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Abstract. These are notes on Lie groups taken during graduate school. These notes
assume a working knowledge of smooth manifold theory. Typos may be present; please
send any corrections to junaid.aftab1994@gmail.com.

Contents

Part 1. Lie Groups 2
1. Definition & Examples 2
2. Lie Algebra of a Lie Group 18
3. Exponential Map 26
4. Baker-Campbell-Hausdorff Formula 39
5. Lie Group-Lie Algebra Correspondence 43

Part 2. Representations of Compact Lie Groups 44
6. General Theory 44
7. Haar Measure 49
8. Unitary Representations 52
9. Character Theory 54
10. Finite Groups 57
References 61

1

junaid.aftab1994@gmail.com


2 JUNAID AFTAB

Part 1. Lie Groups

Lie groups play a central role in modern geometry, topology, and mathematical physics,
offering a natural framework for studying continuous symmetries. We begin by introduc-
ing the basic definitions and properties of Lie groups, then move on to their infinitesimal
counterparts, Lie algebras. The exponential map, which connects Lie algebras back to Lie
groups, is then explored, followed by a discussion of the Baker–Campbell–Hausdorff (BCH)
formula and related constructions. Finally, we examine the deep correspondence between
Lie groups and Lie algebras, which underpins much of the theory developed in this area.

1. Definition & Examples

A (real) Lie group is a group endowed with the structure of a finite-dimensional smooth
manifold. In fact, a (real) Lie group is a group object in the category of finite-dimensional
smooth manifolds. Lie groups are the objects that describe continuous symmetries, which
is why they are considered to be important.

1.1. Definitions & Examples. All smooth manifolds considered will be finite-dimensional.
Hence, we will simply use the phrase ‘smooth manifold’ from now on. Therefore, the dis-
cussion below applies specifically to finite-dimensional Lie groups.

Definition 1.1. A (real) Lie group is a smooth manifold, G, that is also a group such
that multiplication map m : G×G→ G and inversion map i : G→ G, given by

m(g, h) = gh, i(g) = g−1

are both smooth. A Lie group is abelian if the underlying group is an abelian group.

Remark 1.2. A complex Lie group is a complex manifold that is also a group such that
the multiplication and inversion maps are holomorphic. We shall be mostly working with
smooth manifolds and (real) Lie groups. We shall omit the phrase ’real’ when it is clear
from context. If we consider complex manifolds or complex Lie groups, we shall use the
phrase ’complex.’

Example 1.3. The following are examples of Lie groups.

(1) Every 0-dimensional smooth manifold, which is a countable set of isolated points, is
a 0-dimensional Lie group because the multiplication and inversion maps are locally
constant and hence are smooth maps. For example, Z and Zn for n ≥ 1 are Lie
groups.

(2) Rn and Cn are abelian Lie groups since addition and subtraction are smooth func-
tions1.

(3) S1 is a Lie group. Identifying S1 with complex numbers of norm one, we have that
S1 inherits a group structure, given by

(x, y) · (x′, y′) := (xx′ − yy′, xy′ + x′y),

(x, y)−1 = (x,−y).

Using the smooth manifold structure on S1, it is easy to now verify that S1 is a Lie
group2.

1Note that Cn is also a complex Lie group.
2We have S1 ∼= U(1). So this claim also follows from results mentioned later in the section.
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(4) Let GL(n,R) denote the general linear group of invertible n × n over R. Consider
the map

det : Rn2 → R,

A 7→
∑
σ∈Sn

sgn(σ) a1,σ(1) · · · an,σ(n),

Since det is a polynomial map, det is a smooth function. Note that GL(n,R) =

det−1(R×), Hence, GL(n,R) is an open subset of Rn2
, and hence is a smooth manifold

of dimension n2. Clearly, GL(n,R) is a group. Matrix multiplication is a smooth
map (given by polynomials) and matrix inverse is a smooth map (by Cramer’s rule).
Hence GL(n,R) is a Lie group. Note that GL(n,R) is a non-abelian Lie group for
n ≥ 2.

(5) Similarly, GL(n,C) is a (real) Lie group of dimensions 2n2. It is non-abelian for
n ≥ 2.

(6) A direct product of Lie groups is a Lie group. This can be easily checked. In
particular,

Tn := S1 × · · · × S1

is an abelian Lie group.
(7) If G is Lie group and H ⊆ G is an open subgroup then, H is a Lie group with

the inherited group structure and smooth manifold structure. H is called a Lie
subgroup of G. For example, note that GL+(n,R), the open subgroup of GL(n,R)
consists of invertible matrices with positive determinant, is a Lie group.

Remark 1.4. More generally, if G is a Lie group and H ⊆ G is a closed subgroup, then H
is a Lie subgroup of G. This is Cartan’s Closed Subgroup Theorem which is non-trivial to
prove.

We can play off the group and smooth manifold structure of a Lie group to define the
notion of a ‘smooth group homomorphism.’

Definition 1.5. Let G,H be Lie groups. A Lie group homomorphism is a smooth map
F : G → H that is also a group homomorphism. A Lie group isomorphism is a Lie
group homomorphism that is also a diffeomorphism.

It is easy to verify Lie groups form a subcategory of the category of smooth manifold.
We denote this category as LieGrp.

Example 1.6. The following are examples of Lie group homomorphisms:

(1) The map exp : R → R×3 given by exp(t) = et is smooth, and is a Lie group
homomorphism because es+t = es · et. The image of exp is the open Lie subgroup
R+, and exp : R→ R+ is a Lie group isomorphism with inverse log : R+ → R.

(2) Similarly, exp : C→ C×4 given by exp(z) = ez is a (real) Lie group homomorphism.
It is not a Lie group isomorphism because its kernel consists of the complex numbers
of the form 2πik, where k ∈ Z.

(3) Let G be a Lie group, and let g ∈ G. The inner automorphism of G is the map
Cg : G→ G given by Cg(h) = ghg−1 (conjugation by g). Because multiplication and

3R× ∼= GL(1,R). Hence, R× is a Lie group
4C× ∼= GL(1,C). Hence C× is a Lie group.
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inversion are smooth, Cg is smooth; inner automorphisms are group isomorphisms,
so this is a Lie group isomorphism.

