty open subset V ⊆ U . Let

W = {z ∈ U | h and all its partial derivatives vanish at z}.

Then U is nonempty because U0 ⊆ U . Let z ∈ U be a limit point of W . There
is a sequence of points zj ∈ W converging to z. Hence, all partial derivatives of h
vanish at each zj . By continuity, they also vanish at z. Hence, z ∈ U implying that
W is closed in U . Suppose z ∈ W . By (1) h is equal to a convergent power series
in a neighborhood of z such that every term in the series is zero. Thus, W is open
in U . Since W is cl-open and U is connected, the claim follows.

(7) Given any point z ∈ Cn, define the function

g(ζ) = f(ζz), ζ ∈ C

g is a bounded holomorphic function on C. By Liouville’s theorem from compelx
variable theory, g is constant. Hence,

f(z) = g(1) = g(0) = f(0)

Since z ∈ Cn is arbitrary, f is constant.
(8) Suppose |f | attains a maximum value at z′ ∈ U . Consider the set,

W = {z ∈ U | f(z) = f(z′)}.

Clearly, W is non-empty and closed. Given z ∈W , choose ε > 0 such that ∆ε(z) ⊆
U . For each w ∈ Cn with |w| = 1, consider the function

g(ζ) = f(z + ζw)

g is holomorphic on the disk Dε(0) ⊆ C and achieves its maximum modulus at ζ = 0.
By the maximum principle from complex variable theory, g is constant. Since w is
arbitrary, this shows f is constant on ∆ε(z). Thus,W is open. Since U is connected,
W = U . Hence, f ≡ f(z′) on U .

(9) Given p ∈ U , choose ε > 0 such that ∆ε(p) ⊂ U . For all z ∈ ∆ε(p), we can apply
the Cauchy integral formula to fk, and uniform convergence guarantees that

f(z) = lim
k→∞

1

(2πi)n

∫
|ζn−pn|=r

· · ·
∫
|ζ1−p1|=r

fk(ζ
1, . . . , ζn)

(ζn − zn) · · · (ζ1 − z1)
dζ1 · · · dζn

=
1

(2πi)n

∫
|ζn−pn|=r

· · ·
∫
|ζ1−p1|=r

f(ζ1, . . . , ζn)

(ζn − zn) · · · (ζ1 − z1)
dζ1 · · · dζn.

Clearly, f is holomorphic.
(10)

This completes the proof. □

Remark 1.12. Proposition 1.10 conveys that holomorphic functions are quite rigid. Indeed,
here is an implication of Proposition 1.10. Let f : C → H1. We claim that f is constant.

1H is the upper half plane.
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Note that g(z) := eif(z) is holomorphic on C with ∥g∥∞ ≤ 12. So g is a constant by
Liouville’s Theorem and hence f is a constant as well.

So far, all these facts about holomorphic functions of several variables have been straight-
forward generalizations of standard facts about holomorphic functions of one variable. The
next result, however, is radically different from anything in the one-variable theory.

Proposition 1.13. (Hartog’s Extension Theorem) Let n ≥ 2, and let U = ∆ε(p) \
∆ε′(p) for some p ∈ Cn and 0 < ε′ < ε. Every holomorphic function f : U → C has a
unique extension to a holomorphic function on all of ∆ε(p).

Proof. WLOG, we may assume that p = 0. Choose any δ > 0 such that ε′ < δ < ε. As long
as ε′ < |z2| < ε, the function z1 7→ f(z1, . . . , zn) is holomorphic on ∆ε(0) ⊆ C. Cauchy’s
integral formula shows that

f(z1, . . . , zn) =
1

2πi

∫
|ζ|=δ

f(ζ, z2, . . . , zn)

ζ − z1
dζ.

This formula actually makes sense for all (z1, . . . , zn) ∈ ∆δ(0) because the integration
contour is contained in U and it defines a holomorphic function f1 there by differentiation
under the integral sign. Because f1 agrees with f on the open subset of ∆δ(0) where ε

′ <
|z2| < δ, the identity theorem shows that it agrees on the entire connected set ∆δ(0)\∆ε′(0).
Thus we can define a holomorphic function on all of ∆ε(0) by letting it be equal to f on U
and to f1 on ∆δ(0). Uniqueness follows from the identity theorem. □

Remark 1.14. In the language of sheaves of holomorphic functions, Proposition 1.13 states
that the map OCn(∆ε(p)) → O(∆ε(p) \∆ε′(p)) is bijective.

Remark 1.15. Proposition 1.13 is false if n = 1. Let f(z) = 1/z on an annular region
centered at the origin. Then f is holomorphic on the annular region but f is not holomorphic
on large unit disk defining the annular region.

Proposition 1.13 implies that singularities of holomorphic functions in two or more vari-
ables are never isolated. Similarly, it implies that the zeros of a holomorphic function in
two or more variables are never isolated. If not, then let f have an isolated zero at p. Then
1/f would have an isolated singularity, which is a contradiction.

Remark 1.16. A holomorphic function of one complex variable may have isolated singu-
larities. Simply consider f(z) = 1/z on C.

Remark 1.17. The zero of a holomorphic function of one complex variable are always
isolated. The claim is obviously true if f ∈ C[z]. Generally, if f is a holomorphic function
on an open set and f has a zero of multiplicity k at a ∈ U , then we have

f(z) =
∞∑
i=k

f (i)(a)

i!
(z− a)i = (z− a)k

∞∑
i=k

f (i)(a)

i!
(z− a)i−k := (z− a)kg(z), 0 ≤ |z− a| < r

for some r ∈ R such that the open disk is contained in U . Since g ̸= 0 on 0 < |z − a| < r,
we have that f ̸= 0 on 0 < |z − a| < r.

We end this section by proving the Schwarz lemma:

2If f(z) = az + ibz, then eif(z) = eiaz−bz . Hence |eif(z)| = e−bz < 1 since bz > 0.
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Proposition 1.18. (Schwarz Lemma) Let ∆ε(0) be a polydisc and let f : U → C be a

holomorphic function such that ∆ε(0) ⊆ U . Assume that f non-trivial monomials of degree

< k do not occur in the power series expansion of f . If |f(z)| ≤ C on ∆ε(0) can be bounded
from then

|f(z)| ≤ C|z|kε−k

for all z ∈ ∆ε(0).

Proof. Let Dε(0) be a unit ball in C. Fix 0 ̸= z ∈ ∆ε(0). Define

gz(w) = w−kf(wz/|z|), w ∈ Dε(0).

Then |gz(w)| ≤ Cε′−k for |w| = ε′ < ε. The maximum principle implies that |gz(w)| ≤ Cε′−k

for w ∈ Dε′(0). If |z| = ε′ < ε, we have,

|z|−k|f(z)| = |gz(|z|)| ≤ Cε′−k

Since ε′ < ε is arbitrary, we have

|z|−k|f(z)| = |gz(|z|)| ≤ Cε−k

This completes the proof. □

2. Complexification & Complex Structures

2.1. Complexification. We begin by discussing the technique of complexification, which
allows us to complexify a R-vector space.

Definition 2.1. If V is a R-vector space, we define the complexification of V , denoted by
V C, to be the C-vector space V ⊕V with scalar multiplication by complex numbers defined
as follows:

(a+ ib)(u, v) = (au− bv, av + bu) for a+ ib ∈ C.

Remark 2.2. V C is then a C-vector space over C.

The map V → V C given by u 7→ (u, 0) is a R-linear isomorphism from V onto the (real)
subspace V ⊕ {0} ⊆ V C. We identify V with its image under this map. We can write

(u, v) = u+ iv

and we can think of V C as consisting of the set of all linear combinations of elements of V
with complex coefficients. If dimR V = n and {b1, . . . , bn} is any basis for V (over R), then

{(b1, 0), . . . , (bn, 0)}

is a basis for V C over C. Hence dimC V
C = n. On the other hand,

{(b1, 0), . . . , (bn, 0), (0, ib1), . . . , (0, ibn)}

is a basis for V C over R. Hence dimR V
C = 2n.

Definition 2.3. If L : V → W is a linear map between R-vector spaces, the complexifi-
cation of L is the C-linear map

LC : V C →WC,

u+ iv 7→ L(u) + iL(v)
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For k = R,C if Veck is the category of finite-dimensional k-vector spaces, then complex-
ification can be thought of as a functor,

F : VecR → VecC

such that F (V ) = V C and F (L) = LC. Clearly, F (IdV ) = IdV C . Moreover if L1 : V1 →W1

and L2 : V2 →W2 are R-linear maps, then

F (L2 ◦ L1)(u+ iv) = (L2 ◦ L1)
C(u+ iv)

= L2(L1(u)) + iL2(L1(v))

= (LC
2 ◦ LC

1 )(u+ iv)

= (F (L2) ◦ F (L1))(u+ iv)

Hence, F (L2 ◦ L1) = F (L2) ◦ F (L1).

Remark 2.4. There is another way to think about complexification. If V is a R-vector
space, we can consider the (V ′)C = V ⊗R C. (V ′)C is a C-vector space with the usual
addition and with scalar multiplication defined by

α(v ⊗ β) = v ⊗ (αβ), v ∈ V α, β ∈ C
Consider the map

ϕ : V C → (V ′)C

(u, v) 7→ u⊗R 1 + v ⊗R i

The map is C-linear. Indeed, ϕ is additive because ⊗R is bilinear. Moreover, we have,

ϕ((a+ ib)(u, v)) = ϕ(au− bv, av + bu)

= (au− bv)⊗R 1 + (av + bu)⊗R i

= u⊗R (a+ ib) + v ⊗R i(a+ ib)

= (a+ ib)(u⊗R 1 + v ⊗R i)

= (a+ ib)ϕ(u, v)

Hence, ϕ is C-linear. ϕ is surjective. Indeed if v ⊗ (a+ ib) ∈ (V ′)C, then

v ⊗R (a+ ib) = av ⊗R 1 + bv ⊗R i

implies that ϕ(av, bv) = v ⊗ (a + ib). Since V C and (V ′)C are finite-dimensional C-vector
spaces, ϕ is a C-linear isomorphism.

2.2. Complex Structures. We now discuss complex structures. A complex structure is a
property of a R-vector space that allows it to be treated as a C-vector space. To motivate
this, consider the following: Let V be a C-vector space. Scalar multiplication by i defines
a linear map v 7→ iv on the underlying R-vector space, which squares to −I. By ignoring
the C-vector space structure, we can think of J as a R-linear map satisfying J ◦ J = −Id.

Definition 2.5. Let V be a R-vector space. A complex structure on V is a R-linear
map J : V → V satisfying J ◦ J = −IdV .

Example 2.6. Let V = Cn. Then

Cn ∼= R2n = {(x1, . . . , xn, y1, . . . , yn) | xi, yi ∈ R}
and the complex structure JCn

is given by

JCn
(x1, . . . , xn, y1, . . . , yn) = (−y1, . . . ,−yn, x1, . . . , xn).
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Lemma 2.7. Let V be a R-vector space. If J is a complex structure on V , then V admits
in a natural way the structure of a C-vector space.

Proof. Define scalar multiplication by C on V by

(a+ ib)v = av + bJ(v),

where a, b ∈ R. The R-linearity of J and the assumption J2 = −Id yield

((a+ ib)(c+ id))v = (a+ ib)((c+ id) · v),

This completes the proof. □

Remark 2.8. If V is a R-linear vector space admitting a complex structure, J , then the
C-linear vector space structure on V is denoted as (V, J). Combined with our discussion of
complexification, we see that complex structures on R-vector spaces and C-vector spaces are
equivalent notions.

Proposition 2.9. Let V be a R-vector space. If J is a complex structure V , then V C has
an eigenspace decomposition of the form

V C = V(1,0) ⊕ V(0,1)

=

{
v − iJv

2
| v ∈ V

}⊕{
v + iJv

2
| v ∈ V

}
.

where V1,0 is the i-eigenspace of JC and V0,1 is the −i-eigenspace of J . Moreover, V(1,0) ∼=
V(0,1) as R-linear vector spaces.

Proof. Given v ∈ V C, define v′ and v′′ by the formulas

v′ =
1

2
(v − iJv), w′′ =

1

2
(v + iJv).

A simple computation show that

JCv′ = iv′ JCv′′ = −iv′′

Because v = v′ + v′′, this shows that V C = V(1,0) + V(0,1). A non-zero vector cannot be an
eigenvector with two different eigenvalues, so V(1,0)∩V(0,1) = {0}, which shows that the sum

is direct. Conjugation is a bijective R−linear map from V C to itself and it interchanges
V(1,0) and V(0,1). This shows that V(1,0) ∼= V(0,1) as R-linear vector spaces. □

Lemma 2.10. Let V be a finite-dimensional R-vector space. If V admits a complex struc-
ture, then dimR V is even.

Proof. If V admits a complex structure, then Proposition 2.9 implies that dimR V(1,0) =
dimR V(0,1). In turn, this implies that dimC V(1,0) = dimC V(0,1). This follows because since
V(1,0), V(0,1) are C-vector spaces, we have that dimC V(1,0), V(0,1) is half that of dimR V(1,0), V(0,1).

Hence, dimC V
C is even. Since dimR V = dimC V

C, the result follows. □

We close this section with an important observation that will be useful later on:

Proposition 2.11. Let V be a R-vector space such that dimR V = n. Then

(1) We have

(V C)∗ = (V ∗)C.
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(2) We have

(V ∗)C ∼= ((V ∗, J∗))(1,0) ⊕ ((V ∗, J∗))∗(0,1)

Here J∗ is a complex structure on V ∗ we view (V ∗, J∗) as a C-linear space via
Lemma 2.7.

Proof. The proof is given below:

(1) Note that we have

(V C)∗ = HomC(V
C,C)

= HomC(V ⊗R C,C)
∼= HomR(V,HomC(C,C))
∼= HomR(V,C) ∼= HomR(V,R)⊗R C = (V ∗)C

The second isomorphism follows from the tensor-hom adjunction since V is a (R,C)-
vector space. The isomorphism HomC(C,C) ∼= C is clear.

(2) First note that V ∗ has a complex structure given by the R-linear map

J∗ : V ∗ → V ∗,

φ 7→ φ ◦ J
The isomorphism

(V ∗)C ∼= (V(1,0))
∗ ⊕ (V(0,1))

∗

follows from (1) and Proposition 2.9. It suffices to prove that (V(1,0))
∗ ∼= (V ∗, J∗)(1,0).

Note that there exists a C-linear isomorphism

(V, J) → V(1,0),

v 7→ 1

2
(v − iJv).

Here V is viewed as a C-linear space via Lemma 2.7. This induces the C-linear
isomorphism HomC(V(1,0),C) ∼= HomC((V, J),C). Therefore, we have

(V ∗, J∗)(1,0) = {φ ∈ HomR(V,C) | J∗(φ) = iφ}
= {φ ∈ HomR(V,C) | φ ◦ J = iφ}
≃ HomC(V,C) ≃ HomC(V(1,0),C) = (V(1,0))

∗.

This completes the proof. □

3. Multilinear & Alternating Maps

3.1. Multilinear Maps. We first discuss multi-linear maps.

Definition 3.1. For i = 1, · · · , k, let Vi be R-vector spaces, and letW be any other R-vector
space. A map

ω : V1 × · · · × Vk︸ ︷︷ ︸
k−times

→ R

is said to be k-multi-linear if it is linear as a function of each variable separately when the
others are held fixed. For each i, this means:

ω(v1, . . . , avi + a′v′i, . . . , vk) = aω(v1, . . . , vi, . . . , vk) + a′ω(v1, . . . , v
′
i, . . . , vk),

where a, a′ ∈ R and vi, v
′
i ∈ Vi.
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Remark 3.2. It can be easily checked that the set of k-multi-linear maps is a R-linear
space, which we denote as L(V1, . . . , Vk;W ). A k-multi-linear map is also called a k-tensor.

When W = R, we can characterize the vector space of k-multi-linear maps as follows:

Proposition 3.3. For i = 1, · · · , k, let Vi be R-vector spaces such that dimR = ni. There
is a canonical isomorphism:

V ∗
1 ⊗ · · · ⊗ V ∗

k
∼= L(V1, . . . , Vk;R),

Hence,

dimR L(V1, . . . , Vk;R) = n1 · · ·nk
Proof. Define a map Φ: V1 × · · · × Vk → L(V1, . . . , Vk;R) such that

Φ(ω1, . . . , ωk)(v1, . . . , vk) = ω1(v1) · · ·ωk(vk).

The expression on the right depends linearly on each vi, so Φ(ω1, . . . , ωk) is indeed an
element of the space L(V1, . . . , Vk;R). It is easy to check that Φ is k-multi-linear as a function
of ω1, . . . , ωk. By the characteristic property on tensor products, it descends uniquely to a
linear map Φ : V ∗

1 ⊗ · · · ⊗ V ∗
k → L(V1, . . . , Vk;R), which satisfies

Φ(ω1 ⊗ · · · ⊗ ωk)(v1, . . . , vk) = ω1(v1) · · ·ωk(vk).

The linear map Φ takes the basis of V ∗
1 ⊗ · · · ⊗ V ∗

k to the basis for L(V1, . . . , Vk;R). So it
is an isomorphism. □

Remark 3.4. From now on, assume that Vi = V, dimR V = n for each i and W = R.

3.2. Alternating Maps. We now specialize to the case of alternating k-multi-linear maps.

Definition 3.5. A map

ω : V × · · · × V︸ ︷︷ ︸
k−times

→ R

is said to be an alternating k-multi-linear map if it is k-multi-linear and that for every pair
of distinct indices i, j, it satisfies

ω(v1, . . . , vi, . . . , vj , . . . , vk) = −ω(v1, . . . , vj , . . . , vi, . . . , vk).

Remark 3.6. If ω is an alternating k-multi-linear map, then the effect of an arbitrary
permutation σ ∈ Sk of its arguments is given by

ω(vσ(1), . . . , vσ(k)) = sgn(σ)ω(v1, . . . , vk),

where sgn(σ) represents the sign of the permutation σ ∈ Sk. This follows from repeated
applications of the definition of an alternating k-multi-linear map and the definition of
sgn(σ) for σ ∈ Sk.

Remark 3.7. It can be easily checked that the set of alternating k-multi-linear maps is a
R-linear space, which we denote as A(V1, . . . , Vk;W ). An alternating k-multi-linear map is
also called a k-form.

Example 3.8. The determinant is a R-valued multilinear n-form in Rn. That is, the map
det : (Rn)n → R is a an alternating n-multi-linear map.

The following lemma gives a different alternative characterization for the alternating
condition:
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Lemma 3.9. Let V be a R-vector space such that dimR V = n. Let ω be a k-multi-linear
map. The following are equivalent:

(1) ω is an alternating k-multi-linear map.
(2) ω(v1, . . . , vk) = 0 whenever the k-tuple (v1, . . . , vk) is linearly dependent.
(3) ω gives the value zero whenever two of its arguments are equal:

ω(v1, . . . , w, . . . , w, . . . , vk) = 0.

Proof. (1),(2) imply (3) are immediate. We complete the proof by showing that (3) implies
both (1) and (2). Assume that ω satisfies (3). For any vectors v1, . . . , vk, the hypothesis
implies

0 = ω(v1, . . . , vi + vj , . . . , vi + vj , . . . , vk)

= ω(v1, . . . , vi, . . . , vi, . . . , vk) + ω(v1, . . . , vi, . . . , vj , . . . , vk)

+ ω(v1, . . . , vj , . . . , vi, . . . , vk) + ω(v1, . . . , vj , . . . , vj , . . . , vk)

= ω(v1, . . . , vi, . . . , vj , . . . , vk) + ω(v1, . . . , vj , . . . , vi, . . . , vk).

Thus, ω is an alternating k-multi-linear map. Hence, (3) implies (1). If (v1, . . . , vk) is a
linearly dependent k-tuple, then one of the vi’s can be written as a linear combination of

the others. For simplicity, let us assume that vk =
∑k−1

j=1 ajvj . Since ω is k-multi-linear, we
have,

ω(v1, . . . , vk) =
k−1∑
j=1

ajω(v1, . . . , vk−1, vj).

In each of these terms, ω has two identical arguments, so every term is zero. Hence, (3)
implies (2). □

Remark 3.10. In what follows, let {Ei}ni=1 denote a basis for V , and let {εj}nj=1 denote
the dual basis for V ∗.

Note that Proposition 3.3 implies that the set

{εi1 ⊗ · · · εik | 1 ≤ i1, · · · , ik,≤ n}
is a basis for L(V, · · · , V ;R). We would like to find a basis for A(V, · · · , V ;R), the subspace
of alternating k-multi-linear maps. Preempting the discussion in the next section, we write
A(V, · · · , V ;R) as Λk(V ) in the remainder of this section. We first define a collection of
alternating k-multi-linear maps on V that generalize the determinant function on Rn.

Definition 3.11. Let V be a R-vector space and let dimR V = n. For each multi-index
I = (i1, . . . , ik) of length k such that 1 ≤ i1, . . . , ik ≤ n, define an alternating k-multi-linear
map as follows:

εI : V × · · · × V︸ ︷︷ ︸
k-times

→ R

(v1, . . . , vk) 7→ det

 εi1(v1) · · · εi1(vk)
...

. . .
...

εik(v1) · · · εik(vk)

 = det

 vi11 · · · vi1k
...

. . .
...

vik1 · · · vikk


Because the determinant changes sign whenever two columns are interchanged, it is clear

that εI in Definition 3.11 is an alternating k-multi-linear map.
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Remark 3.12. We introduce some notation. If I = (i1, · · · , ik) is a multi-index and σ ∈ Sk
is a permutation of {1, . . . , k}, we write Iσ for the following multi-index:

Iσ = (iσ(1), . . . , iσ(k)).

Note that Iστ = (Iσ)τ for σ, τ ∈ Sk. If I and J are multi-indices of length k, we define δIJ
as follows:

δIJ = det


δi1j1 δi1j2 · · · δi1jk
δi2j1 δi2j2 · · · δi2jk
...

...
. . .

...

δikj1 δikj2 · · · δikjk


We have

δJI =

{
sgn(σ) if neither I nor J has a repeated index and J = Iσ for some σ ∈ Sk,

0 if I or J has a repeated index or J is not a permutation of I.

Lemma 3.13. The following statements are true:

(1) If I has a repeated index, then εI = 0.
(2) If J = Iσ for some σ ∈ Sk, then ε

I = sgn(σ)εJ .
(3) The result of evaluating εI on a sequence of basis vectors is

εI(Ej1 , . . . , Ejk) = δIJ

Proof. If I has a repeated index, then for any vectors v1, . . . , vk, the determinant in the
definition of εI has two identical rows and thus is equal to zero, which proves (1). On the
other hand, if J is obtained from I by interchanging two indices, then the corresponding
determinants have opposite signs; this implies (2). Finally, (3) follows immediately from
the definition of εI . □

The importance of the k-alternating tensors εI , for an increasing multi-index I, is given
by the following proposition:

Proposition 3.14. For each positive integer 0 ≤ k ≤ n, the collection of k-alternating
tensors

E = {εI : I is an increasing multi-index of length k}
is a basis for Λk(V ∗). Therefore,

dim Λk(V ∗) =

(
n

k

)
=

n!

k!(n− k)!
.

If k > n, then dimΛk(V ∗) = 0.

Remark 3.15. A multi-index I = (i1, . . . , ik) is said to be increasing if i1 < . . . < ik.

Proof. The fact that Λk(V ∗) is the trivial vector space when k > n follows immediately
from Lemma 3.13, since every k-tuple of vectors is linearly dependent in that case. So let
k ≤ n. To show that E spans Λk(V ∗), let α ∈ Λk(V ∗) be arbitrary. For each multi-index
I = (i1, . . . , ik) (not necessarily increasing), define a real number αI by

αI = α(Ei1 , . . . , Eik).
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Lemma 3.13 implies:∑
I

αIε
I(Ej1 , . . . , Ejk) =

∑
I

αIδ
I
J = αJ = α(Ej1 , . . . , Ejk).

Thus,
∑

I αIε
I = α, so E spans Λk(V ∗). To show that E is a linearly independent set,

suppose the identity ∑
I

αIε
I = 0

holds for some coefficients αI . Let J be any increasing multi-index. Applying both sides of
the identity to the vectors Ej1 , . . . , Ejk and using Lemma 3.13, we get

0 =
∑
I

αIε
I(Ej1 , . . . , Ejk) = αJ .

Thus, each coefficient αJ is zero. □

3.3. Wedge Product. We can go a step further and define a product operation for alter-
nating k-multi-linear maps. Recall that there is a product operation on the R-linear space
of k-multi-linear maps. If

ω : V × · · · × V︸ ︷︷ ︸
k−times

→ R

γ : V × · · · × V︸ ︷︷ ︸
l−times

→ R

multi-linear maps we can define their product ω ⊗ γ to be a (k + l)k-multi-linear map

ω ⊗ γ : V × · · · × V︸ ︷︷ ︸
(k+l)−times

→ R

such that

ω ⊗ γ(v1, . . . , vk, vk+1, . . . , vk+l) = ω(v1, . . . , vk)γ(vk+1, . . . , vk+l)

Now consider the case of alternating multi-linear maps. Given α ∈ Λk(V ∗) and β ∈ Λl(V ∗),
we define their wedge product (or exterior product) to be the following element in Λk+l(V ∗):

α ∧ β =
(k + l)!

k!l!
Alt(α⊗ β) =

If ω is a k-multi-linear map, then Alt(ω) is defined as

Alt(ω)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

sgn(σ)ω(vσ(1), . . . , vσ(k)).

It is easy to verify that Alt defines a projection operator:

Alt : L(V, · · · , V ;R) → A(V, · · · , V ;R)

The mysterious coefficient is motivated by statement of Lemma 3.16:

Lemma 3.16. For any multi-indices I = (i1, . . . , ik) and J = (j1, . . . , jl),

εI ∧ εJ = εIJ ,

where IJ = (i1, . . . , ik, j1, . . . , jl) is obtained by concatenating I and J .
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Proof. By multilinearity, it suffices to show that

εI ∧ εJ (Ep1 , · · · , Epk+1
) = εIJ (Ep1 , · · · , Epk+1

)

We consider several cases.

• If P = (p1, . . . , pk, q1, . . . , ql) has a repeated index. In this case, both sides above of
are zero.

• If P contains an index that does not appear in either I or J , the right-hand side is
zero. Similarly, each term in the expansion of the left-hand side involves either I
or J evaluated on a sequence of basis vectors that is not a permutation of I or J ,
respectively, so the left-hand side is also zero.

• If P = IJ and P has no repeated indices, the right-hand side of is equal to 1. So
we need to show that the left-hand side is also equal to 1. By definition,

εI ∧ εJ (Ep1 , · · · , Epk+1
) =

1

k!l!

∑
σ∈Sk+l

sgn(σ) εI (Eσ(1), · · · , Eσ(k)) ε
J (Eσ(k+1), · · · , Eσ(k+l)).

By Lemma 3.13, the only terms in the sum above that give nonzero values are those
in which σ permutes the first k indices and the last l indices of P separately. In other
words, σ must be of the form σ = τη, where τ ∈ Sk acts by permuting {1, . . . , k}
and η ∈ Sl acts by permuting {k + 1, . . . , k + l}. Since sgn(σ) = sgn(τ)sgn(η), we
have:

εI ∧ εJ (Ep1 , · · ·Epk+l
) =

1

k!l!

∑
τ∈Sk η∈Sl

sgn(τ)sgn(σ) εI (Epτ (1), · · · , Epτ (k)) ε
J (Epk+η(1)

, · · · , Epk+η(l)
)

= εI(Ep1 , · · ·Epk)ε
J(Epk+1

, · · ·Epk+l
) = 1

• If P is a permutation of IJ and has no repeated indices, applying a permutation
to P brings us back to the above case. Since the effect of the permutation is to
multiply both sides of

εI ∧ εJ (Ep1 , · · · , Epk+1
) = εIJ (Ep1 , · · · , Epk+1

)

by the same sign, the result holds in this case as well.

This completes the proof. □

Proposition 3.17. Let V be a R-vector space such that dimR V = n. Let α, β, γ be alter-
nating k-multi-linear maps on V . The wedge product satisfies the following properties:

(1) (Bilinearlity) For a, b ∈ R,

(aα+ bβ) ∧ γ = aα ∧ γ + bβ ∧ γ

(2) (Associativity)

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).
(3) (Graded Anti-Commutivity) If α ∈ Λk(V ∗) and β ∈ Λl(V ∗),

α ∧ β = (−1)kl β ∧ α

(4) If I = (i1, . . . , ik) is any multi-index, then

εi1 ∧ . . . ∧ εik = εI



COMPLEX GEOMETRY 17

Proof. (1) follows immediately from the definition, because the tensor product is bilinear
and Alt is linear. By Lemma 3.16,

(εI ∧ εJ) ∧ εK = εIJ ∧ εK = εIJK = εI ∧ εJK = εI ∧ (εJ ∧ εK)

The general case follows from bilinearity. Similarly, using Lemma 3.16 again, we get

εI ∧ εJ = εIJ = sgn(σ) εJI = sgn(σ) εJ ∧ εI ,
where σ is the permutation that sends IJ to JI. It is easy to check that sgn(σ) = (−1)kl,
because σ can be decomposed as a composition of kl transpositions (each index of I must be
moved past each of the indices of J). (3) then follows from bilinearity. (4) is an immediate
consequence of Lemma 3.13. □

Proposition 3.18. The wedge product is the unique associative, bilinear map

Λk(V ∗)× Λl(V ∗) → Λk+l(V ∗)

satisfying (1)-(4) in Proposition 3.17.

Proof. If we take ω ∈ Λk(V ∗) and η ∈ Λl(V ∗) then we can expand in the usual basis as
ω =

∑
I ωIε

I , η =
∑

J ηJε
J . Taking ∗ to be a map satisfying these four properties. By

bilinearity,

ω ∗ η =

(∑
I

ωIε
I

)
∗

(∑
J

ηJε
J

)
=
∑
I

∑
J

ωIηJ
(
εI ∗ εJ

)
Using associativity and (4) in Proposition 3.17

εI ∗ εJ = (εi1 ∗ · · · ∗ εik) ∗ (εj1 ∗ · · · ∗ εjl) = εi1 ∗ · · · ∗ εik ∗ εj1 ∗ · · · ∗ εjl = εIJ = εI ∧ εJ

This proves the claim. □

Remark 3.19. We can now define a R-vector space Λ(V )

Λ(V ∗) =

n⊕
k=0

Λk(V ∗),

Clearly, dimR Λ(V ) = 2n. The wedge product turns Λ(V ) into an associative algebra, called
the exterior algebra of V ∗. This algebra is not commutative, but it is graded-anticommutative
in the sense that if α ∈ Λk(V ∗), β ∈ Λl(V ∗), then α ∧ β ∈ Λk+l(V ∗) and

α ∧ β = (−1)klβ ∧ α

4. Exterior Algebra

4.1. Definitions. Let V be an R-vector space such that dimR V = n. In the previous
section we have constructed a graded associative algebra, Λ(V ∗), such that if α ∈ Λ(V ∗),
then α ∧ α = 0. Since V is finite-dimensional, we can identify V with (V ∗)∗. Hence, we
formally have

Λ(V ) = Λ((V ∗)∗) =

n⊕
k=0

Λk((V ∗)∗)

Exploiting Proposition 3.3 If an element ω ∈ Λ((V ∗)∗) is an alternating k-multi-linear map
that can be identified with an element of V ⊗ · · · ⊗ V︸ ︷︷ ︸

k−times

, we must have that ω ⊗ ω under this

identification. This motivates the following definition:
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Definition 4.1. Let V be a R-vector space. Consider the tensor algebra T (V ):

T (V ) =
∞⊕
k=0

T kV = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · .

The exterior algebra of V is the quotient algebra Λ(V ) = T (V )/I, where I is the two-sided
ideal generated by all elements of the form v ⊗ v such that v ∈ V .

In analogy with the definition of the wedge product, we write an arbitrary element in
Λ(V ) is written as

v1∧ · · · ∧vk := v1 ⊗ · · · ⊗ vk

for some k ≥ 0. Moreover, in analogy with the analogous construction in the previous
section, we can define the following subspace of Λ(V ):

Λ
k
(V ) = SpanR = {v1∧ · · · ∧vk | 1, i1, · · · , ik ≤ n} ⊆ Λ(V )

We have the following basic properties:

Lemma 4.2. Let V be a R-vector space.