Remark 1.7. The group and smooth manifold structure of a Lie group can be conveniently
played off of each other. For instance, the multiplication map gives rise to two all-important
families of diffeomorphisms of G: the left-translation and right-translation maps Lg, Rg :
G→ G for g ∈ G:

Lg(h) = gh,

Rg(h) = hg.

It is easily seen that both maps are diffeomorphisms. For example, letting ιg : G → G ×G
be the map ιg(h) = (g, h) which is clearly smooth, note that Lg = m ◦ ιg is smooth as well.
Since Lg is a bijection such that the inverse is Lg−1, Lg is a diffeomorphism for all g ∈ G.
Similarly, Rg is a diffeomorphism for all g ∈ G. Many of the important properties of Lie
groups follow from the fact that we can systematically map any point to any other point by
such a global diffeomorphism.

As an application of the comments made in Remark 1.7, we can show that every Lie
group homomorphism is of constant rank:

Proposition 1.8. Every Lie group homomorphism is of constant rank.

Proof. Let G,H be Lie groups, and let F : G → H be a Lie group homomorphism. Let
g0 ∈ G, and denote the identity of G as eG (and the identity of H as eH). Since F is a
homomorphism, we have, for all g ∈ G,

F (Lg0(g)) = F (g0g) = F (g0)F (g) = LF (g0)(F (g)).

That is: F ◦ Lg0 = LF (g0) ◦ F . Taking differentials of both sides at the identity, the chain
rule then tells us

dFg0 ◦ d(Lg0)eG = d(LF (g0))eH ◦ dFeG ,

Since Lg0 and LF (g0) are diffeomorphisms, their differentials at any points are isomorphisms.
It follows, therefore, that dFg0 has the same rank as FeG . As this holds true for any g0, we
see that dFg0 has constant rank. □

1.2. Lie Group Actions. Lie groups are group objects in the category of smooth mani-
folds. Therefore, we can define the notion of a smooth group action on a manifold, which
will in turn allow us to study manifolds using tools from group theory.

Definition 1.9. Let G be a Lie group and let M be a smooth manifold. A smooth left
action of G on M is a smooth map

θ : G×M 7→M

(g, p) 7→ g · p,
which satisfies the following two conditions:

g1 · (g2 · p) = (g1g2) · p,
e · p = p.

for all g1, g2 ∈ G and p ∈M .

Remark 1.10. We can also talk about smooth right actions which are defined similarly.
All remarks made below above equally well to smooth right actions.
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Remark 1.11. For each g ∈ G, we denote by θg the map M →M defined by θg(p) = g · p.

Definition 1.12. Let G be a Lie group and letM be a smooth manifold and θ be a smooth
group action.

(1) For p ∈M , the orbit of P of p is the set

G · p = {g · p : g ∈ G}

(2) For p ∈M , the stabilizer of p is the set

Gp = {g ∈ G : g · p = p}

That is, it is the set of group elements that fix p. Note that Gp is a subgroup.
(3) An action is said to be transitive for each pair p, q ∈M , there is some g ∈ G with

g · p = q.
(4) An action is said to be free if all stabilizers are trivial: Gp = {e} for all p. In other

words, only the group unit fixes any element.

Example 1.13. Here are some examples of Lie group actions on manifolds.

(1) If G is any Lie group and M is any smooth manifold, the trivial action of G on M
is defined by g · p = p for all g ∈ G, p ∈ M . It is smooth5, each orbit is a single
point and Gp = G for each p ∈M .

(2) If G is a connected Lie group, then any smooth action on a discrete smooth manifold,
M , is the trivial action. Consider G · p, the orbit of p ∈ M . G · p is connected, so
it must be a singleton, as the only connected non-empty subsets of a discrete space
are singletons. Hence, the action must be the trivial action.

(3) Let G = GL(n,R) and M = Rn. G acts on M by matrix multiplication. It is clearly
a smooth action. Note that A · 0 = 0 for all A ∈ G, so the orbit of 0 is just {0}.
For any two non-zero vectors x, y, there is some invertible matrix A with Ax = y.
Hence, there is only one other orbit, Rn \ {0}.

Group actions allow is to impart some nice properties of Lie groups to the manifolds they
act on. This can be described through a property called equivariance.

Definition 1.14. Let M,N be smooth manifolds, and let F : M → N be a smooth map.
Suppose that M,N both possess smooth (left) actions by some Lie group G. F is an
equivariant smooth map under the actions of G if

F (g ·M p) = g ·N F (p), for all g ∈ G, p ∈M.

If the action of G on M is denoted by θ and the action of G on N is denoted by φ, this
condition is often expressed as a commutative diagram:

M N

M N

F

θg φg

F

We know that all Lie group homomorphisms have constant rank by Proposition 1.8. This
property extends to the much wider class of equivariant maps under transitive actions.

5θ is just the projection map G×M → M
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Proposition 1.15. (Equivariant Rank Theorem) Let F : M → N be a smooth map
between manifolds. Let G be a Lie group that acts smoothly on both M and N , and suppose
the action on M is transitive. If F is equivariant with respect to these actions, then F has
constant rank.

Proof. Denote the action on M by θ and the action on N by φ. Let p, q ∈ M . By the
transitivity assumption, there is some g ∈ G with θg(p) = q. The equivariance of F is the
statement that

F ◦ θg = φg ◦ F
We now apply the chain rule at the point p:

dFq ◦ (dθg)p = (dφg)F (p) ◦ dFp

Since θg and φg are diffeomorphisms, the differentials (dθg)p and (dφg)F (p) are linear iso-
morphisms, and it follows that dFp and dFq have the same rank.

TpM TF (p)M

TqM TF (q)N

dFp

d(θg)p d(φg)F (q)

dFq

This completes the proof. □

Example 1.16. (Quarternions) Let R{1, i, j, k} be the free R-vector space on the set
{1, i, j, k}. Let I be the ideal generated by the relations

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j

H is defined as

H := R{1, i, j, k}/I
It is a simple but tedious matter to check that H is a division algebra. If x = a+bi+cj+dk ∈
H, we define x = a− bi− cj − dk. It can be checked that the map x 7→ xx := |x|2 defines a
norm on H. It turns out to be much more convenient to work with a matrix representation
of H. Let I, i′, j′, and k′ be the following matrices:

I =

(
1 0
0 1

)
, i′ =

(
i 0
0 −i

)
, j′ =

(
0 1
−1 0

)
, k′ =

(
0 i
i 0

)
.