(1) We have v ∧ w = −w ∧ v for each v, w ∈ V .

(2) For k > n, Λ
k
(V ) = 0.

Proof. The proof is given below:

(1) By construction v ∧ v = 0 for all v ∈ V . Consequently, if v, w ∈ V we have

0 = (v + w) ∧ (v + w)

= v ∧ v + v ∧ w + w ∧ v + w ∧ w

= v ∧ w + w ∧ v.

(2) Consider v1∧ · · · ∧vk ∈ Λk(V ). We can write each vi as vi = cjiEj . We then have

v1∧ · · · ∧vk =

(
n∑

j=1

cj1Ej

)
∧ · · · ∧

(
n∑

j=1

cjkEj

)

=

n∑
j1,··· ,jk=1

cj11 · · · cjkk Ej1∧ · · · ∧Ejk .

Consider the term Ej1∧ · · · ∧Ejk . Since k > n we must have that Ejl = Ejk for some
l ̸= k. Hence,

Ej1∧ · · · ∧Ejk = 0

by (1). Since each summand is zero, we have that v1∧ · · · ∧vk = 0.

This completes the proof. □

Lemma 4.2 implies that we get an analogous direct sum decomposition

Λ(V ) =

n⊕
k=0

Λ
k
(V )

As discussed at the start of this section, the motivation behind the definition of the
exterior algebra is to generalize the construction of the previous section. This is indeed the
case as shown by Proposition 4.5. We first introduce a definition and a lemma.
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Definition 4.3. Let V,W R-vector spaces. A pairing between V and W is a bilinear map

⟨, ⟩ : V ×W → R

A pairing is perfect if for every v ∈ V , there is a w ∈ W such that ⟨v, w⟩ ≠ 0, and vice
versa.

Lemma 4.4. Let V and W be finite-dimensional R-vector spaces The following statements
are equivalent:

(1) There exists an isomorphism W ∼= V ∗,
(2) There exists a perfect pairing ⟨, ⟩ : V ×W → R.

Proof. Assume that (1) is true. There is an obvious perfect pairing between V and V ∗,
given by

⟨, ⟩ : V × V ∗ → R, ⟨v, φ⟩ = φ(v)

Composing this with the obvious map V ×W → V × V ∗, we see that (1) implies (2). Now
assume that (2) is true. Given w ∈ W , we get a linear map φ : V → R by sending v to
φ(v) = ⟨v, w⟩. It is easy to see that this gives us a linear map W → V ∗, and since we have
a perfect pairing, this map is injective. Since the vector spaces are finite-dimensional, we
have that the linear map W → V ∗ is bijective, an isomorphism. Hence, (2) implies (1). □

We now prove the desired result.

Proposition 4.5. Let V be a R-vector space such that dimR V = n. For each 0 ≤ k ≤ n,
we have

Λk(V ∗) ∼= (Λ
k
(V ))∗ ∼= Λ

k
(V ∗)

Proof. (Sketch) Consider the following map:

⟨·, ·⟩ : Λk
(V )× Λk(V ∗)

(v1 ∧ · · · ∧ vk, εI) 7→ εI(v1 ∧ · · · ∧ vk)

This is a valid map since any alternating k-multi-linear map in Λk(V ∗) is a linear combina-
tion of εI . It is clear that ⟨·, ·⟩ is a pairing. Moreover, it is also a perfect pairing. The first
isomorphism follows from Lemma 4.4. The second isomorphism is given by:

φ1 ∧ · · · ∧ φk 7→
(
v1 ∧ · · · ∧ vk 7→ det

(
φi(vj)

))
.

It can be easily checked that this is an isomorphism. □

Remark 4.6. Based on Proposition 4.5 we can now write Λ as Λ.

4.2. Complexification of Exterior Algebra. We now study the complexififcation of
Λ(V ). We first prove a basic lemma.

Lemma 4.7. Let V be a R-vector space such that dimR = n. Furthermore, assume that
V =W1 ⊕W2, where W1,W2 are R-vector subspaces of V such that dimRWi = mi. Then

(1) We have

(ΛkV )C ∼= ΛkV C

(2) We have

Λ(W1 ⊕W2) ∼= ΛW1 ⊗R ΛW2
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(3) For each 0 ≤ k ≤ n, we have

Λk(W1 ⊕W2) ∼=
⊕

p+q=k

(ΛpW1 ⊗R ΛqW2)

Proof. The proof is given below:

(1) First fix some z ∈ C and consider the the map

V × · · · × V︸ ︷︷ ︸
k−times

→ ΛkV C

(v1, . . . , vk) 7→ z · (v1 ⊗ 1) ∧ · · · ∧ (vk ⊗ 1).

This map is an alternating k-multi-linear map. Hence it descends to an R-linear
map

ϕz : Λ
kV → Λk(V C)

v1 ∧ · · · ∧ vk 7→ z · (v1 ⊗ 1) ∧ · · · ∧ (vk ⊗ 1).

Here we have used the universal property of the tensor product and the k-th exterior
power. Now, we define an R-bilinear map

T : ΛkV × C → Λk(V C)

(ω, z) 7→ ϕz(ω).

Since T is R-bilinear, it lifts to an R-linear map

T : ΛkV ⊗R C → (ΛkV )C → Λk(V C)

(ω ⊗ z) 7→ ϕz(ω).

The map T is defined as

T
(
(v1 ∧ . . . ∧ vk)⊗ z

)
= z · (v1 ⊗ 1) ∧ . . . ∧ (vk ⊗ 1)

It is easy to that T is C-linear isomorphism.
(2) (Sketch) We take for granted the statement that Λ(−) is a functor from the category

of R-vector spaces to the category of graded-commutative R-algebras, such that
Λ(−) is left adjoint to the functor that takes the degree 1 part. Since Λ(−) is is left
adjoint, it preserves colimits, in particular direct sums. Hence,

Λ(W1 ⊕W2) ∼= ΛW1 ⊗R ΛW2

(3) This follows from (2). Indeed, (2) implies
n⊕

k=0

Λk(W1 ⊕W2) = Λ(W1 ⊕W2)

= ΛW1 ⊗R ΛW2

=

(
m1⊕
p=0

ΛpW1

)
⊗R

(
m2⊕
q=0

ΛqW2

)
=

m1,m2⊕
p,q=0

ΛpW1 ⊗R Λq

Recall the Vandermode identity(
n

k

)
=

(
m1 +m2

k

)
=

k∑
l=0

(
m1

l

)(
m2

k − l

)
=
∑

p+q=k

(
m1

p

)(
m2

q

)
W2
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If we identify the degree k-component of each side of the equation with a vector
subspace of dimension

(
n
k

)
, we have, by comparing the degree k-component, that

Λk(W1 ⊕W2) =
⊕

p+q=k

ΛpW1 ⊗R ΛqW2

This completes the proof □

Corollary 4.8. Let V be a R-vector space such that dimR = n. Then

(ΛkV )C =
⊕

p+q=k

(ΛpV(1,0) ⊗C ΛqV(0,1))

Proof. Using Lemma 4.7, we can do the following computation:

(ΛkV )C = ΛkV C

= Λk(V(1,0) ⊕ V(0,1))

=
⊕

p+q=k

(
ΛpV(1,0) ⊗C ΛqV(0,1)

)
.

This completes the proof. □

We will use Lemma 4.7 as a starting point for the study of differential forms on a complex
manifold. Additional details regarding the complexification of the exterior algebra, such as
the Hodge inner product, will be introduced later on.

Part 2. Sheaves

A key tool in smooth manifold theory is the existence of partitions of unity. Partitions
of unity allow us to glue together local constructions to form global constructions on a
smooth manifold. For example, a partition of unity can be used to prove the existence of a
Riemannian metric on a smooth manifold. Recall that smooth functions used to construct a
partition of unity have compact support. By the Identity Theorem (Proposition 1.10), any
holomorphic function on an open subset of Cn with compact support must be identically
zero. Hence, we cannot have holomorphic partitions of unity on open subsets of Cn (and
more generally, on complex manifolds). This problem motivates the study of sheaves of
holomorphic functions. Their applications to complex manifolds are numerous.

5. Pre-Sheafs & Sheafs

A topological space, X, can be studied by studying the algebra of continuous functions
on X. However, a generic topological space, such as a non-normal topological space, can
have few globally defined functions. A more precise perspective then is that a topological
space can be studied by by studying locally defined functions. This richer perspective is
formalized using a mathematical object called a pre-sheaf.

Definition 5.1. Let X be a topological space. Let Ab be the category of abelian groups
and let Open(X) be the category of open sets on X. A pre-sheaf on X with values on C
is a contravariant functor:

F : Open(X) → Ab
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What? Let’s de-construct Definition 5.1. Let X = Cn. Assign to each open set U ⊆ Cn

the abelian group3 of holomorphic functions on U , F (U). We also have a collection of
restriction maps rUV : F (U) → F (V ) whenever U ⊇ V . These maps satisfy the following
properties:

(1) rUU = IdU for every open set U ,
(2) rVW ◦ rUV = rUW whenever U ⊇ V ⊇W .

The properties of the restriction map is exactly encoded by the requirement that F is a
contravariant functor from Open(X) to Ab.

Remark 5.2. If F is a pre-sheaf on X, we refer to F (U) as the sections of the pre-sheaf F
over the open set U . We sometimes use the notation Γ(U,F ) to denote F (U). If V ⊆ U ,
we write ρUV , r

U
V , res

U
V or |V for the morphism between F (V ) and F (U).

We can replace Ab with the category of commutative rings, CRing. This leads to the
following definition.

Definition 5.3. Let X be a topological space and let F ,G be sheaves of abelian groups
and commutative rings respectively. F is a sheaf of GX-modules (or a GX -module sheaf)
if for each open set U ⊆ X, F (U) is an GX(U)-module, such that the restriction maps on
F are compatible with the module structures induced by the restriction maps in GX .

Remark 5.4. We will primarily focus on the category of abelian groups or R-modules.
Since the discussion is similar in both cases, we will concentrate on the category of abelian
groups for the most part.

Given a pre-sheaf on X, a natural question to ask is the extent to which its sections
over an open set U ⊆ X are determined by their restrictions to the open subsets of U . A
sheaf is roughly speaking a pre-sheaf where the aforementioned question can be answered
affirmatively.

Definition 5.5. Let X be a topological space. A sheaf of abelian groups on X is a
pre-sheaf of abelian groups that satisfies the following two conditions:

(1) (Identity Axiom) If {Ui}i∈I is an open cover of U , and f1, f2 ∈ F (U), and f1|Ui =
f2|Ui for all i, then f1 = f2.

(2) (Gluing Axiom) Suppose {Ui}i∈I is an open cover of U . Suppose for each i we
have fi ∈ F (Ui) such that fi = fj in F (Ui ∩Uj). Then there is a unique s ∈ F (U)
such that f |Ui = fi.

Example 5.6. The following is a list of some examples of sheaves:

(1) If X is a topological space, the pre-sheaf of continuous functions, C , defined by
U 7→ C (U), where C (U) is the abelian group of continuous functions on U (with
usual restrictions), is a sheaf.

(2) If X is a topological space, the pre-sheaf of nowhere vanishing continuous func-
tions, C×, defined by U 7→ C×(U), where C×(U) is the abelian group of no-where
vanishing continuous functions on U (with usual restrictions), is a sheaf.

(3) If X = Cn, the pre-sheaf of holomorphic functions, O, defined by U 7→ O(U), where
O(U) is the abelian group of holomorphic functions on U (with usual restrictions),
is a sheaf.

3In fact, this is a commutative ring.
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(4) If X = Cn, the pre-sheaf of nowhere vanishing holomorphic functions, O×, defined
by U 7→ O×(U), where O×(U) is the abelian group of non-where vanishing holo-
morphic functions on U (with usual restrictions), is a sheaf.

Remark 5.7. We can easily generalize Example 5.6 by considering the sheaf of functions
restricted to open subsets of the appropriate space.

Example 5.8. Let X be a topological space and let A be an abelian group with the discrete
topology. The following are two examples of pre-sheafs of abelian groups:

(1) For any open set U ∈ Open(X), let A(U) = A. Clearly, A is a pre-sheaf with
restriction maps the identity. This is called the constant pre-sheaf.

(2) For any open set U ∈ Open(X), let A(U) be the abelian group of all continuous
maps of U into A. Then with the usual restriction maps (as in the previous example),
we obtain a sheaf. Note that each function in A(U) is locally constant for each open
set of X. This is called the constant sheaf.

Remark 5.9. Let A be the constant sheaf. Note that for every connected open set U ,
A(U) ∼= A since the image of a continuous map from a connected set to a discrete space is
constant. This justifies the terminology.

Remark 5.10. Let X be a topological space. Let G be a sheaf of commutative rings on X
and let F be a sheaf of GX-modules. We will write that F is a sheaf of R-modules if G is the
constant pre-sheaf R of commutative rings. Several statements below are stated specifically
for a sheaf of R-modules, but more generally, they apply to sheaves of GX-modules.

Example 5.11. All examples discussed in Example 5.6 are examples of sheaves of R-
modules with R = R,C as appropriate.

Example 5.12. (Sheaf of Sections) Let X,Y be topological space and let π : Y → X be
a continuous map. Recall that a section of π is a continuous map σ : X → Y such that
π ◦ σ = IdX . For an open non-empty set U ⊆ X, define E (U) to be the set of sections of π
on U . That is,

E (U) = {σ : U → Y | σ is continuous, π ◦ σ = IdU}.
The empty set is sent to the singleton set and the restriction maps are are given by restriction
of functions. This is called the pre-sheaf of sections of π. In fact, pre-sheaf of sections of
π is a sheaf of sets. Indeed, since sections are indeed continuous function, it is clear that
the identity axiom is satisfied. Similarly, the gluing axiom is also satisfied if we note that if
{Ui}i∈I is an open cover of of U and σi ∈ E (Ui) such that σi = σj ∈ E (Ui ∩ Uj), then the
function σ : U → Y such that σ|Ui = σi is indeed a section.

Example 5.13. We can also define sheaves which don’t quite look like sheaves of functions.
Let X be a topological space and let ∗ denote the trivial abelian group. Fix any abelian
group, A, and x ∈ X. Consider the assignment

iAx (U) =

{
A if x ∈ U,

∗ if x /∈ U.

This is can be made into a pre-sheaf if for open sets U, V ⊆ X such that V ⊆ U , the map
iAx (U) → iAx (V ) is defined such that:

(1) If x /∈ U , then the map is simply the identity morphism ∗ → ∗
(2) If x ∈ V , then the map is simply the identity morphism A→ A
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(3) If x ∈ U \ V , then the map is simply the unique morphism A→ ∗.
It is easy to verify that this defines a pre-sheaf. Let {Ui}i∈I for an open cover for an open
set U ⊆ X. The identity and gluing axioms are essentially satisfied since U contains x if
and only if some Ui contains x. This is called the skyscraper sheaf.

Remark 5.14. A pre-sheaf may not be a sheaf. Let X = R, and let F (U) be the set
of all bounded functions on U . Then F defines a pre-sheaf but not a sheaf. Indeed, let
X =

⋃∞
i∈Z(i, i + 1] and let si ≡ i on (i, i + 1]. Since Vi ∩ Vj = ∅ for i ̸= j, trivially we

have that si = sj on each Vi ∩ Vj = ∅ for i ̸= j. However, there is not s ∈ F (R) such that
s|(i,i+1] = si; otherwise, s must be an unbounded function.

Category theory teaches us to always define morphisms between mathematical objects.
We now define morphisms of presheaves, and similarly for sheaves. In other words, we will
describe the category of presheaves and the category of sheaves

Definition 5.15. Let X be a topological space and let F and G be pre-sheafs of abelian
groups. A morphism of pre-sheafs, φ : F → G , is a natural transformation.