It is easily seen that the matrices satisfy the relations mentioned above. Hence, the map

1→ I, i→ i′, j → j′, k → k′,

defines a matrix representation of H. From now on we identify H with its matrix represen-
tation. A simple derivation shows that every matrix in H is of the form

A =

(
α β

−β α

)
,

where α, β ∈ C. Hence the conjugate of a quaternions is now identified with the matrix
conjugated transpose. Moreover, the norm of a quaternion is now defined as the determinant
of the associated matrix6. A simple argument then shows that A ∈ GL2(C) is identified

6THis association easily implies that xy = yx and |xy| = |x||y|.
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with a non-zero quaternion if and only if A∗A = det(A)I2. Let H× denote the non-zero
quaternions. We have a map

Φ : GL(2,C)→M(2,C)

X 7→ det(X)−1X∗X

Clearly, H× = Φ−1(I2). As before, it can be checked that Φ is a smooth equivariant map
under suitable right and left actions of GL(2,C). By Proposition 1.15, Φ is of constant rank.
By the constant rank theorem, H× is an embedded submanifold of GL(2,C). This allows us
to immediately conclude that H× is a Lie group. The unit quaternions, Hu, consist of all
A ∈ H with determinant one. Hu is also a Lie group7. Simply consider the map

Φ : GL(2,C)→M(2,C)
X 7→ X∗X.

and apply the argument as above. Note that we can identity Hu with S3. This also shows
that S3 as a Lie group structure.

Remark 1.17. Note that GL(n,H) is a (real) Lie group of dimensions 4n2. It is non-abelian
for n ≥ 1.

1.3. Matrix Lie Groups. The most famous example of a Lie group is the general linear
groups GL(n,K), where K = R,C,H. A closed subgroup of GL(n,K) is called a matrix Lie
group. In this section, we discuss some important examples of the so-called classical Lie
groups, which are well-known examples of matrix Lie groups.

Remark 1.18. In the following examples, we will not explicitly verify that the given Lie
groups are indeed groups, as this verification is straightforward.

1.3.1. Special Linear group. As an application of the constant rank theorem, we can furnish
further examples of Lie group by appealing to the constant rank theorem. Let

SL(n,R) = det−1{1}
det : GL(n,R) → R× is a smooth map. We show that det has constant rank 1. Let

X ∈ TInGL(n,R) ∼= Rn2
and consider the curve γ(t) = In + tX in Rn28. We compute

d

dt

∣∣∣∣
t=0

det(I + tX)

Note that to first order:

det(I + tX) =
∑
σ∈Sn

sgn(σ) · (I + tX)1,σ(1) · (I + tX)2,σ(2) · · · · · (I + tX)n,σ(n)

=
n∏

i=1

(1 + tXii) +O(t2) = 1 + t
n∑

i=1

Xii +O(t2)

Therefore,

d

dt

∣∣∣∣
t=0

det(I + tX) =
n∑

i=1

Xii = TrX

7It is indeed a group as it can be easily verified.
8For small enough t, γ(t) is contained in GL(n,R) since GL(n,R) is an open subset of Rn2

so the map is
well-defined for small enough t.
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Clearly, the linear map X 7→ TrX is surjective. More generally, if X ∈ Rn2
, we have:

d(det)In(X) = Tr(X)

More generally, we can easily compute the differential of the det map at any A ∈ GL(n,R).
Indeed, for A ∈ consider the path γ(t) = A + tX which is well-defined for small enough
values of t. Then

d(det)A(X) =
d

dt

∣∣∣∣
t=0

det(A+ tX)

=
d

dt

∣∣∣∣
t=0

det(A) det
(
I + tA−1X

)
= det(A)

d

dt

∣∣∣∣
t=0

det
(
I + tA−1X

)
= det(A) Tr(A−1X)

Clearly, the linear map X 7→ det(A) Tr
(
A−1X

)
is surjective. This shows that det has

constant rank. By the constant rank theorem SL(n,R) is an embedded subamanifold such
that

dimSL(n,R) = n2 − 1

Clearly, SL(n,R) is group. Hence, SL(n,R) is a Lie group.

Remark 1.19. Similarly, SL(n,C) is (real) Lie group of dimension 2n2 − 2.

Remark 1.20. Since H is a non-commutative ring, multilinearity and alternating properties
are incompatible in GL(n,H) for n ≥ 2. Hence, there is no canonical way to define a
determinant of a matrix in GL(n,H) for n ≥ 2.

1.3.2. Orthogonal & Unitary Groups. As an application of Proposition 1.15, we can furnish
further examples of Lie group by appealing to the equivariant rank theorem.

Example 1.21. Let O(n,R) be the group of n× n real orthogonal matrices that preserve
the Euclidean inner product:

O(n,R) = {A ∈ GL(n,R) | ATA = In}
Define

Φ : GL(n,R)→ Rn2

A 7→ ATA

Clearly, O(n,R) = Φ−1(In). By defining suitable group actions on GL(n,R) and Rn2
and

appealing to Proposition 1.15, we can show that Φ is of constant rank: Let G = GL(n,R)
act on GL(n,R) by matrix multiplication. This action is clearly transitive. Define a right

action of GL(n,R) on Rn2
by

X ·B = BTXB

for X ∈ Rn2
B ∈ GL(n,R). It is easy to check that this is a smooth action, and · is

equivariant because

Φ(AB) = (AB)T (AB) = BTATAB = BTΦ(A)B = Φ(A) ·B
Appealing to Proposition 1.15, O(n,R) is an embedded submanifold of GL(n,R). We com-

pute its dimension by computing the rank of the differential of Φ at In. Fix any A ∈ Rn2
.
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For any small enough ε > 0, consider a curve γ : (−ε, ε)→ O(n,R) such that γ(0) = In and
γ′(0) = A. We have:

dΦIn(A) = (Φ ◦ γ)′(0) = d

dt
γ(t)Tγ(t)

∣∣∣∣∣
t=0

= γ′(0)Tγ(0) + γ(0)Tγ′(0) = A+AT

Since A + AT is symmetric, the image of dΦIn is contained in the vector space of n-by-n
symmetric matrices. In fact, it is equal to this vector space. This is because for any

dΦIn(B/2) =
B +BT

2
= B

for any n-by-n symmetric matrix, B. Therefore,

dimO(n,R) = n2 − n(n+ 1)

2
=
n(n− 1)

2

Example 1.22. Consider the special orthogonal group,

SO(n,R) := O(n,R) ∩ SL(n,R)
It is easy to show that every matrix in O(n,R) has determinant ±1. Hence, SO(n,R) is the
subset of those matrices in O(n,R) having determinant 1. In fact it is an open subset of
O(n,R) since the det map restricts to a map

det : O(n,R)→ {±1}
and SO(n,R) = det−1(+1). Hence, SO(n,R) is a Lie group of dimension n(n− 1)/2. Note
that O(n,R) and SO(n,R) fit into a short exact sequence:

1→ SO(n,R)→ O(n,R) det−−→ {±1} → 1

Example 1.23. Let U(n,C) be the group of n by n complex orthogonal matrices that
preserve the Hermitian inner product:

U(n,C) = {A ∈ GL(n,C) | A∗A = In}
Define

Φ : GL(n,C)→ Cn2

A 7→ A∗A

Clearly, U(n,C) = Φ−1(In). Let G = GL(n,C) act on GL(n,C) by matrix multiplication.

This action is clearly transitive. Define a right action of GL(n,C) on Cn2
by

X ·B = B∗XB

for X ∈ Cn2
B ∈ GL(n,C). It is easy to check that this is a smooth action, and · is

equivariant because

Φ(AB) = (AB)∗(AB) = B∗A∗AB = B∗Φ(A)B = Φ(A) ·B
Appealing to the Appealing to Proposition 1.15, U(n,C) is an embedded submanifold of
GL(n,C). We compute its dimension by computing the rank of the differential of Φ at In.

Fix any A ∈ Cn2
. For any small enough ε > 0, consider a curve γ : (−ε, ε)→ GL(n,R) such

that γ(0) = In and γ′(0) = A. We have:

dΦIn(A) = (Φ ◦ γ)′(0) = d

dt
γ(t)∗γ(t)

∣∣∣∣∣
t=0

= γ′(0)∗γ(0) + γ(0)Tγ′(0) = A+A∗
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Since A + A∗ is self-adjoint, the image of dΦIn is contained in the vector space of n-by-n
self-adjoint matrices. In fact, it is equal to this vector space. This is because for any

dΦIn(B/2) =
B +B∗

2
= B

for any n-by-n self-adjoint matrix, B. We have:

dimU(n,C) = 2n2 − n2 = n2

This is because the vector of all matrices of the form A = A∗ has dimension n+4n(n−1)/2 =
n2.

Example 1.24. Consider the special unitary group:

SU(n,C) := U(n,C) ∩ SL(n,C)
It is easy to show that every matrix in U(n,C) has determinant of absolute value 1. As
above, the det map restricts to a map

det : U(n,C)→ S1

and SU(n,C) = det−1(1). Clearly, det is of full rank as before. The constant rank theorem
then implies that

dimSU(n,C) = n2 − 1

Thus SU(n,C) is a (real) Lie group of dimension n2. Note that U(n,C) and SU(n,C) fit
into a short exact sequence:

1→ SU(n,C)→ U(n,C) det−−→ S1 → 1

Remark 1.25. U(n,C) and SU(n,C) are not complex Lie groups! We verify this later.

Remark 1.26. Let U(n,H) be the group of n by n quarternionic orthogonal matrices that
preserve the quarternionic inner product:

U(n,H) = {A ∈ GL(n,H) | AHA = In}
Here AH is the quarterionic conjugate transpose. It can checked that U(n,H) is a (real) Lie
group of dimension n(2n+ 1). The argument is the same as in Example 1.23. Indeed, the
analog of the differential of the map in Example 1.23 has image the set of all matrices of
the form A = AH . Therefore,

dimU(n,H) = 4n2 − n(2n− 1) = n(2n+ 1)

This is because the vector of all matrices of the form A = AH has dimension n + 4n(n −
1)/2 = n(2n− 1).

1.3.3. Symplectic Groups. Consider the skew-symmetric bilinear form ω on R2n defined as
follows:

ω(x, y) =

n∑
j=1

(xn+jyj − xjyn+j) = xT
(
0n −In
In 0n

)
y := xTJy = ⟨x, Jy⟩Rn

The set of all 2n×2n real matrices A which preserve ω is the real symplectic group Sp(n,R)
Sp(n,R) = {A ∈ GL(2n,R) | ω(Ax,Ay) = ω(x, y)}

It is easily shown that

Sp(n,R) = {A ∈ GL(2n,R) | ATJA = J}
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Define

Φ : GL(2n,R)→ R(2n)2

A 7→ ATJA

Clearly, Sp(n,R) = Φ−1(J). Let G = GL(2n,R) ct on GL(2n,R) by matrix multiplication.
Moreover, let · denote the corresponding action in Example 1.21.· is equivariant because

Φ(AB) = (AB)TJ(AB) = BTATJAB = BTΦ(A)B = Φ(A) ·B
Appealing to Proposition 1.15, Sp(n,R) is an embedded submanifold of GL(n,R). Since
Sp(n,R) is clearly a group, we have that Sp(n,R) is a Lie group. Similarly, we can define
the complex symplectic group:

Sp(n,C) = {A ∈ GL(2n,C) | ω(Ax,Ay) = ω(x, y)}
= {A ∈ GL(2n,C) | ATJA = J}

As above, Sp(n,C) is a Lie group. We will derive the dimension of these Lie groups by
computing the dimension of the associated Lie algebras in the next section.