What? Recalling the definition of a natural transformation, Definition 5.15 means that
for each open set U ⊆ X there exists a morphism from F (U) → G (U) such that whenever
V ⊆ U , the following diagram

F (U) G (U)

F (V ) G (V )

φ(U)

resUV resUV

φ(V )

commutes. Definition 5.15 makes the collection all pre-sheaves on X into a category,
which we denote as PreShv(X,Ab). The category of sheaves on X, which we denote
as Shv(X,Ab), is then a full subcategory of the category of presheaves on X satisfying the
identity and gluing axioms.

Example 5.16. The following is a list of examples of morphisms of pre-sheafs and sheafs.

(1) Let X be a topological space and G and H be abelian groups. Let G and H be the
corresponding constant sheaves. Every group homomorphism F : G → H defines a
sheaf morphism F : G → H given by F(U)(f) = F ◦ f .

(2) Let X = Cn. If U is an open subset of Cn, there is a map of abelian groups

ϵ : O(U) → O∗(U), ϵ(U)(f) = e2πif

This defines a sheaf morphism ε : O → O∗

6. Stalks

The stalk of a pre-sheaf captures local data of a pre-sheaf. Let’s consider a concrete
example.

Example 6.1. Let X = Cn and let O denotes the sheaf of holomorphic functions on X.
For each x ∈ X and open set U containing x, we define an equivalence relation on O(U)

f ∼ g ⇐⇒ there exists an open set W ⊆ U containing p such that f |W = g|W
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The equivalence class of a function f ∈ O(U) is called the germ of f at x and is denoted
by [f ]x. The stalk of O at x, denoted Ox, is the vector space of all germs of holomorphic
functions at x. Addition and scalar multiplication of germs are defined by performing these
operations on any representatives that are defined on the same open set. For example,
addition is defined as:

[f ]x + [g]x = [f + g]x

Let’s check that addition is well-defined. Assume that [f ]x = [f ′]x and [g]x = [g′]x. Then
there exist open sets V,W ⊆ U such that f |V = f ′|V and g|W = g′|W . It is clear that on
V ∩W ⊆ U , we have

f + g|V ∩W = f ′ + g′|V ∩W

This shows addition is well-defined. Similarly, it can be checked that scalar multiplication
is well-defined.

Remark 6.2. Ox is actually a ring. This can be checked easily. In fact, Ox is a local ring.
Let mx ⊆ Fx denotes germs vanishing at p. This certainly forms an ideal. In fact, the
ideal is maximal since Fx/mx

∼= C. This is the unique maximal ideal since any germ not
contained in mx is invertible.

Clearly, this construction can similarly be applied to continuous or smooth functions on
an appropriate space. We can now give the general definition of a stalk of a pre-sheaf,
abstracting away from the previous example.

Definition 6.3. Let X be a topological space and let F be a pre-sheaf on X. The stalk
of F at x ∈ X, denoted by Fx, is the direct limit

Fx = lim−→
x∈U

F (U)

Remark 6.4. The stalk of a sheaf is the stalk of the underlying pre-sheaf.

What? Let’s understand the finer details of the definition. Recall that a directed set
(I,≤) is a non-empty set I with a binary relation, ≤, that is reflexive and transitive, and
where every pair of elements has a common upper bound. A direct system of abelian
groups consists of a family {Gα}α∈I of objects indexed by a directed set I, along with
homomorphisms fαβ : Gα → Gβ for α ≤ β, satisfying

fαα = IdGα , α ∈ I fβγ ◦ fαβ = fαγ , α ≤ β ≤ γ

The direct limit (or colimit in this case) is defined by defining an equivalence relation on∐
α∈I Gα such that

gα ∼ gβ ⇐⇒ there exists some γ ∈ I such that α, β ≤ γ and fαγ(gα) = fβγ(gβ) ∈ Gγ

The direct limit of the direct system is denoted as

lim−→
α∈I

Gα =

(∐
α∈I

Gα

)
/ ∼

lim−→α∈I Gα is an abelian group with addition defined by

[gα] + [gβ] = [fαγ(gα) + fβγ(gβ)],

where γ is some upper bound for α and β. This can be checked to be well-defined because
all maps fαβ are homomorphisms. We can now make sense of Definition 6.3. If we work in
Ab, the characterization of co-limit of a directed system allows us to unpack the definition
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of the stalk of a pre-sheaf. Let F be a Ab-valued pre-sheaf on a topological space X.
For each x ∈ X, the collection of abelian groups F (U), where U ranges over all open sets
containing x, together with the restriction maps, forms a direct system with the relation
U ≤ V if U ⊇ V . The intersection of two open sets containing p serves as a common upper
bound. Definition 6.3 defines the stalk of F at p as the direct limit of this system.

Category theory teaches us to focus on the properties of morphisms between objects
rather than the objects themselves. Consequently, we define the concept of the stalk of a
morphism of sheaves.

Definition 6.5. LetX be a topological space and let F ,G be sheaves onX. Let φ : F → G
be a morphism, and let Fx be a stalk of F at p ∈ X. The stalk of the morphism at
p ∈ X is the morphism φx : Fx → Gx such that φx([f ]x) = [φ(f)]x.

Let’s check that Definition 6.5 is well-defined. Suppose [f ]x = [f ′]x such that f ∈ F (U)
and f ′ ∈ F (U ′). Then there exists an open set W ⊆ U ∩ U ′ containing p such that
f |W = f ′|W . We have

F (f)|W = F (f |W ) = F (f ′|W ) = F (f ′)|W
Hence [F (f)]x = [F (f ′)]x. It is easy to check that Fx is a homomorphism of abelian
groups.

7. Étalé Space & Sheafification

7.1. Étalé Space. Using the concept of stalks, we define a topological space naturally
associated with each pre-sheaf, referred to as the Étalé space of the pre-sheaf. An Étalé space
over a topological space X is a topological space E together with a local homeomorphism

π : E →M

The preimage Ex = π−1(x) of a point x ∈M is called the stalk of E over x. An Étalé space

is called an Étalé space of abelian groups if each stalk has an abelian group structure and
the operations are continuous. We now see that we can associate an Étalé space associated
to every pre-sheaf.

Proposition 7.1. Let X be a topological space and let F be a pre-sheaf of abelian groups
over X. Let Et(F ) be the disjoint union of the stalks Fx for all p ∈ X, with the projection
π : Et(F ) → X defined by π([f ]x) = x. For each open set U ⊆ X and each f ∈ F (U),
define a map f+ : U → Et(F ) by

f+(x) = [f ]x.

Et(F ) has a unique topology such that π is a local homeomorphism and each f+ is contin-
uous section of π.

Remark 7.2. Let π : E → X be a local homeomorphism. Recall the following facts:

• For any open set U ⊆ X and any section s : U → E, the image s(U) is open in E,
and homeomorphic to U via s. That is,

s = (π|s(U))
−1.

• Sets of the form s(U), where U ranges over open subsets of X and s ranges over
sections of U , form a basis of the topology on E.

Philosophically, the topology on E is determined by the topology on X and the sections of
π. This motivation is the starting point of the proof of Proposition 7.1.
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Proof. We use the collection of all subsets of the form

f+(U) = {[f ]x : x ∈ U}

where U ⊆ X is an open set and f ∈ F (U) as a basis for a topology on Et(F ). We need
to check two conditions:

(1) Every point of Et(F ) is contained in some f+(U).
(2) If two basis sets f+(U) and g+(V ) intersect at a point [g]x, then there exists a basis

set h+(W ) such that [h]x ∈ h+(W ) ⊆ f+(U) ∩ g+(V ).

Condition (1) is straightforward: every germ [f ]x is represented by some section f ∈
F (U), and hence [f ]x is an element of the basis set f+(U). For condition (2), suppose
[h]x ∈ f+(U)∩g+(V ); this implies p ∈ U∩V and that there exists a neighborhoodW ⊆ U∩V
of p such that h|W = f |W = g|W , and thus [h]x ∈ w+(W ) ⊆ f+(U) ∩ g+(V ) as required.
Proof of the uniqueness of the topology is skipped.

To verify that each map f+ : U → Et(F ) is continuous, let g+(V ) ⊆ Et(F ) be a basis
open set and observe that

(f+)−1(g+(V )) = {x ∈ U ∩ V : [f ]x = [g]x}
= {x ∈ U ∩ V : f |W = g|W for some neighborhood W of x},

which is open in U . To show π is a local homeomorphism it suffices to show that the
restriction of π to each basis open set f+(U) is a homeomorphism onto U . To see that it is
continuous, let V ⊆ U be open. Then π−1(V ) ∩ f+(U) is the set of germs of f at points of
V , which is exactly the basis set (f |V )+(V ). On the other hand, π|f+(U) : f

+(U) → U has

a continuous inverse given by the local section f+ : U → f+(U), so it is a homeomorphism
onto its image.

If F is a pre-sheaf of abelian groups, then each stalk Fx inherits the structure of an
abelian group via the direct limit construction as discussed above. For example, let

a : Et(F )×X Et(F ) → Et(F )

be addition. We check addition is continuous. Suppose f+(U) ⊆ Et(F ) is a basis open set.
Then a−1(f+(U)) is the set of all pairs of the form ([g]x, [h]x) where x ∈ U , g, h ∈ F (W )
for some neighborhood x ∈W ⊆ U and g + h = f |W . That is to say,

a−1(f+(U)) =
⋃

x∈W⊆U

⋃
g,g∈F (V )
g+h=f |W

g+(W )× h+(W ).

As a union of open sets, this is open. Similar arguments show that the other appropriate
algebraic operations are continuous. □

Let X be a fixed topological space. For any topological space Y , a continuous function
f : Y → X is called a space over X, or a bundle over X. The category of bundles over
X is defined as the slice category Top/X, where X is called the base space. We have
already seen that a bundle-like structure gives rise to a sheaf of sections. Moreover, the
Étalé space construction emphasizes that a pre-sheaf gives rise to a bundle-like structure.
Let’s formalize in the language of functors. Define

Γ : Top/X → PreShv(X,Ab)

Y 7→ EY
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that associates to Y ∈ Top/X the sheaf of sections. We have already seen that Γ is well-
defined. Let’s verify that E is a functor. Let Y, Y ′ ∈ Top/X and suppose we have a
morphism p : Y → Y ′ in TopX :

Y Y

X

f

p

f ′

We want to show that it gives rise to a sheaf morphism EY → EY ′ . Indeed, given any
open set U ⊆ X, we have a morphism EY (U) → EY ′(U) defined by the following diagram.

Y Y ′

U X X

p

f f ′σ

IdX

The naturality condition is obvious. Hence, EY → EY ′ is a sheaf morphism and Γ is a
functor. The Étalé space allows us to define

Λ : PreShv(X,Ab) → Top/X

F 7→ Et(F )

Let F ,G ∈ PreShv(X,Ab) and let φ : F → G be a pre-sheaf morphism. For each
x ∈ X, the stalkification functor defines a morphism Fx → Gx of stalks. This allows
us to define the obvious map Λ(φ) : Et(F ) → Et(G ) by defining the stalkification map
pointwise on the disjoint union. We check that Λ(φ) is a continuous function. Consider
f+(U) ⊆ Et(F ). Note that we have

gx ∈ (Λ(φ))−1(f+(U)) ⇐⇒ φx(tx) ∈ f+(U) ⇐⇒ φx(gx) = fx.

Thus,

(Λ(φ))−1(f+(U)) =
⋃
V⊆U

⋃
g∈F (V )

t+({x ∈ V | (φ(V )(g))x = fx}).

Since the sets on the right hand side are open, (Λ(φ))−1(f+(U)) is an open set. Hence, Λ(φ)
is a continuous function. This shows that Λ is a functor. We have the following proposition:

Proposition 7.3. The functor Λ is left-adjoint to the functor Γ. That is, there is a bijection

HomShv(Λ(F ),G ) ∼= HomTop/X(Y,Γ(Y ′))

Proof. □

We can define a subcategory of Et(X) ⊆ Top/X of Étalé spaces that includes all ob-
jects in Top/X but only includes local homeomorphisms between objects in Top/X as
morphisms. We have the following result:

Proposition 7.4. Let X be a topological space. The categories Shv(X,Ab) and Et(X)
are equivalent.

Proof. □
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7.2. Sheafification. Recall that a pre-sheaf may not be a sheaf. Indeed, Remark 5.14
furnishes an example. This motivates the definition of sheafification. Note that the Étalé
space construction plays an important role in the definition of a sheafification functor.

Proposition 7.5. Let X be a topological space and F is a pre-sheaf on X of abelian groups.
There is a sheaf F+ of abelian groups on X, called the sheafification of F , together with
a canonical pre-sheaf morphism θF : F → F+ satisfying the following properties:

(1) If G is a sheaf on X and φ : F → G is a pre-sheaf morphism, then there exists a
unique sheaf morphism φ+ : F+ → G such that the following diagram commutes:

F

F+ G

φ
θF

φ+

(2) θF is an isomorphism if and only if F is a sheaf.

Remark 7.6. For intuition, let F be a pre-sheaf of functions. Recall that each f ∈ F (U)
is determined by its behavior on the stalks Fx for x ∈ X. If F is not a sheaf, we would like
to restrict to those f ∈ F (U) such that the gluing axiom holds. A possible candidate for
the definition of F+(U) for each open set U ⊆ X is:

F+(U) =

{
f = (fx)x∈U ∈

∏
x∈U

Fx

∣∣∣∣∣ ∀x ∈ U,∃Vx ⊆ U and g ∈ F (Vx) s.t. fy = gy ∀y ∈ Vx

}
A moment’s reflection by using the definition of the topology on the Étalé space. shows that
this can be done by taking continuous sections of the Étalé space.

Proof. Define the sheaf F+ on X by letting F+(U) be the set of local sections of Et(F )
over the open set U ⊆ X. The algebraic operations on F+ are defined pointwise: for
example, we define a group structure on each set F+(U) by

(s1 + s2)(p) = s1(p) + s2(p).

If U = ∅, we just interpret F+(∅) = {∅} to be the trivial group. We now prove the said
properties:

(1) We define the sheaf morphism φ+ : F+ → G first by defining φ+(s+) = φ(s) ∈ G (U)
for any open set U ⊆ X and s ∈ F (U). This ensures that φ+ ◦ θF = φ. Then we
extend φ+ to act on an arbitrary section f ∈ F+(U) as follows: given x ∈ U , the
definition of Et(F ) shows that φ(x) = [s]x for some section s ∈ F (W ) on some
neighborhood x ∈W . Then s+(W ) is a neighborhood of [s]p in Et(F ), and since f
is continuous, V = f−1(s+(W )) is a neighborhood of x ∈ U . This means f(q) = [s]q
for all q ∈ V ∩U . Hence, there is an open cover {Uα} of U and sections sα ∈ F (Uα)
such that f |Uα = s+α for each α. Let φ+(f) be the element τ ∈ G (U) such that
τ |Uα = φ(sα) for all α. Any other such map F ′ would have to agree with this one.

(2) This is clear.

This completes the proof. □

We can now define the sheafification functor,

Sh : PreShv(X,Ab) → Shv(X,Ab)
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that assigns to each pre-sheaf, F , on X a its sheafification, F+. Let’s verify that sheafifi-
cation is indeed a functor. If G is a pre-sheaf such that f : F → G is a pre-sheaf morphism,
then the universal property in the definition implies that there is a unique morphism Sh(f)
such that the diagram

F+ F

G+ G

Sh(f) f
Sh ◦f

Sh

Sh

commutes. It is clear that Sh(IdF ) = IdSh(F ) = IdSh(F+). Moreover, if G and H are
sheaves such that f : F → G and g : G → H are pre-sheaf morphisms, then Sh(g ◦ f) =
Sh(g) ◦ Sh(f) since the following diagram commutes.

F+ F

G+ F

H + H

Sh(f)◦Sh(f)

Sh(f) f

Sh

g◦f

Sh(g)

Sh

g

Sh

8. Operations on Sheaves

Let X be a topological space. We can make various abelian group like operations on
pre-sheaves of abelian groups on X. The purpose of this section is to catalog a list of such
operations on pre-sheaves. We start with a very basic example.

Example 8.1. (Restriction of a Pre-Sheaf) Let X be a topological space and suppose F
is a pre-sheaf of abelian groups on X. Let V ⊆ X be an open subset. The restriction of
F to V , denoted F |V , is the pre-sheaf of abelian groups such that

F |V (U) = F (U)

for each open set U ⊆ Y . In other words,

F |V (U) = F (U ′ ∩ Y )

for each open set U ⊆ Y such that U = U ′ ∩ Y . If F is a sheaf on X, it is clear that F |V
is also a sheaf on V .