1.3.4. Indefinite Orthogonal Group. Let p, q ∈ N such that p+q = n. Consider the indefinite
bilinear form βp,q on Rn defined as follows:

βp,q(x, y) =

p∑
j=1

xjyj −
q∑

j=1

xp+jyp+j = xT
(
Ip 0
0 −Iq

)
y := xT gp,qy = ⟨x, gp,qy⟩Rn

The set of all n × n real matrices A which preserve βp,q is the indefinite orthogonal group
O(p, q) ⊆ GL(n,R)

O(p, q) = {A ∈ GL(n,R) | βp,q(Ax,Ay) = βp,q(x, y)}
It is easily shown that

O(p, q) = {A ∈ GL(n,R) | AT gp,qA = gp,q}
Clearly, O(p, q) is a group. An argument as in Section 1.3.3 shows that O(p, q) is a Lie
group. Of particular interest in physics is the Lorentz group O(3, 1). It is easily verified
that if A ∈ O(p, q), then detA = ±1. Hence, we can also define

SO(p, q) = O(p, q) ∩ SL(n,R)
It is also a Lie group. We will derive the dimension of these Lie groups by computing the
dimension of the associated Lie algebras in the next section.

1.4. Topological Properties. We discuss topological properties of the classical Lie groups.

1.4.1. Compactness. We determine which classical Lie groups discussed above are compact.

Proposition 1.27. The following statements are true:

(1) GL(n,R) and GL(n,C) are not compact for n ≥ 1.
(2) SL(n,R) and SL(n,C) are not compact for n ≥ 2.
(3) O(n,R) and U(n,C) are compact for n ≥ 1.
(4) SO(n,R) and SU(n,C) are compact for n ≥ 1.
(5) O(p, q) is not compact for all n ≥ 1 such that p+ q = n and q ̸= 0.

Proof. The proof is given below:
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(1) Clearly, GL(n,R) is not compact for n ≥ 1. Otherwise, the image of GL(n,R) under
the determinant map would be a compact set. However, det(GL(n,R)) = R× which
is not compact. Similarly, GL(n,C) is not compact for n ≥ 1.

(2) If n = 1, we have that SL(n,R) ∼= {1} which is compact. Similarly, SL(n,C) ∼= S1
which is compact. Let n ≥ 2. Consider the set,

A = {Am ∈ GL(n,R) | m ∈ R×}, Am =


m 0 0 · · · 0
0 1/m 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


We have9 ∥Am∥∞ = m for m ≥ 1 and ∥Am∥∞ → ∞ as m → ∞. Hence, SL(n,R)
is not a bounded set for n ≥ 2. Therefore, SL(n,R) is not compact for n ≥ 2.
Similarly, SL(n,C) is not compact for n ≥ 2.

(3) O(n,R) is clearly a closed subset. Moreover, if A ∈ O(n,R), then |Ajk| ≤ 1 for each
j, k = 1, · · ·n since the columns of A ∈ G are required to be unit vectors. Hence,
∥A∥∞ ≤ 1 for each A ∈ O(n,R). Hence, O(n,R) is compact for n ≥ 1. Similarly,
U(n,C) is compact for n ≥ 1.

(4) SO(n,R) is a closed subset of O(n,R) for n ≥ 1. Hence, SO(n,R) is compact for
n ≥ 1. Similarly, SU(n,C) is compact for n ≥ 1.

(5) WLOG, let n = 2 and p, q = 1. A similar argument applies in the general case.
Note that (

1 x
0 y

)
∈ O(1, 1) ⇐⇒ x2 − y2 = −1

The set of solutions of x2 − y2 = −1 is an unbounded set. This is sufficient to
conclude that O(1, 1) is not compact. An entirely similar argument shows that
O(p, q) is not compact as long as q ̸= 0.

This completes the proof. □

Remark 1.28. Let G be a Lie group. The previous proposition shows that G is not nec-
essarily a compact group. However, G is always a locally compact group. This is a general
fact about smooth manifolds.

1.4.2. Connectedness. We determine which classical Lie groups discussed above are con-
nectedness.

Remark 1.29. Recall that a smooth manifold is connected if and only if it is path-connected.
We shall make use of this characterization of connectedness below.

Proposition 1.30. The following statements are true:

(1) GL(n,C) is connected for n ≥ 1. However, GL(n,R) is not connected for n ≥ 1.
(2) SO(n,R) is connected for n ≥ 1. However, O(n,R) is not connected for n ≥ 1 and

it has two connected components.
(3) GL±(n,R) is connected for n ≥ 1. Hence, GL(n,R) has two connected components.
(4) SL(n,R) and SL(n,C) are connected for n ≥ 1.
(5) U(n,C) and SU(n,C) are connected for n ≥ 1.

9Here ∥ · ∥∞ is the infinity norm. Recall that all norms on finite-dimensional vector spaces are equivalent.
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(6) SO(p, q) is not connected for all n ≥ 1 such that p + q = n and q ̸= 0. In fact,
SO(p, q) has two connected components.

(7) O(p, q) is not connected for all n ≥ 1 such that p+ q = n and q ̸= 0. In fact, O(p, q)
has four connected components.

Proof. The proof is given below:

(1) GL(n,R) is not connected for n ≥ 1. Otherwise, the image of GL(n,R) under the
determinant map would be a connected set. However, det(GL(n,R)) = R× which is
not connected. On the other hand, GL(n,C) is connected. To see this fact, recall

that every matrix in Cn2
is similar to an upper triangular matrix. That is, we can

express any A ∈Mn(C) in the form

A = CBC−1,

where

B =

λ1 · · · ∗
...

. . .
...

0 · · · λn

 .

If A ∈ GL(n,C) in particular, each λi must be nonzero. Let B(t) be obtained by
multiplying the part of B above the diagonal by (1 − t), for 0 ≤ t ≤ 1, and let
A(t) = CB(t)C−1. Then A(t) is a continuous path lying in GL(n,C) which starts
at A and ends at CDC−1, where D is the diagonal matrix with diagonal entries
λ1, . . . , λn. We can now define paths λj(t) connecting λj to 1 in C as t goes from 1
to 2, and we can define A(t) on the interval 1 ≤ t ≤ 2 by

A(t) = C


λ1(t) 0 · · · 0
0 λ2(t) · · · 0
...

...
. . .

...
0 0 · · · λn(t)

C−1.