Let’s now consider a list of abelian group like operations on pre-sheaves of abelian groups
on X. The key idea is that all abelian group like operations may be defined and verified
‘open set by open set.’ We start with a basic construction.

Definition 8.2. Let X be a topological space and let F be a pre-sheaf of abelian groups. A
sub pre-sheaf of F is a pre-sheaf F ′ such that for every open set U ⊆ X, the assignment

U 7→ F ′(U),

is such that F ′(U) an abelian subgroup of F (U). It is easy to verify that this is indeed a
pre-sheaf.
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Definition 8.2 allows us to construct more instances of pre-sheafs.

Definition 8.3. Let X be a topological space and let F be a pre-sheaf of abelian groups.
Let φ : F → G be a morphism of pre-sheafs.

(1) The image pre-sheaf of φ is a pre-sheaf such that for every open set U ⊆ X the
pre-sheaf is defined by the assignment

U 7→ Im(φ(U))

It is clear that this is is pre-sheaf by Definition 8.2.
(2) The pre-sheaf kernel of φ is a pre-sheaf such that for every open set U ⊆ X the

pre-sheaf is defined by the assignment

U 7→ ker(φ(U))

It is clear that this is is pre-sheaf by Definition 8.2. For a change of pace, we check
that this is indeed the case by means of an diagram chasing argument. Let U ⊆ X
be an open set in X and let V ⊆ U . Then:

φ(V ) ◦ resU,V ◦ ι = resU,V ◦ φ(U) ◦ ι︸ ︷︷ ︸
0

= 0.

By the universal property of ker(φ(U)), we get a unique morphism µ

0 ker(φ(V )) F (V ) G (V )

0 ker(φ(U)) F (U) G (U)

φ(V )

µ

ι

resU,V

φ(U)

resU,V

The map µ serves as the restriction map. The other conditions are easy to check.
(3) Suppose φ is the inclusion morphism and F is a sub pre-sheaf of G . The quotient

pre-sheaf of G by F is a pre-sheaf such that for every open set U ⊆ X pre-sheaf
is defined by the assignment

U 7→ G (U)/F (U)

It can be easily checked that this is a pre-sheaf.
(4) The pre-sheaf cokernel of φ is a pre-sheaf such that for every open set U ⊆ X

the pre-sheaf is defined by the assignment

U 7→ coker(φ(U))

This is a pre-sheaf by an argument as in (3).

In all constructions above, the restriction maps on the new pre-sheaf are induced by those
of F .

If F is a sheaf, then the image sheaf, the quotient sheaf, the sheaf kernel and the sheaf
cokernel are defined to be the sheafification of the image pre-sheaf, the quotient pre-sheaf,
the pre-sheaf kernel and the pre-sheaf cokernel. In general, we need to perform sheafification,
as the next example shows.

Example 8.4. Consider:

U = C \ {0} = C \ [0,+∞) ∪ C \ (−∞, 0] = U1 ∪ U2

Let exp be a sheaf morphism from O(U) to O∗(U) taking f to ef . By complex analysis,
the function z ∈ O∗(U) cannot be written as the exponential of some other holomorphic
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function f ∈ O(U). Thus [z] ̸= 0 ∈ coker(exp(U)). On the other hand, the open sets U1, U2

are simply connected, so every nowhere zero function g can be written as g = ef on Ui.
Thus coker(exp(Ui)) = 0 for i = 1, 2. This shows that the cokernel presheaf cannot be a
sheaf, because the restriction of z to the open cover U1, U2 of U is zero on both sets, but it
is globally non-zero.

However, we don’t have to ‘sheafifiy’ in one special case as shown below:

Proposition 8.5. Let X be a topological space and let F ,G be sheaves of R-mopdules on
X. Let φ : F → G be a shaf morphism. The pre-sheaf kernel is a sheaf.

Proof. Let U ⊆ X be an open subset of X and let {Ui}i∈I be an open cover of U . Let
f ∈ kerφ(U) such that f |Ui = 0 for all i ∈ I. Since kerφ(U) is a R-submodule of F (U),
this means that f |Ui = 0 as a section of F (U), and so f = 0 by virtue of F being a sheaf.
Suppose we have sections fi ∈ kerφ(Ui) ⊆ F (Ui) such that fi|Ui∩Uj = fj |Ui∩Uj for all i and
j. Since F is a sheaf, pick f ∈ F (U) such that f |Ui = fi for all i. To see that f must be
in kerφ(U), we need to show φ(U)(f) = 0. Pick t ∈ G (U) such that t|Ui = φ(Ui)(fi) = 0.
Since φ commutes with the restriction maps, we have

φ(U)(f)|Ui = φ(Ui)(f |Ui) = φ(Ui)(fi) = 0

Since G is a sheaf, we have that φ(U)(f) = t = 0. □

We end our discussion with two important constructions of sheaves that are related to
the theory of vector bundles.

Definition 8.6. Let X be a topological space and let F ,G be pre-sheaves of R-modules.
A tensor product sheaf of F and G is the sheafification of a pre-sheaf determined by
the assignment

U 7→ F (U)⊗R G (U)

for every open set U ⊆ X.

Proposition 8.7. Suppose X be a smooth manifold and let E,E′ → M be smooth vector
bundles over X. We have

EE ⊗R EE′ ∼= EE⊗E′

Here E is the sheaf of sections of the appropriate vector bundles.

Proof. Let U ⊆ X be an open subset. A σ ∈ EE(U) ⊗R EE′(U) can be represented as a
finite sum of abstract tensor products,

∑
j σj ⊗ σ′j . Let φ(U)(σ) be the smooth section of

the tensor product bundle E ⊗ E′ over U given by the same formula:

x 7→
∑
j

σj(x)⊗ σ′j(x).

This gives a well-defined homomorphism

φ(U) : EE(U)⊗R (U)EE′ → EE⊗E′(U),

Because φ(V ) is the restriction of φ(U) whenever V ⊆ U , this defines a pre-sheaf morphism,
F . The sheafification functor induces a sheaf morphism F from the EE ⊗R EE′ to EE⊗E′ .
We show that F is bijective. It is sufficient to show that F is bijective on stalks.
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Let (sj), (s
′
k) be smooth local frames on U for E and E′. If γ =

∑
k,l g

klsk ⊗ s′l is a

smooth section of E ⊗ E′ over U , then

γ = φ(U)

(∑
k

sk ⊗

(∑
l

gkls′l

))
So φ(U) is surjective. Suppose σ =

∑
j σj ⊗σ′j is an element of EE(U)⊗R EE′(U) such that

φ(U)(σ) = 0. Write σj =
∑

k f
k
j sk and σ′j =

∑
l f

′l
j s

′
l For all x ∈ U , we have

0 =
∑
j

σj(x)⊗ σ′j(x) =
∑
j,k,l

fkj (x)f
′l
j (x)sk(x)⊗ s′l(x).

Since this is true for all x ∈ U and the elements sk(x) ⊗ s′l(x) are linearly independent, it

follows that
∑

j f
k
j f

′l
j ≡ 0 on U for each k and l. Thus

∑
j

σj ⊗ σ′j =
∑
k

sk ⊗
∑
l

∑
j

fkj f
′l
j

 s′l = 0,

so φ(U) is injective. This proves the claim. □

Remark 8.8. Clearly, Proposition 8.7 is true for complex manifolds as well (to be defined
next).

Part 3. Complex Manifolds

Complex manifolds are topological spaces locally modeled on open subsets in Cn with
holomorphic transition functions. Complex manifolds are closely related to smooth man-
ifolds, yet they exhibit notable distinctions in several aspects. The global counterparts
of the similarities and differences between differentiable and holomorphic functions arise
within the framework of complex manifold theory.

9. Definitions & Examples

9.1. Definitions. We first provide definitions.

Definition 9.1. Let X be a second-countable, Hausdorff, connected topological space. X
is a complex manifold of dimension n if there is a there exists a collection {(Ui, φi)}i∈I
such that:

(1) Ui are open sets cover X,
(2) Each φi : Ui → Di, where Di is an open subset of some Cn, is a homemorphism,
(3) The transition functions

φi ◦ φ−1
j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj),

are holomorphic.

Such a collection is called a holomorphic atlas for X. Each (Ui, εi) is called a coordinate
chart.

Remark 9.2. Since all holomorphic functions are smooth, a holomorphic atlas is also a
smooth atlas and thus determines a unique smooth structure on X. Thus, every complex
manifold is also a smooth manifold in a canonical way.
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Philosophically, a complex n-manifold locally resembles Cn. This local resemblance en-
ables the extension of many constructions valid in Cn to a complex manifold. For instance,
this framework allows us to define holomorphic functions on X.

Definition 9.3. Let X be a complex manifold. A holomorphic function on X is a
function f : X → C such that f ◦ φ−1

i : φi(Ui) → C is holomorphic for some holomorphic
chart (φi, Ui).

Remark 9.4. It can be easily shown that if f is holomorphic, then f is holomorphic with
respect to any holomorphic chart.

We can now package all holomorphic functions on a complex manifold into the structure
of a sheaf.

Definition 9.5. Let X be a complex manifold. The structure sheaf on X, denoted
by OX , is the sheaf of holomorphic functions on X defined such that for any open subset
U ⊆ X we have

OX(U) = {f : U → C | f is a holomorphic function}.

Remark 9.6. It is clear from the definition that via a holomorphic chart (U,φ) with p ∈ U
and φ(p) = 0 ∈ Cn, the stalk OX,p is isomorphic to OCn,0.

We define holomorphic functions between complex manifolds analogously to how smooth
functions are defined between smooth manifolds.

Definition 9.7. Let X and Y be complex manifolds. A holomorphic map from X to
Y is a continuous function F : X → Y with the property that for every p ∈ X there exist
holomorphic coordinate charts (U,φ) for X and (V, ψ) for Y such that

• p ∈ U and F (p) ∈ V
• F (U) ⊆ V
• The composite map ψ ◦ F ◦ φ−1 is holomorphic as a map from φ(U) to ψ(V ).

The function F̂ := ψ ◦ F ◦ φ−1 is called the coordinate representation of f with respect to
the given holomorphic coordinates.

Remark 9.8. If F : X → Y is a bijective holomorphic map with holomorphic inverse, then
we say that F is a biholomorphism.

The fundamental difference between complex and differentiable manifolds becomes man-
ifest is given by the following proposition:

Proposition 9.9. Let X be a compact connected complex manifold.

(1) Any global holomorphic function on X is constant. That is, OX(X) ∼= C.
(2) If dimX ≥ 2 and p ∈ X, then OX(X) = OX(X \ {p}) = C.

Proof. The proof is given below:

(1) Since X is compact, |f | : X → R attains its maximum at some point p ∈ X.
If (Ui, φi) is a holomorphic chart with p ∈ Ui, then f ◦ φ−1

i is constant due to
the maximum principle on φi(Ui) ⊆ Cn. Hence, f is constant on Ui. Since X is
connected, this shows that f must be constant4. Thus, OX(X) ∼= C.

(2) This follows from (1) and Proposition 1.13.

4A locally continuous functions on a connected space that is constant on an open set is constant.
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This completes the proof. □

Here is another key difference between smooth manifolds and complex manifolds. A
smooth manifold can always be covered by open subsets diffeomorphic to Rn. In contrast, a
complex manifold cannot be covered by open subsets biholomorphic to Cn. This is because
of the following proposition:

Proposition 9.10. The unit ball B2n ⊆ Cn is not biholomorphic to Cn.

Proof. We know that B2n and Cn are diffeomorphic. If F : Cn → B2n is any holomorphic
map, each of its coefficient functions is a bounded holomorphic function on Cn and therefore
constant by Liouville’s theorem. Thus, there is no biholomorphism between B2n and Cn. □

The definitions of topological manifolds, smooth manifolds, and complex manifolds have
the same structure. Hence, we now introduce a convenient framework that includes smooth
manifolds, complex manifolds, and many other kinds of spaces.

Definition 9.11. Let X be a connected topological space. A geometric structure on
X, denoted as G , is a sub-sheaf of the sheaf of continuous functions on X such that the
abelian groups G (U) ⊆ C (U) contain all constant functions for each open set U ⊆ X. The
pair (X,G ) is called a geometric space.

We have already discussed various examples of geometric spaces. In order to view a
complex manifold as a geometric space, we need to define the notion of a morphism of
geometric spaces.

Definition 9.12. Let (X,GX) and (Y,GY ) be geometric spaces. A morphism of geo-
metric spaces is a continuous map f : X → Y such that whenever U ⊆ Y is open, and
g ∈ GY (U), the composition g ◦ f belongs to GX(f−1(U)).

Example 9.13. Let X = Cn and Y = Cm and let OX ,OY be the sheafs of holomorphic
functions. A morphism f : (Cn,OX) → (Cm,OY ) is the same as a holomorphic mapping
f : Cn → Cm. This is because a continuous map f : Cn → Cm is holomorphic if and only
if it preserves complex-valued holomorphic functions. The forward direction is clear since
a composition of holomorphic functions is holomorphic functions. The reverse direction
follows easily since the hypothesis implies that each coordinate function of f is holomorphic.

Example 9.14. If (X,GX) is a geometric space, then any open subset U ⊆ X inherits a
geometric structure (U,GX |U ), where GX |U is the restriction sheaf. With this definition,
the natural inclusion map (U,G |U ) → (X,GX) becomes a morphism of geometric spaces.

Remark 9.15. For a morphism f : (X,GX) → (Y,GY ) of geometric spaces, we typically
write

f# : GY (U) → GX(f−1(U))

for the induced homomorphisms. We say that f is an isomorphism if it has an inverse that
is also a morphism. This means that f : X → Y should be a homeomorphism, and that
each map f# : GY (U) → GX(f−1(U)) should be an isomorphism.

We can now give an alternative definition of a complex manifold.

Definition 9.16. A complex manifold of dimension n is a geometric space (X,GX)
such that each p ∈ X has an open neighborhood U ⊆ X, such that (U,GX |U ) ∼= (D,O|D)for
some open subset D ⊆ Cn.
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Proposition 9.17. Let X be a topological space. X is a complex manifold in the sense of
Definition 9.16 if and only if X is a complex manifold in the sense of Definition 9.1.

Proof. Let (X,GX) be a complex manifold in the sense of Definition 9.16. We can find
for each p ∈ X an open neighborhood p ∈ Up, together with an isomorphism of geometric
spaces φp : (Up,GX |Up) → (Dp,O|D), for Dp ⊆ Cn open. The transition maps are clearly
biholomorphic. This defines a cordinates atlas on X. Conversely, let X be a complex
manifold in the sense of Definition 9.1. Let {(Ui, φi)}i∈I be a holomorphic atlas. For
U ⊆ X open, set

GX(U) = {f ∈ C (U) | (f |U∩Ui) ◦ φ
−1
i is holomorphic on φi(U ∩ Ui) for all i ∈ I}.

This makes sense because the transition functions are biholomorphic. It is easy to see that
OX is a sub-sheaf of C . Hence, (X,GX) is a geometric space. It is also a complex manifold,
because every point has an open neighborhood (namely one of the Ui) that is isomorphic
to an open subset of Cn. □

Remark 9.18. Is the dimension uniquely defined in Definition 9.1 or Definition 9.16? This
is indeed the case. Let x ∈ X such that x is contained in a coordinate chart (U, ϕ) such that
ϕ(x) = 0. Consider

Ox = lim−→
x∈U

O(U)

Let On denote the stalk at 0 of the sheaf of holomorphic functions on Cn. Clearly,

Ox
∼= On

∼= C[[z1, · · · , zn]]

On is a local ring. Indeed, the unique maximal ideal is

mn = {f ∈ On | f(0) = 0};

If f ∈ On satisfies f(0) ̸= 0, then f−1 is holomorphic in a neighborhood of the origin, and
therefore f−1 ∈ On. Clearly,

On/mn
∼= C

The integer n can be recovered from the ring On. This is because Krull’s dimension theory
implies we have

n = dim(C[[z1, . . . , zn]])
= dim

(
C[[z1, . . . , zn]]/mn

)
+ height(mn)

= dim(C) + height(mn)

= height(mn)

This shows that n = dimX is well-defined.

Remark 9.19. It follows that the function x 7→ dimX is locally constant. Hence, if X
is connected, the dimension is the same at each point, and the common value is called the
dimension of the complex manifold X, denoted by dimX, as we have done above.

9.2. Examples. We now discuss several examples.

Example 9.20. Cn has a holomorphic structure determined by the holomorphic atlas
consisting of the single coordinate chart (Cn, IdCn). Similarly, the holomorphic structure
on every open subset U ⊆ Cn is defined by the single chart (U, IdU ).
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Example 9.21. (Complex Projective Space) For any n ∈ N, the complex projective
space, CPn of dimension n is the set of complex 1-dimensional subspaces of Cn+1, which we
can identify with the quotient of Cn+1 \ {0} by the equivalence relation defined by

w ∼ w′ ⇐⇒ w′ = λw for some λ ∈ C×

We endow CPn with the quotient topology. The equivalence class of w ∈ Cn+1 \ {0} is
denoted by [w]. Points of CPn can be described through their homogeneous coordinates
[w0, w1, . . . , wn]. For each α = 0, . . . , n, let Uα ⊆ CPn be the open subset Uα = {[w] ∈
CPn : wα ̸= 0}, and define a map

φα : Uα → Cn

[w0, . . . , wn] 7→
(
w0

wα
, . . . ,

wα−1

wα
,
wα+1

wα
, . . . ,

wn

wα

)
It is continuous by the characteristic property of the quotient topology, and it is a homeo-
morphism because it has a continuous inverse given by

φ−1
α (z1, . . . , zn) = [z1, . . . , zα−1, 1, zα, . . . , zn].

Thus each (Uα, φα) is a coordinate chart, called affine coordinates for CPn. This makes
CPn into a topological manifold. For α < β, the transition function between these charts
can be computed explicitly as

φα ◦ φ−1
β (z1, . . . , zn) =

(
z1

zα
, . . . ,

ẑα

zα
, . . . ,

1

zα
, . . . ,

zn

zα

)
,

where the hat indicates that the term in position α is omitted, and the 1/zα term is in
position β. These transition functions are all holomorphic. It can be checked that CPn is
Haudorff and second-countable. Hence, CPn is a complex manifold of dimension n.

Remark 9.22. Note that CPn is compact and connected because it is the image of the
surjective continuous map

q : S2n+1 → CPn

given by q(w0, . . . , wn) = [w0, . . . , wn], where S2n+1 is the set of unit vectors in Cn+1.
Moreover, we have,

CPn ∼= S2n+1/S1

Remark 9.23. Note that the quotient map q : Cn+1 \ {0} → CPn is holomorphic. Indeed,
if w ∈ Cn+1 \ {0} such that wα ̸= 0, then let Uα ⊆ CPn and q−1(Uα) ⊆ Cn+1 \ {0} be open
sets containing w and [w] respectively. Clearly, q(q−1(Uα)) ⊆ Uα. Moreover, we have,

φα ◦ q ◦ Id−1
Cn+1\{0}(z

0, · · · , zn) = φα[z
0, · · · , zn] =

(
z0

zα
, . . . ,

zα−1

zα
,
zα+1

zα
, . . . ,

zn

zα

)
.

which is holomorphic. Hence, q is holomorphic. Therefore, if f : CPn → C is any holomor-
phic function, then gf := f ◦q is also a holomorphic function such that gf is scale-invariant,
i.e, gf (λ·) = gf (·) for each λ ∈ C×. In fact, the converse is true as well. Let f : CPn → C
be a continuous such that gf := f ◦ q is holomorphic and gf is scale-invariant. Then if
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(Uβ, φβ) is a chart on CPn, then,

f ◦ φ−1
β (z1, · · · , zn) = f [z1, · · · , zα−1, 1, zα+1, · · · , zn]

= f ◦ q(z1, · · · , zα−1, 1, zα+1, · · · , zn)
= gf (z

1, · · · , zα−1, 1, zα+1, · · · , zn)

is holomorphic. Therefore we have that the corresponding sheaf on CPn is given by

GX(U) = {f ∈ C (U) | (f |U∩Ui) ◦ φ
−1
i is holomorphic on φi(U ∩ Ui) for all i ∈ I}

= {f ∈ C (U) | gf = f ◦ q is holomorphic and gf is scale invariant}

Example 9.24. (Complex Lie Groups) A complex Lie group, G, is a complex manifold
that is also a group such that the map (x, y) 7→ x ·y−1 is holomorphic. Examples of complex
Lie groups are provided by GL(n,C), SL(n,C), and Sp(n,C). They are certainly not abelian
for n > 1.

Remark 9.25. Note that certain classical groups like U(n,C) are often not complex complex
Lie groups, but just ordinary real Lie groups. The easiest way of proving that U(n,C) is not
a complex Lie group consists in using the fact that its Lie algebra u(n) is not a complex Lie
algebra. We have

u(n) = {A ∈Mn(C) |A = −A∗}
Unless A = 0, if A ∈ u(n), then iA /∈ u(n).

Another method to construct complex manifolds is to consider the quotient space when
a group acts by automorphisms on the complex manifold. The next two propositions allow
us to construct new complex manifolds in this manner.

Proposition 9.26. Let Y be a connected complex manifold and π : X → Y be a covering
map. Then X is a complex manifold and has a unique holomorphic atlas such that π is a
holomorphic covering map.

Proof. (Sketch) We know from smooth manifold theory that X is a topological manifold
and has a unique smooth structure such that π is a smooth covering map. We can define
holomorphic charts on X as follows: Given a point p ∈ X, let U be an evenly covered
neighborhood of π(p). After shrinking U if necessary, we can find a holomorphic coordinate

map φ : U → Cn. Let Ũ be the connected component of π−1(U) containing p, and define

φ̃ = φ ◦ π : Ũ → Cn. When two such charts (U, φ̃) and (V, ψ̃) overlap, in a neighborhood of
each point the transition function can be expressed as

ψ̃−1 ◦ φ̃ = ψ−1 ◦ φ,

which in this case is holomorphic. Clearly, this makes π into a local biholomorphism. □

Proposition 9.27. (Holomorphic Quotient Manifold Theorem) Let X be a complex
manifold and Γ is a discrete (complex) Lie group acting holomorphically5, freely6, and prop-
erly7 on X. Then the quotient space X/Γ has a unique complex manifold structure such
that the quotient map q : X → X/Γ is a holomorphic (normal) covering map.

5The action Γ on X is holomorphic if the map x 7→ g · x is holomorphic for each g ∈ Γ.
6An action of Γ on X is free if g · x = x for some g ∈ Γ and x ∈ X implies g is the identity.
7The action of Γ on X is proper if the map Γ×X → X ×X given by (g, x) 7→ (g · x, x) is a proper map.
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Proof. (Sketch) We know from smooth manifold theory that thatX/Γ has a unique smooth
manifold structure such that q is a smooth (normal) covering map. To define a complex
manifold structure on X/Γ, let U ⊆ X/Γ be any evenly covered open set, and choose a
smooth local section σ : U → X. Because X is a complex manifold, σ(U) has a covering by
holomorphic charts (Uα, φα), and for each such chart we can define (σ−1(Uα), φα ◦ σ) as a
chart for X/Γ. For a fixed local section σ, all of these charts are holomorphically compatible
with each other. If σ̃ : U → X is any other local section, there is an element g ∈ Γ such
that σ̃(x) = g · σ(x) for all x ∈ U ; and the fact that x 7→ g · x is a biholomorphism of X
with inverse x 7→ g−1 ·x guarantees that the charts obtained from σ̃ will be holomorphically
compatible with those obtained from σ. □

Corollary 9.28. Suppose G is a connected complex Lie group and Γ ⊆ G is a discrete
subgroup.The left coset space G/Γ is a complex manifold, and the quotient map π : G→ G/Γ
is a holomorphic (normal) covering map.

Proof. This follows from Proposition 9.27 since the action automatically satisfies assump-
tions in Proposition 9.27. □

Remark 9.29. It is clear that the quotient maps in Proposition 9.26, Proposition 9.27 and
Corollary 9.28 are local biholomorphisms. An argument similar to that in Remark 9.23
shows that,

OG/Γ(U) =
{
f ∈ OG

(
q−1(U)

)
| f ◦ γ = f for every γ ∈ Γ

}
.

Example 9.30. (Complex Tori) Suppose V is an n-dimensional complex vector space,
considered as an abelian complex Lie group. A lattice Λ ⊆ V is a subgroup Λ ⊆ V
generated by taking Z-linear combinations of 2n R-linearly independent vectors v1, . . . , v2n.
By Corollary 9.28 V/Λ is an n-dimensional complex Lie group, called a complex torus.

Remark 9.31. When n = 0, V/Λ is a single point. When n > 0, we can think of V as a
2n real-vector space with the the real-linear isomorphism

A : R2n → V, A(x1, . . . , x2n) =

2n∑
j=1

xjvj

This map descends to a map Ã:

R2n V V/Λ

R2n/Z2n

A

q
Ã

Since q is a smooth covering map and hence a smooth submersion and the map R2n → V/Λ

is smooth, we have that Ã is a smooth map. Since Ã is bijective and a local diffeomorphism
(because the maps q and R2n → V/Λ are local diffeomorphisms) , we have

V/Λ ∼= R2n/Z2n ∼= (R/Z)2n ∼= S1 × · · · × S1︸ ︷︷ ︸
2n times

as smooth manifolds. Thus, the complex tori defined by different lattices are all diffeomor-
phic to each other. Moreover, this argument also shows that the complex tori are compact
connected smooth manifolds.
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Example 9.32. (Hopf Manifold) There is a diffeomorphism

φ : S2n−1 × R → Cn \ {0}

given by φ(z1, · · · , zn, t) = (etz1, · · · , etzn). Let Z naturally acts on S2n−1 × R, by letting

m · (z1, · · · , zn, t) = (z1, · · · , zn, t+m)

for m ∈ Z. Clearly, the resulting quotient space is diffeomorphic to S2n−1 × S1. The
diffeomorphism φ allows us to transfer the action of Z to an action of Z on C2 \ {0}.
Explicitly, it is given by the formula

m · (z1, · · · , zn) = (emzn, · · · , emzn)

Z acts by biholomorphisms and the action is clearly free and properly discontinuous. Hence,
Cn \ {0}/Z is a complex manifold called the Hopf manifold. By construction, it is diffeo-
morphic to S2n−1 × S1 (and hence compact).

Remark 9.33. A general version of Corollary 9.28 holds. If G is a complex Lie group
and H is a (closed) complex Lie subgroup of G acting on G holomorphically, freely, and
properly, then the quotient G/H is a complex manifold, and the quotient map π : G→ G/H
is holomorphic.

Example 9.34. (Complex Grassmanian) Let Grk(Cn) denote the set of k-dimensional
subspaces in Cn. GL(n,C) acts transitively on Grk(Cn). Indeed, if U,U ′ ∈ Grk(Cn), we
can let B and B′ be basis for Cn obtained by extending a basis for U and U ′ respectively.
A change of basis matrix from B to B′ then maps U to U ′. The isotropy subgroup of
U = ⟨e1, . . . , ek⟩ is

H =

(
∗k ∗
0 ∗n−k

)
Here ∗k is a k by k matrix and ∗n−k is a (n − k) by (n − k) matrix. Thus Grk(Cn) is the
coset space GL(n,C)/H. Both GL(n,C) and H are complex Lie groups (open subsets of
some CN ). Hence, Grk(Cn) is a complex manifold by Remark 9.33.

Remark 9.35. The Grassmanian is compact. Indeed, observing that we can choose or-
thonormal bases of subspaces, we have that U(n,C) acts continuously and transitively on
Gk(Cn) and we have

Grk(Cn) =
U(n,C)

U(k,C)×U(n− k,C)

Since U(m,C) is compact for all m ∈ N, we have that Grk(Cn) is compact.

Remark 9.36. Another important class of complex manifolds is that of holomorphic vector
bundles. The general theory of holomorphic vector bundles is more or less the same as for
smooth vector bundles. Smooth vector bundles are discussed in the Riemannian geometry
notes. The language of (holomorphic) vector bundles will be used throughout the rest of the
notes.
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10. Tangent Vectors & Tangent Bundle

10.1. Tangent Vectors. Recall that on smooth manifolds, we can make sense of calculus
by introducing the tangent space at a point, which serves as a ‘linear model’ for the manifold
near that point. We now extend this concept to the case of complex manifolds. If X = Rn,
TpRn denote the tangent space at p ∈ Rn. Recall that, we have

TpRn ∼= DerpRn,

where DerpRn is the space of linear operators Dp : C
∞
R (Rn) → R with the property

Dp(fg) = f(p)Dp(g) + g(p)Dp(f)

for all f, g ∈ C∞
R (Rn). Here C∞

R (Rn) denotes sheaf of R-valued smooth functions on Rn.
It suffices to replace C∞

R (Rn) by C∞
p,R in the definition of DerpRn since DerpRn is a local

operator. If X is a smooth manifold, we have

TpX = DerpX

If X is a complex manifold we can now use the complexification functor to define the
tangent space to a point p ∈ X. Indeed, we make the following definition.

Definition 10.1. Let X be a complex manifold. The complex tangent space at p ∈ X
is given by (TpX)C := TpX ⊗R C

We set DerCp (X) ∼= Derp(X)⊗RC.What is DerCp (X) concretely? This is just the complex-

ification of Derp(X). Morally, we can think of elements of DerCp (X) as the set of all linear
combinations of elements of Derp(X) with complex coefficients. Hence, elements of Derp(X)

are of the form Xp+ iYp such that Xp, Yp ∈ Derp(X). We can think of elements of DerCp (X)
as C-linear derivations on C∞

p,C, where C∞
p,C is the stalk of the sheaf of complex-valued smooth

functions on X, denoted as C∞
C . We have

(TpX)C = TpX ⊗R C
∼= Derp(X)⊗R C
∼= DerCp (X)

If X,Y be smooth manifolds and F : X → Y is a smooth map, recall that for p ∈ X, the
differential of F is the map

dFp : TpX → (TF (p)Y )R

defined by dFp(Dp)(f) = Dp(f ◦ F ) for Dp ∈ TpX and f ∈ C∞
R (Y ). This leads to the

following definition.

Definition 10.2. Let X and Y be complex manifolds and let F : X → Y be a holomorphic
map. The complex differential of F at p - denoted as (dFp)

C - is the complexification of the
linear map dFp.

10.2. Computations in Coordinates. We discuss how to do computations with tangent
vectors in local coordinates. We first discuss the smooth manifold case. Suppose X is a
n-dimensional smooth manifold and let (U, ϕ) be a smooth coordinate chart on X. Write
the local coordinate as (x1, · · · , xn). Recall that dϕp : TpX → Tϕ(p)Rn is an isomorphism.
The derivations

∂R
n

∂x1

∣∣∣∣
ϕ(p)

, · · · , ∂
Rn

∂xn

∣∣∣∣
ϕ(p)
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form a basis for TpRn. Therefore, the preimages of these vectors under the isomorphism

dϕp form a basis for TpX. We write these basis vectors as ∂X

∂x1 |p, · · · , ∂X

∂xn |p and we have:

∂X

∂xi

∣∣∣∣
p

= (dϕp)
−1

(
∂R

n

∂xi

∣∣∣∣
ϕ(p)

)
= (dϕ−1)ϕ(p)

(
∂R

n

∂xi

∣∣∣∣
ϕ(p)

)
We see that ∂X

∂xi |p acts on a function f ∈ C∞
R (U) by

∂Xf

∂xi

∣∣∣∣
p

= (dϕ−1)ϕ(p)

(
∂R

n

∂xi

∣∣∣∣
ϕ(p)

)
f

=
∂R

n
(f ◦ ϕ−1)

∂x1

∣∣∣∣
ϕ(p)

:=
∂R

n
(f̂)

∂x1

∣∣∣∣
ϕ(p)

where f̂ = f ◦ ϕ−1 is the coordinate representation of f . In other words, ∂X

∂xi |p is just the
derivation that takes the ith partial derivative of the coordinate representation of f at the
coordinate representation of p. It is important to note that these computations depend on
the chart ϕ of choice. A tangent vector Dp ∈ TpM can be written uniquely as a linear
combination

Dp = Di
p

∂X

∂xi

∣∣∣∣
p

Now let X be a complex manifold of dimension n. Then X can be thought of as a
smooth manifold of dimension 2n. Let (U, ϕ) be a holomorphic coordinate chart. Write
local coordinates as (z1, · · · , zn). We have zi = xi + iyi. The (real) tangent space at the
point p is:

(TpX)R = SpanR

〈
∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn

〉
.