Then A(t), for 0 ≤ t ≤ 2, is a continuous path in GL(n,C) connecting A to I. Hence,
GL(n,C) is connected for n ≥ 1.

(2) O(n,R) is not connected for n ≥ 1 since +In and −In cannot be connected by a
continuous path by the continuity of the determinant function. Moreover, we have

O(n,R) = O+(n,R)
∐

O−(n,R) := SO(n,R)
∐

SO−(n,R)

We show that SO(n,R) is connected. An entirely similar argument shows that
SO−(n,R). It follows that O(n,R) has two connected components. We show every
A ∈ SO(n,R) can be connected to In. First, we argue that given any two unit
vectors v, w ∈ Rn, there is a path γ(t) ∈ SO(n,R) such that:

γ(0)v = v, γ(1)v = w

That is, any two unit vectors in Rn can be continuously rotated. Choose a u ∈ Rn

as follows:
(a) If v and w are linearly independent, apply the Gram-Schmidt algorithm and

choose u such that u ⊥ v and u ∈ span{v, w}.
(b) If v and w are linearly dependent (w = −v), then take u to be any unit vector

in v⊥.
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Let V = span{v, u}. One can then consider a one-parameter family of rotations,
Rϕ ∈ SO(2,R) that act on V . Since w ∈ V , there is an angle ϕ0 such that (in the
above constructed basis):

w =

[
Rϕ0 0
0 In−2

]
v.

Define the path

γ(t) :=

[
Rtϕ0 0
0 In−2

]
The image of γ is clearly contained in SO(n,R) and is such that

γ(0) = R(0)v = v

γ(1) = R(1)v = w

Any A ∈ SO(n,R) is represented by an orthonormal basis (a1, . . . , an) over vectors
in Rn. Apply the above procedure recursively: find a path γ1(t) ∈ SO(n,R) such
that

γ1(t)a1 = e1

Then choose a path γ2 taking γ1(1)a2 to e2. Note that any such γ2 leaves e1 invariant.
Indeed e1 ⊥ e2, γ1(1)a2 10. So, e1 is in the complement of the subspace in which the
rotation happens and is thus left invariant. Proceed recursively now and consider
the paths γ1(t), · · · , γn(t). Consider

γ = γn ◦ · · · ◦ γ1
Based on the above remarks, it is clear that

γ(0)ai = ai

γ(1)ai = ei

for i = 1, · · · , n. Hence, SO(n,R) is path-connected and hence connected since
SO(n,R) is a smooth manifold.

(3) It suffices to show that GL+(n,R) is connected since GL−(n,R) is diffeomorphic to
GL+(n,R). We use the singular value decomposition. Let

A = UΣV

be the singular value decomposition of A. Here U and V are unitary matrices
and Σ is a diagonal matrix consisting of the singular values of A which are all non-
negative11. Since A has positive determinant, the singular values of A are all positive
real numbers. Since detA > 0, detU = detV . Therefore, both U and V are in the
same component of O(n,R). WLOG, assume that both matrices are contained in
SO(n,R). Since SO(n,R) is connected, there exist paths γ1(t) and γ2(t) in SO(n,R)
such that

γ1(0) = U γ1(1) = In

γ1(0) = V γ1(1) = In

Consider the path
γ(t) = γ1(t)Σγ2(t)

10Applying γ1 to an orthonormal basis results in an orthonormal basis
11This is crucial in this proof.
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Clearly, γ(t) is in SO(n,R) such that

γ1(0) = A γ1(1) = Σ

Since Γ has positive entries, there exists a smooth curve β such that β(s) ∈ SO(n,R)
and that

β1(0) = Σ β(1) = In

Simply consider β ◦γ. This shows that GL+(n,R) is connected. This clearly implies
that GL(n,R) has two connected components.

(4) Consider the continuous surjective map

Ψ : GL+(n,R) 7→ SL(n,R)

A 7→ A

det(A)1/n

Since Ψ is surjective and GL+(n,R) is connected for n ≥ 1, SL(n,R) is connected
for n ≥ 1. Moreover, SL(n,C) is connected for n ≥ 1. The proof is almost the same
as for GL(n,C) in (a), except by choosing λn(t), in the second part of the preceding

proof, to be equal to (λ1(t) · · ·λn−1(t))
−1, we can ensure that the path is contained

in SL(n,C).
(5) Every A ∈ U(n,C) unitary matrix has an orthonormal basis of eigenvectors, with

eigenvalues having absolute value 1. Thus, each U ∈ U(n,C) can be written as U =
U1DU

−1
1 , where U1 ∈ U(n,C) and D is diagonal with diagonal entries eiθ1 , . . . , eiθn .

We may then define

U(t) = U1


ei(1−t)θ1 0 · · · 0

0 ei(1−t)θ2 · · · 0
...

...
. . .

...

0 0 · · · ei(1−t)θn

U−1
1 , 0 ≤ t ≤ 1.

It is easy to see that U(t) ∈ U(n,C) for all t, and U(t) connects U to In. Hence,
U(n,C) is connected for n ≥ 1. Similarly, SU(n,C) is connected for n ≥ 1.

(6)
(7)

This completes the proof. □

Remark 1.31. The previous proposition shows that a Lie group is not necessarily connected.
However, a Lie group is always locally path-connected. This is a general fact about smooth
manifolds.

We end this section with some properties of the connected component of a Lie group.

Proposition 1.32. Let G be a Lie group. Let G0 be the connected component of the identity.

(1) G0 is open.
(2) G0 is a normal subgroup of G.
(3) G/G0 is a discrete group.
(4) If G is connected, then G is generated by every neighborhood of the the identity.
(5) If G is connected, a discrete normal subgroup, Γ, of G must be contained in the

center of G.

Proof. The proof is given below:
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(1) This is a general fact about topological manifolds.
(2) For all g ∈ G0, we have that gG0 is connected, open, and closed since G0 has these

properties and Lg is a diffeomorphism. Since g ∈ gG0, we have that gG0 = G0.