The vector fields ∂
∂xj and ∂

∂yj
are interpreted as smooth vector fields on U ⊆ X. These

vector fields are called complex coordinate vector fields. The complexified tangent space is

(TpX)C = SpanC

〈
∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn

〉
= SpanC

〈
∂

∂z1
, . . . ,

∂

∂zn
,
∂

∂z̄1
, . . . ,

∂

∂z̄n

〉
.

Here the alternative basis in the second line is again given by

∂

∂zj
=

1

2

(
∂

∂xj
− i

∂

∂yj

)
and

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

Remark 10.3. If X = Cn and f is a holomorphic function on Cn, recall that

1

2

(
∂

∂xj
− i

∂

∂yj

)
f =

1

2

(
∂f

∂xj
− i

∂f

∂yj

)
=

1

2

(
∂f

∂zj
+
∂f

∂zj

)
=

∂f

∂zj

This motivates the consideration of the alternative basis for (TpX)C.
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This define a smooth local complex frame
{

∂
∂zj

, ∂
∂z̄j

}n
j=1

for (TpX)C. Consider the fol-

lowing two subspaces:

(TpX)(1,0) = C
〈

∂

∂z1
, . . . ,

∂

∂zn

〉
, (TpX)(0,1) = C

〈
∂

∂z̄1
, . . . ,

∂

∂z̄n

〉
It can be easily checked that TC

p,±1X is the ±i eigenspace of the complex structure on

(TpX)C induced by multiplication by i. Therefore, Proposition 2.9 implies that we have a
direct sum decomposition

(TpX)C = (TpX)(1,0) ⊕ (TpX)(0,1)

Remark 10.4. (TpX)C(1,0) is called the holomorphic tangent space and (TpX)C(0,1) is called

the anti-holomorphic tangent space.

Remark 10.5. If f : X → C is a smooth function in a co-ordinate chart (z1, . . . , zn), then

f is holomorphic if and only if ∂f
∂zj

≡ 0 on U for j = 1, . . . , n. This follows readily from
Remark 1.9.

We now discuss how to compute the differential of a smooth map between complex
manifolds in coordinates.

Proposition 10.6. Let X and Y be complex manifolds and F : X → Y be a holomorphic
map. Let p ∈ X and let (dFp)

C be the complexified differential from (TpX)C to (TpY )C. Let
zj = xj+iyj be local holomorphic coordinates for X in a neighborhood of p, and wj = uj+ivj

for N in a neighborhood of F (p). We have:

(dFp)
C

(
∂

∂zj

∣∣∣∣
p

)
=
∂F k

∂zj
(p)

∂

∂wk

∣∣∣∣
F (p)

+
∂F

k

∂z̄j
(p)

∂

∂w̄k

∣∣∣∣
F (p)

,

(dFp)
C

(
∂

∂z̄j

∣∣∣∣
p

)
=
∂F k

∂z̄j
(p)

∂

∂wk

∣∣∣∣
F (p)

+
∂F

k

∂z̄j
(p)

∂

∂w̄k

∣∣∣∣
F (p)

.

Proof. (Sketch) We use the standard coordinate formula for the differential of a smooth map
between smooth manifolds without providing a proof. Write F as F = U + iV . Considering
X and Y as smooth manifolds, we have the usual coordinate formula for dFp:

dFp

(
∂

∂xj

∣∣∣∣
p

)
=
∂Uk

∂xj
(p)

∂

∂uk

∣∣∣∣
F (p)

+
∂V k

∂xj
(p)

∂

∂vk

∣∣∣∣
F (p)

,

dFp

(
∂

∂yj

∣∣∣∣
p

)
=
∂Uk

∂yj
(p)

∂

∂uk

∣∣∣∣
F (p)

+
∂V k

∂yj
(p)

∂

∂vk

∣∣∣∣
F (p)

.

We transform this formula into holomorphic coordinates. Using the definitions of ∂
∂zj

and
∂

∂zj
, we obtain:

(dFp)
C

(
∂

∂zj

∣∣∣∣
p

)
=
∂Uk

∂zj
(p)

∂

∂uk

∣∣∣∣
F (p)

+
∂V k

∂zj
(p)

∂

∂vk

∣∣∣∣
F (p)

,

(dFp)
C

(
∂

∂z̄j

∣∣∣∣
p

)
=
∂Uk

∂z̄j
(p)

∂

∂uk

∣∣∣∣
F (p)

+
∂V k

∂z̄j
(p)

∂

∂vk

∣∣∣∣
F (p)

.
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Now substitute ∂
∂uk = ∂

∂wk + ∂
∂wk and ∂

∂vk
= i
(

∂
∂wk − ∂

∂wk

)
and collect terms:

(dFp)
C

(
∂

∂zj

∣∣∣∣
p

)
=

(
∂Uk

∂zj
(p) + i

∂V k

∂zj
(p)

)
∂

∂wk

∣∣∣∣
F (p)

+

(
∂Uk

∂zj
(p)− i

∂V k

∂zj
(p)

)
∂

∂w̄k

∣∣∣∣
F (p)

,

(dFp)
C

(
∂

∂z̄j

∣∣∣∣
p

)
=

(
∂Uk

∂z̄j
(p) + i

∂V k

∂z̄j
(p)

)
∂

∂wk

∣∣∣∣
F (p)

+

(
∂Uk

∂z̄j
(p)− i

∂V k

∂z̄j
(p)

)
∂

∂w̄k

∣∣∣∣
F (p)

.

The desired formulas now follow. □

Corollary 10.7. (Chain Rule in Coordinates) Let X and Y be complex manifolds and
let F : X → Y is a holomorphic map, and h : Y → C is a holomorphic function. In terms
of local holomorphic coordinates (zj) for M and (wk) for N , we have:

∂(h ◦ F )
∂zj

=
∂h

∂wk

∂F k

∂zj
+

∂h

∂w̄k

∂F
k

∂zj
,

∂(h ◦ F )
∂z̄j

=
∂h

∂wk

∂F k

∂z̄j
+

∂h

∂w̄k

∂F
k

∂z̄j
.

Proof. This follows from Proposition 10.6 upon noting that the value of ∂(h◦F )
∂zj

at p ∈ X

is equal to the ∂
∂w component of (d(h ◦ F )p)C( ∂

∂zj
|p). But this expression is (dhF (p) ◦

dFp)
C( ∂

∂zj
|p). The formula for ∂(h◦F )

∂zj
at p ∈ X now follows by invoking the formulas in

Proposition 10.6. A similar argument applies to the ∂(h◦F )

∂zj
derivative p ∈ X. □

10.3. Tangent Bundle. We can now construct the tangent bundle associated with a com-
plex manifold. Let X be a complex n-manifold. Let π : TX → X be the smooth rank-2n
tangent bundle over the underlying smooth manifold structure on X. Define the complexi-
fication of TX to be the set

(TX)C =
∐
p∈X

(TpX)C

together with the obvious projection πC : (TX)C → X. For each smooth local trivialization
Φ: π−1(U) → U × R2n, we define a local trivialization ΦC : (π−1)C(U) → U × C2n by

ΦC(ξ) =
(
πC(ξ), (Φ|TX

πC(ξ)
)C(ξ)

)
.

Wherever two such trivializations (U,Φ) and (V,Ψ) overlap, we can write

Ψ ◦ Φ−1(p, v) = (p, τ(p)v)

for some smooth transition function τ : U ∩V → GL(2n,R). Clearly the transition function
from ΦC to ΨC is the same:

ΨC ◦ (Φ−1)C(p, v) = (p, τ(p)v),

where now τ is considered as a map into GL(2n,C). It follows from the vector bundle
chart lemma [Lee12] (adapted in the obvious way for holomorphic vector bundles) that
πC : (TX)C → X has a unique structure as a smooth rank-2n holomorphic vector bundle,
with the maps constructed above as smooth local trivializations.

Definition 10.8. Let X be a complex manifold. A holomorphic vector field is a section
of (TX)C.
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A holomorphic vector field can be written as Z = X+ iY , where X,Y are smooth vector
fields. Z acts on a holomorphic function f = u+ iv by

Zf = Xf + iY f = (Xu+ iXv + Y u+ iY v) = (Xu+ Y u) + i(Xv + Y v)

The Lie bracket operation can be extended to pairs of smooth holomorphic vector fields by
complex bilinearity:

[X1 + iY1, X2 + iY2] = ([X1, X2]− [Y1, Y2]) + i([X1, Y2] + [Y2, X1]).

Example 10.9. Let X = Cn. We have the following facts:

(1) We have

TCn =
∐
p∈Cn

TpCn =
∐
p∈Cn

(Cn)R = (Cn)R × Cn,

(TCn)C =
∐
p∈Cn

(TpCn)C =
∐
p∈Cn

Cn = Cn × Cn.

(2) The complexified tangent bundle TCCn splits as:

(TCn)C = T(1,0)Cn ⊕ T(0,1)Cn

= SpanC

〈
∂

∂z1
, . . . ,

∂

∂zn

〉
⊕ SpanC

〈
∂

∂z1
, . . . ,

∂

∂zn

〉
.

(3) TCn has a canonical complex structure JCn , which satisfies:

JCn
∂

∂xj
=

∂

∂yj
, JCn

∂

∂yj
= − ∂

∂xj
.

(4) For an open subset U ⊆ Cn, a smooth function F : U → Cm is holomorphic if and
only if the following relation holds for all p ∈ U :

DF (p) ◦ JCn = JCm ◦DF (p).
for all p ∈ U . This follows from the following computation:

DF

(
JCn

∂

∂zj

)
− JCm

(
DF

∂

∂zj

)
= DF

(
−i ∂
∂zj

)
− JCm

(
DF

∂

∂zj

)
= −i∂F

k

∂zj
∂

∂wk
− i

∂F k

∂zj
∂

∂wk
− JCm

∂F k

∂zj
∂

∂wk
− JCm

∂F k

∂zj
∂

∂wk

= −2i
∂F k

∂zj
∂

∂wk
.

If X is an arbitrary complex manifold, we now argue that (TX)C has a canonical complex
structure that induces a canonical decomposition of (TX)C:

Proposition 10.10. Let X be a complex n-manifold.

(1) There is a canonical complex structure on TX, denoted by JX : (TX)C → (TX)C.
(2) There are smooth sub-bundles (TX)(1,0), (TX)(0,1) ⊆ (TX)C whose fibers at each

point are the i-eigenspace and (−i)-eigenspace of JX , respectively, such that we
have:

(TX)C = (TX)(1,0) ⊕ (TX)(0,1)

Proof. The proof is given below:



46 JUNAID AFTAB

(1) Given p ∈ X, choose a holomorphic coordinate chart (U,φ) on a neighborhood of
p, and define JX : TX|U → TX|U by

JX = Dφ−1 ◦ JCn ◦Dφ.
Wherever two holomorphic charts (U,φ) and (V, ψ) overlap, the transition map ψ ◦
φ−1 is a holomorphic map between open subsets of Cn, so its differential commutes
with JCn as in Example 10.9. Therefore,

Dψ−1 ◦ JCn ◦Dψ = Dψ−1 ◦ JCn ◦ (Dψ ◦Dφ−1) ◦Dφ
= Dψ−1 ◦ (Dψ ◦Dφ−1) ◦ JCn ◦Dφ
= Dφ−1 ◦ JCn ◦Dφ.

So JX is well-defined. The fact that it satisfies JX ◦ JX = −Id follows from the
corresponding fact for JCn .

(2) (Sketch) This follows since we have the decomposition

(TpX)C = (TpX)(1,0) ⊕ (TpX)(0,1)

for each p ∈ X.

This completes the proof. □

11. Cotangent Bundle & Differential Forms

11.1. Smooth Differential Forms. We first recall the notion of differential forms on a
smooth manifold.

Definition 11.1. Let X be a smooth manifold. A differential k-form is a smooth map
σ : X → ΛkT ∗X such that π ◦ σ = IdX , where π denotes the projection map from ΛkT ∗X
onto X and

ΛkT ∗X =
∐
p∈X

Λk(T ∗
pX).

is the k-th exterior bundle.

Remark 11.2. It can be checked that Λk(T ∗M) has the structure of a smooth manifold of
dimension n +

(
n
k

)
. Moreover, it can be shown that ΛkT ∗X has the structure of a smooth

vector bundle over X.

Remark 11.3. It can be checked that the set of smooth differential k-forms is a R-vector
space. We denote the vector space of smooth differential k-forms by Ωk(X).

We can use the discussion in Section 4 to define the wedge product of two differential
forms in a pointwise manner:

(ω ∧ η)p = ωp ∧ ηp, p ∈ X

Thus, if ω ∈ Ωk(M) and η ∈ Ωl(X), then ω ∧ η ∈ Ωk+l(X).

Remark 11.4. A 0-form is just a continuous real-valued function. If f is a 0-form and η
is a k-form, we interpret the wedge product f ∧ η to mean the ordinary product fη.

If we define

Ω∗(X) =
n⊕

k=0

Ωk(X),
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then the wedge product turns Ω∗(X) into an associative, anti-commutative graded algebra.
In any smooth chart (U, (xi)) on X, a smooth k-form ω can be written locally as

ω =
∑
I

ωI dx
i1 ∧ . . . ∧ dxik ,

where the coefficients ωI are smooth functions defined on the coordinate domain. Lemma 3.13
implies

dxi1 ∧ . . . ∧ dxik
(

∂

∂xj1
, . . . ,

∂

∂xjk

)
= δIJ ,

Thus, the component functions ωI of the k-form ω are determined by

ωI = ω

(
∂

∂xi1
, . . . ,

∂

∂xik

)
.

The great thing about differential forms is that we can pullback differential forms. Let
X,Y be smooth manifolds. Given a smooth map F : X → Y and a differential form
ω ∈ Ωk(Y ), the pullback along F , denoted as F ∗ω, gives a differential form Ωk(X). We can
describe it by its action on tangent vectors:

(F ∗ω)p(v1, . . . , vk) = ωF (p)(dFp(v1), . . . , dFp(vk))

where dFp is the differential at p. The pullback satisfies some nice properties:

Proposition 11.5. Let X,Y be smooth manifolds, and let F : X → Y be a smooth function.
The pullback satisfies the following properties:

(1) F : Ωk(Y ) → Ωk(X) is linear over R for each k.
(2) F ∗(ω ∧ η) = F ∗(ω) ∧ F ∗(η).
(3) In any smooth chart,

F

(∑
I

ωI dy
i1 ∧ . . . ∧ dyik

)
=
∑
I

(ωI ◦ F ) d(yi1 ◦ F ) ∧ . . . ∧ d(yik ◦ F ).

Proof. The proof is given below:

(1) This is clear.
(2) It suffices to prove the claim pointwise:

(F ∗(ω ∧ η))p(v1, . . . , vk, w1, · · ·wl) = (ω ∧ η)F (p)(dFp(v1), . . . , dFp(vk), dFp(w1), . . . , dFp(wl)),

= ωF (p)(dFp(v1), . . . , dFp(vk))ηF (p)η(dFp(w1), . . . , dFp(wl))

= F ∗(ωp)(v1, . . . , vk) ∧ F ∗(ηp)(w1, · · ·wl)

Hence,

(F ∗(ω ∧ η)) = F ∗(ωp) ∧ F ∗(ηp).

(3) This follows from (1) and (2) and the observation that if η is a 0-form (a function),
then F ∗(η) = (η ◦ F ) and:

F ∗(ω ∧ η) = (η ◦ F )F ∗(ω)

This completes the proof. □
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Example 11.6. Let ω = dx∧dy on R2. Thinking of the transformation to polar coordinates
x = r cos(θ), y = r sin(θ) as an expression for the identity map with respect to different
coordinates on the domain and codomain, we obtain

dx ∧ dy = d(r cos(θ)) ∧ d(r sin(θ))
= (cos(θ) dr − r sin(θ) dθ) ∧ (sin(θ) dr + r cos(θ) dθ)

= r dr ∧ dθ.