Similarly, G−1
0 is connected, open, and closed containing e, so that G−1

0 = G0. It
follows that G0 is a subgroup of G. Similarly, for all g ∈ G, we have that gG0g

−1 is
connected, open, and closed. Since e ∈ gG0g

−1, we have that gG0g
−1 = G, i.e., G0

is normal.
(3) Using the fact that Lg is a diffeomorphism for each g ∈ G, (2) implies that all

connected components of G are cl-open. Since each connected component is cl-
open, G/G0 is discrete.

(4) Let U be an open neighborhood of the identity. For each n ∈ N, we denote by Un

the set of elements of the form u1 · · ·un, where each ui ∈ U . Let W :=
⋃

n∈N Un.

Each Un is an open set12. Hence, W is an open set. We now see check that W is a
closed set. Let g ∈W , the closure of W . Since gU−1 is an open neighborhood of g,
it must intersect W . Thus, let h ∈W ∩ gU−1. We have the following:
• Since h ∈ gU−1, then h = gu−1 for some element u ∈ U .
• Since h ∈W , then h ∈ Un for some n ∈ N, i.e., h = u1 · · ·un with each ui ∈ U .

We then have g = u1 · · ·unu, i.e., g ∈ Un+1 ⊆ W . Hence, W is closed. Since G is
connected, we must have W = G. This means that G is generated by U .

(5) Let x ∈ Γ. Consider the map

C ′
x : G→ G

g 7→ gxg−1

Since Γ is a normal subgroup, we have that C ′
x(G) ⊆ Γ. Since G is connected, C ′

x(G)
is connected. Since Γ is discrete, C ′

x(G) is a singleton. Since x ∈ C ′
x(G), we have

that C ′
x(G) = {x}. This shows that x is in the center of G. Hence, Γ is contained

in the center of G.

This completes the proof. □

1.5. Low Dimensional Examples. We discuss some low dimensional examples.

Example 1.33. (Sp(1,R)) Note that

A =

(
a b
c d

)
∈ Sp(1,R) ⇐⇒

(
d c
b a

)(
0 −1
1 0

)(
a b
c d

)
=

(
0 −1
1 0

)
⇐⇒

(
0 −(ad− bc)

ad− bc 0

)
=

(
0 −1
1 0

)
.

Therefore, we have

Sp(1,R) = SL(2,R).

Example 1.34. Let A ∈ SO(2,R). Since the columns of A are orthonormal, it readily
follows that every matrix in SO(2,R) is of the form:

Aθ =

(
cos θ − sin θ
sin θ cos θ

)
12This hold by induction.
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Define a map

F : S1 ∼= U(1,C)→ SO(2,R)

eiθ 7→
(
cos θ − sin θ
sin θ cos θ

)
F is clearly bijective. It can be easily checked that F is also smooth. Indeed, we can use
stereographic coordinates on S1 and think of F as a map into R4, since SO(2,R) is an
embedded submanifold of R4. We can then restrict the codomain accordingly. Using the
usual angle sum identities, we can check that F is a homomorphism. Hence, F is a bijective
Lie group homomorphism. Hence, F is a Lie group isomorphism13. Hence,

SO(2,R) ∼= S1

Example 1.35. Let’s now discuss in SU(2,C). Let A ∈ SU(2,C) and write A as

A =

(
α γ
β δ

)
Since A−1 = A∗ and det(A) = 1, we have

1

det(A)

(
δ −γ
−β α

)
=

(
α∗ β∗

γ∗ δ∗

)
⇒ A =

(
α −β∗
β α∗

)
Since the columns of A are orthonormal, we must also have that |α|2 + |β|2 = 1. Hence,
any A ∈ SU(2,C) is of the form

Aα,β =

(
α −β
β α

)
, |α|2 + |β|2 = 1

This argument and Example 1.16 readily show that

SU(2,C) ∼= Hu
∼= S3.

Example 1.35 implies that every plane rotation Aθ by an angle θ is represented by mul-
tiplication by the complex number eiθ ∈ U(1,C) ∼= S1 in the sense that for all z, z′ ∈ C,

z′ = ρθ(z) ⇐⇒ z′ = eiθz.

In some sense, the quaternions generalize the complex numbers in such a way that rotations
of R3 are represented by multiplication by quaternions of unit length. We will explore this
link now.

Example 1.36. (SO(3,R) and SU(2,C)) Consider Hu. We can identify R3 ⊆ Hu with
unit quarternions such that a = 0. Using our matrix representation, we can equivalently
consider the matrices,

Ax1,x2,x3 =

(
ix1 x2 + ix3

−x2 + ix3 −ix1

)
In what follows, instead identify (x1, x2, x3) ∈ R3 with

Ax1,x2,x3 =

(
x1 x2 + ix3

x2 − ix3 −x1

)
13Here we use the fact that a bijective Lie group homomorphism is a Lie group isomorphism.
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We have simply factored i and replaced x2 by −x3. Such matrices clearly form a subspace.
Call it V . Note that V can be identified with 2× 2 complex matrices which are self-adjoint
and have trace zero. If we identify V with R3, the inner product on R3 can be computed as

⟨(x1, x2, x3), (x′1, x′2, x′3)⟩ =
1

2
Tr
(
Ax1,x2,x3Ax′

1,x
′
2,x

′
3

)
.

This is a straightforward computation. For each U ∈ SU(2,C), define a linear map ΦU :
V → V by

ΦU (X) = UXU−1.

This is well-defined since Tr(ΦU (X)) = Tr(X) = 0 and

(UXU−1)† = (U−1)†X†U † = UXU−1,

showing that UXU−1 is again in V . Furthermore,

1

2
Tr
(
(UX1U

−1)(UX2U
−1)
)
=

1

2
Tr
(
UX1X2U

−1
)
=

1

2
Tr(X1X2),

Thus, each ΦU preserves the inner product on V ∼= R3. It follows that the we have a map

Φ : SU(2,C)→ SO(3,R)

A priori, Φ is only a map into O(3,R). Since SU(2,C) is connected Φ must actually lie in
SO(3,R) for all U ∈ SU(2,C). It is easy to see that Φ is a group homomorphism.

Here is an example computation. Suppose, for example, that U is the matrix

U =

(
eiθ/2 0

0 e−iθ/2

)
.