Let’s now recall the definition of the exterior derivative. For 0 ≤ k ≤ n, the exterior
derivative is an operator

d : Ωk(X) → Ωk+1(X)

In a smooth chart (U, (xi)) on X, if a smooth k-form ω can be written locally as

ω =
∑
I

ωI dx
i1 ∧ . . . ∧ dxik ,

then in local coordinates d is defined as follows:

dω =
∑
I

∑
j

∂ωI

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxik

Before we proceed, we give an equivalent but coordinate-free definition of the exterior
derivative. Let’s start with small k’s to find out the invariant formula of dω. Let U ⊆ X
be an open subset of X. We have the following:

(1) Let k = 0. Then ω = f ∈ C∞(U), and we can regard df as a C∞(U)-linear map

df : X(U) → C∞(U)

such that
df(X) = Xf.

(2) Let k = 1. We want to regard dω as a C∞(U)-bilinear map

dω : X(U)× X(U) → C∞(U).

We write ω =
∑

i ωidx
i, X =

∑
kX

k∂k, and Y =
∑

l Y
l∂l. Then

dω(X,Y ) =
∑
i,j,k,l

(∂jωi)dx
j ∧ dxi(Xk∂k, Y

l∂l)

=
∑
i,j

(∂jωi)X
jY i − (∂jωi)X

iY j

=
∑
i,j

Xj∂j(ωiY
i)− ωiX

j∂j(Y
i)− Y j∂j(ωiX

i) + ωiY
j∂j(X

i)

= X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

So we arrive at

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

(3) Let k = 2. We want to regard dω as a C∞(U)-bilinear map

dω : X(U)× X(U)× X(U) → C∞(U).

By a tedious but similar computation as above, one can show that

dω(X,Y, Z) = X(ω(Y,Z))−Y (ω(X,Z))+Z(ω(X,Y ))−ω([X,Y ], Z)+ω([X,Z], Y )−ω([Y,Z], X).
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So we are naturally led to the following the invariant formula for d:

Proposition 11.7. Let X be a smooth n-manifold. Let 0 ≤ k ≤ n and let U ⊆ X be an
open set of X. For any ω ∈ Ωk(U), the (k + 1)-form dω, viewed as a C∞(U)-multilinear
map

dω : X(U)× · · · × X(U)︸ ︷︷ ︸
(k+1)−times

→ C∞(U),

is given by the formula

dω(X1, . . . , Xk+1) :=
∑
i

(−1)i−1Xi

(
ω(X1, . . . , X̂i, . . . , Xk+1)

)
+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1)

Proof. The proof is skipped. □

We end with some properties of the exterior derivative:

Proposition 11.8. Let X be a smooth n-manifold. Let 0 ≤ k, l ≤ n and let U ⊆ X be an
open set of X. Suppose ω ∈ Ωk(U), η ∈ Ωl(U), X ∈ X(U).

(1) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.
(2) d ◦ d = 0.
(3) Let Y be a smooth m-manifold and let V ⊆ Y be an open set. Let F : U → V be a

smooth map. Then

d ◦ F ∗ = F ∗ ◦ d

Proof. The proof is given below:

(1) Since d is linear, it is enough to assume

ω = f dxi1 ∧ · · · ∧ dxik , η = g dxj1 ∧ · · · ∧ dxjl

with indices set I ∩ J = ∅. Then the formula follows from a direct computation:

d(ω ∧ η) = d(fg dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl)

=
∑
i

∂i(fg) dx
i ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl

=
∑
i

(∂if) dx
i ∧ dxi1 ∧ · · · ∧ dxik ∧ η + (−1)kω ∧

∑
i

(∂ig) dx
i ∧ dxj1 ∧ · · · ∧ dxjl

= dω ∧ η + (−1)kω ∧ dη.

(2) We first check this for k = 0:

d(df)(X,Y ) = X(df(Y ))− Y (df(X))− df([X,Y ])

= X(Y (f))− Y (X(f))− [X,Y ]f = 0

For k > 0, by linearity we may assume

ω = f dx1 ∧ · · · ∧ dxk
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Since ddf = 0 and ddxi = 0, we get

d(dω) = d(df ∧ dx1 ∧ · · · ∧ dxk)

= d(df) ∧ dx1 ∧ · · · ∧ dxk +
∑
i

(−1)idf ∧ dx1 ∧ · · · ∧ d(dxi) ∧ · · · ∧ dxk = 0

(3) For 0 ≤ k ≤ m, let ω ∈ Ωk ∗ (V ). For k = 0, ω = f ∈ C∞(V ) and

(φ∗df)p(Xp) = dfF (p)(dFp(Xp)) = d(F ∗f)p(Xp).

In general, assume

ω = f dx1 ∧ · · · ∧ dxk

By Proposition 11.5, we have

F ∗(dω) = F ∗(df ∧ dx1 ∧ · · · ∧ dxk)

= F ∗(df) ∧ F ∗(dx1) ∧ · · · ∧ F ∗(dxk)

= d(F ∗f) ∧ d(F ∗x1) ∧ · · · ∧ d(F ∗xk)

= d(F ∗f d(F ∗x1) ∧ · · · ∧ d(F ∗xk))

= d(F ∗ω).

This completes the proof. □

11.2. Cotangent Bundle. Let X be a complex n-manifold and let π : T ∗X → X be the
smooth rank-2n cotangent bundle over the underlying smooth manifold structure on X. We
first discuss the complexification of T ∗X. The details are similar to the complexification
of the underlying smooth tangent bundle, but we repeat the details anyway. Define the
complexification of T ∗X to be the set

(T ∗X)C =
∐
p∈X

(T ∗
pX)C

together with the obvious projection πC : (T
∗X)C → X. For each smooth local trivialization

Φ: π−1(U) → U × R2n, we define a local trivialization ΦC : (π−1)C(U) → U × C2n by

ΦC(ξ) =
(
πC(ξ), (Φ|T ∗XπC(ξ))

C(ξ)
)
.

Wherever two such trivializations (U,Φ) and (V,Ψ) overlap, we can write

Ψ ◦ Φ−1(p, v) = (p, τ(p)v)

for some smooth transition function τ : U ∩V → GL(2n,R). Clearly the transition function
from ΦC to ΨC is the same:

ΨC ◦ (Φ−1)C(p, v) = (p, τ(p)v),

where now τ is considered as a map into GL(2n,C). It follows from the vector bundle chart
lemma that πC : (T ∗X)C → M has a unique structure as a smooth rank-2n holomorphic
vector bundle, with the maps constructed above as smooth local trivializations.

Definition 11.9. Let X be a complex manifold. A holomorphic 1-form is a section of
(T ∗X)C.
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Example 11.10. Let X = Cn. With (xj , yj) as smooth global coordinates for Cn, the
smooth global coframe {dxj , dyj} forms a coframe for T ∗Cn, and also for (T ∗Cn)C. Note
that we have

(T ∗Cn)C = SpanC⟨dx1, . . . , dxn, dy1, . . . , dyn⟩
= SpanC⟨dz1, . . . , dzn, dz1, . . . , dzn⟩.

Here we have defined

dzj = dxj + i dyj , dzj = dxj − i dyj

If f : U → C is a smooth function on an open subset U ⊆ Cn, we can write

df =
∂f

∂xj
dxj +

∂f

∂yj
dyj

=
∂f

∂xj

(
dzj + dzj

2

)
+
∂f

∂yj

(
dzj − dzj

2i

)
=

1

2

(
∂f

∂xj
− i

∂f

∂yj

)
dzj +

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
dzj

=
∂f

∂zj
dzj +

∂f

∂zj
dzj

11.3. Holomorphic differential Forms. LetX be a complex n-manifold. We now discuss
holomorphic k-forms for 0 ≤ k ≤ n. For 0 ≤ k ≤ n, let (ΛkT ∗X)C be the complexification
of ΛkT ∗X. As a set, we have

(ΛkT ∗X)C =
∐
p∈X

(Λk(T ∗
pX))C

A holomorophic vector bundle strucuture on (ΛkT ∗X)C can be constructed in much the
same way as that of the complex tangent bundle and complex cotangent bundle, so we
don’t provide additional details. This allows us to define holomorphic k-forms:

Definition 11.11. Let X be a complex manifold. A holomorphic k-form is a section of
(ΛkX)C for 0 ≤ k ≤ n

Remark 11.12. If k = 0, a holomorphic 0-form is just a holomorphic function on X.
If k = 1, then note that Λ1T ∗X = T ∗X is the cotangent bundle and (Λ1T ∗X)C is the
complexified cotangent bundle (T ∗X)C. A holomorphic 1-form was defined in the previous
section.

Let’s discuss the decomposition of (ΛkX)C. Using results from Section 4 we have that

(Λk(T ∗
pX))C = Λk(T ∗

pX)C

= Λk((T ∗
pX)(1,0) ⊕ (T ∗

pX)(0,1))

=
⊕

p+q=k

Λp((T ∗
pX)(1,0))⊗C Λq((T ∗

pX)(0,1)) :=
⊕

p+q=k

Λp,q(T ∗
pX)
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As a result, we have

(ΛkT ∗X)C =
∐
p∈X

(Λk(T ∗
pX))C

=
∐
p∈X

⊕
p+q=k

Λp((T ∗
pX)(1,0))⊗C Λq((T ∗

pX)(0,1))

:=
∐
p∈X

⊕
p+q=k

Λp,q(T ∗
pX) :=

⊕
p+q=k

Λp,q(T ∗X)

Definition 11.13. Let X be a complex n-manifold. Let 0 ≤ k ≤ 2n and 0 ≤ p, q ≤ n such
that p+ q = k. A holomorphic (p, q)-form is a section σ of Λp,q(T ∗X).

If U ⊆ X is an open set of X corresponding to a holomorphic atlas then it is then clear
that the following collection of forms constitutes a smooth local frame for Λp,q(T ∗X):

{dzj1 ∧ · · · ∧ dzjp ∧ dzl1 ∧ · · · ∧ dzlq : p+ q = k, j1 < · · · < jp, l1 < · · · < lq}.
Hence, in every local holomorphic coordinate chart (U, (z1, . . . , zn)), σ ∈ Λp,q(T ∗X) can be
expressed as

σ|U =
∑

j1<···<jp,
l1<···<lq

dzj1 ∧ · · · ∧ dzjp ∧ dzl1 ∧ · · · ∧ dzlq

Remark 11.14. We use the notation E k(X) to denote the space of holomorphic sections
of (ΛkT ∗X)C, and E p,q(X) for the space of holomorphic sections of Λp,q(T ∗X).

For each 0 ≤ p, q ≤ n, we have projection operators

πp,q : (ΛkT ∗X)C → Λp,q(T ∗X)

Using the definition and properties of the wedge product, ∧, and the exterior derivative, d,
from the smooth manifold case, we have the following proposition:

Proposition 11.15. Let X be a complex n-manifold.

(1) Let α ∈ E p,q(X). Then

d
(
E p,q(X)

)
⊆ E p+1,q(X)⊕ E p,q+1(X).

(2) For each 0 ≤ p, q ≤ n, there exists Dolbeault operators

∂ : E p,q(X) → E p+1,q(X). ∂̄ : E p,q(X) → E p,q+1(X)

such that
∂ = πp+1,q ◦ d, ∂̄ = πp,q+1 ◦ d.

(3) If α ∈ E p,q(X) and β ∈ E p′,q′(X)

α ∈ E q,p(M).

α ∧ β ∈ E p+p′,q+q′(M).

(4) If α ∈ E k(X) and β ∈ E l(X), then

∂(α ∧ β) = ∂α ∧ β + (−1)kα ∧ ∂β,

∂(α ∧ β) = ∂α ∧ β + (−1)kα ∧ ∂β.

Proof. It suffices to work in local holomorphic coordinates.
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(1) Choose holomorphic local coordinates (z1, . . . , zn) and write

α =
∑

J,L
αJ,L dz

j1 ∧ · · · ∧ dzjp ∧ dz̄l1 ∧ · · · ∧ dz̄lq ,

where J = (j1, . . . , jp) and L = (l1, . . . , lq) are strictly increasing multi-indices. We
have

dα =
∑

J,L

∑
r

(
∂αJ,L

∂zr
dzr +

∂αJ,L

∂z̄r
dz̄r
)
∧ dzj1 ∧ · · · ∧ dzjp ∧ dz̄l1 ∧ · · · ∧ dz̄lq ,

The claim follows.
(2) This follows from (1).
(3) This is clear.
(4) This follows from (1), (2) and (3).

This completes the proof. □

11.4. Dolbeault Cohomology. We now discuss Dolbeault cohomology. Dolbeault coho-
mology is a fundamental tool in complex geometry, used to study the structure of complex
manifolds. We start off with a basic prototype of holomorphic differential forms that will
allow us to define the Dolbeault cohomology.

Lemma 11.16. Let X,Y be a complex manifolds and let F : X → Y be a holomorphic
map.

(1) If α ∈ E k(X), then we have

dα = ∂α+ ∂α

∂α = ∂(α),

∂ ◦ ∂α = ∂ ◦ ∂α = 0,

∂ ◦ ∂α = −∂ ◦ ∂α.

(2) If α ∈ E p,q(Y ), then we have

F ∗(E p,q(Y )) ⊆ E p,q(X),

F ∗(∂α) = ∂(F ∗α),

F ∗(∂α) = ∂(F ∗α).

Proof. The proof is given below:

(1) WLOG, let α be a (p, q) form. The first identity follows from (1) and (2) in Propo-
sition 11.15. The second identity follows from the definition of conjugation. Note
that

0 = d(dα) = (∂ + ∂)(∂ + ∂)α = ∂ ◦ ∂α+ (∂ ◦ ∂α+ ∂ ◦ ∂α) + ∂ ◦ ∂α.

On the right-hand side, the first term is in E p+2,q(X), the term in parentheses is in
E p+1,q+1(X), and the last term is in E p,q+2(X). Since these spaces intersect only in
the zero form, each of those three terms must be zero. Hence, the third and fourth
identities follow.
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(2) Choose holomorphic local coordinates (z1, . . . , zn) and (w1, . . . , wm). Note that we
have

F ∗dwj =
∂F j

∂zl
dzl,

F ∗dwj =
∂F

j

∂zl
dzl.

The first identity follows by a simple linearity argument. The second and third
identities follow from the fact that F ∗ commutes with πp+1,q, πp,q+1 and d.

This completes the proof. □

Lemma 11.16 allows us to define a set of biholomorphic invariants. Because ∂ ◦ ∂ = 0,
for each p we obtain a cochain complex known as the p-th Dolbeault complex:

0 → E p,0(M)
∂−→ E p,1(M)

∂−→ · · · ∂−→ E p,n(M) → 0.

Definition 11.17. Let X be a complex n-manifold. Let 0 ≤ p, q ≤ n. The (p, q)-
Dolbeault cohomology group is defined as

Hp,q(X) =
Ker(∂ : E p,q(M) → E p,q+1(M))

Im(∂ : E p,q−1(M) → E p,q(M))

It follows from Lemma 11.16 that the construction of Dolbeault cohomology is functorial
and that it is indeed a biholomorphic invariant.

Definition 11.18. Let X be a complex n-manifold and and let 0 ≤ p, q ≤ n. The Hodge
numbers of X are given by

hp,q(X) = dimHp,q(X)

The Dolbeault cohomology groups measure the the extent to which a ‘which ∂-closed
forms fail to be ∂-exact.’ The ∂ Poincaré lemma states that a ∂-closed form can always be
locally written as a ∂-exact form.

Proposition 11.19. (∂-Poincaré Lemma) Let X be a complex n-manifold and let 0 ≤
p, q ≤ n. If ω ∈ Ωp,q(X) is a smooth form that satisfies ∂ω = 0 for q ≥ 1, then in
a neighborhood of each point there is a η ∈ Ωp,q−1(X) that is a smooth form such that
∂η = ω.

Remark 11.20. Nore that Proposition 11.19 is about smooth (p, q) forms. This is because
the proof works with functions

Proof. □
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