We obtain

U

(
x1 x2 + ix3

x2 − ix3 −x1

)
U−1 =

(
x′1 x′2 + ix′3

x′2 − ix′3 x′1

)
where x′1 = x1 and

x′2 + ix′3 = eiθ(x2 + ix3) = (x2 cos θ − x3 sin θ) + i(x2 sin θ + x3 cos θ).

In this case, ΦU is a rotation by angle θ in the (x2, x3)-plane.

Proposition 1.37. The map kerΦ is a 2-to-1 covering map.

Proof. We just have to check that kerΦ ∼= Z2 and that Φ is surjective. □

2. Lie Algebra of a Lie Group

2.1. Linearizing a Lie Group. A Lie group can be quite difficult to understand. For-
tunately, since a Lie group is a smooth manifold, we can consider its linearized version by
looking at its tangent space at the identity, TeG, which should be thought of as a linearized
version of G.

The multiplication and inversion maps are in general non-linear, smooth maps. However,
we can take the differential of these maps which takes elements from Te(G × G) (or TeG)
to TeG. Hence, the differential of the multiplication and inversion maps should be thought
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of as linear approximations to to both multiplication and inverse maps on a Lie group. We
compute these differentials. The differential of m at e is

dm(e,e) : TeG⊕ TeG→ TeG

(X,Y ) 7→ X + Y

where we have identified Te(G×G) ∼= TeG⊕ TeG. Indeed, we have

dm(e,e)(X,Y ) = dm(e,e)(X, 0) + dm(e,e)(0, Y ) = dm1
e(X) + dm2

e(Y )

where m1 : G → G is defined by x 7→ m(x, e) and m2 : G → G defined by y 7→ m(e, y).
Since m1 = m2 = IdG, so

dm(e,e)(X,Y ) = X + Y

The differential of i at e

die : TeG→ TeG

X 7→ −X

Consider the constant map 1G : G→ G. d(1G)e is clearly the zero map. 1G can be thought
of being given by the following composition:

g 7→ (g, i(g)) 7→ m(g, i(g)) = e

Therefore, we have

0 = d(1G)e(X) = (X, die(X)) = X + die(X) =⇒ die(X) = −X

This shows that ‘near the identity’, multiplication behaves as addition and inversion behaves
as subtraction.

Remark 2.1. It turns out that the smoothness of the inversion map in a Lie group follows
form the smoothness of the multiplication map. Let ∆ = {(g, g−1) ∈ G×G}. Then ∆ is an
embedded submanifold of G×G14. Consider the diagram below:

G

G ∆ G×G

G

d ι

π1

π2

Here d is the map g 7→ (g, g−1), ι is the canonical embedding ∆ in G × G and π1 and
π2 are projection maps. Clearly, ι, π1 and π2 are smooth maps. We claim d is smooth as
well. Consider π1 ◦ ι : ∆ → G × G → G, which maps (g, g−1) 7→ g. This is clearly a
homeomorphism, and by the inverse function theorem, a diffeomorphism as well. But d is
its inverse, and is thus smooth. But then the inversion map is just,

π2 ◦ ι ◦ d, g 7→ g−1,

which is the composition of smooth maps and is thus smooth.

14Consider the map m : G × G → G given by multiplication. This is a smooth map by assumption and
∆ = m−1(e). Since m is a Lie group homomorphism and m has constant rank, it suffices to show that for
(e, e) ∈ ∆, dm|(e,e) : T(e,e)(G×G) → Te(G) is surjective. But this is actually clear from the remark above.
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This change of perspective has resulted in some loss of information about the Lie group.
Indeed, TpM can be computed for each p ∈ M where M is a smooth manifold. If M = G
is a Lie group, what is special about TeG? Can TeG be interpreted in a different manner
allowing us to further glean into the structure of G. For instance, G will in general be a
non-commutative group. Therefore, the multiplication and inversion maps will in general
be non-commutative. Is it possible to endow TeG an additional structure that captures this
non-commutativity? We explore this detail next.

2.2. Left-Invariant Vector Fields.

Definition 2.2. Let G be a Lie group. A vector field X on G is said to be left-invariant
if it is invariant under left translations. That is,

d(Lg)g0 ·Xg0 = Xgg0 ,

for all g, g0 ∈ G. We denote the set of left-invariant vector fields as XL(G).

If X and Y are left-invariant vector fields, then we have

(dLg)g0(aXg0bYg0) = a(dLg)g0(Xg0) + b(dLg)g0(Yg0) = Xgg0 + Ygg0

for all g ∈ G and a, b ∈ R, we see that XL(G) is a linear subspace of X(G), the vector space
of all vector fields on G. We now show that XL(G) is isomorphic to TeG as vector spaces.

Proposition 2.3. Let G be a Lie group and let XL(G) denote the vector space of left-
invariant vector fields on G. Then TeG ∼= XL(G) as vector spaces via the map

ε : XL(G)→ TeG

X 7→ Xe

Proof. Clearly, ε is linear over R. Moreover, ε is injective. Indeed, if ε(X) = Xe = 0 for
some X ∈ XL(G), then left-invariance of X implies that

Xg = d(Lg)e(Xe) = d(Lg)e(0) = 0

for every g ∈ G. So X = 0. Let v ∈ TeG be arbitrary. We can define a (rough) vector field
vL on G by

vL|g = d(Lg)e(v).

Clearly, if ε is surjective, then we must have that ε(vL) = v. Thus it suffices to show that
vL is a smooth, left-invariant vector field. We show vL is a left-invariant vector field.

d(Lh)g(v
L|g) = d(Lh)h · d(Lg)e(v)

= d(Lh ◦ Lg)e(v)

= d(Lhg)e(v) = vLhg

Hence, vL is a left-invariant vector field, vL ∈ XL(G). The proof of smoothness of vL is
skipped. □

The proof of Proposition 2.3 once again relies on an astute application of the comment
made in Remark 1.7. We can go a step further. We now can use the multiplication operator
to see how integral curves transform under the action of the diffeomorphism generated by
left multiplication.

Lemma 2.4. Let G be a Lie group.
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(1) Every left-invariant vector field on G is complete, i.e. its corresponding integral
curves are defined for all t ∈ R.

(2) If γ is an integral curve of some left-invariant vector field, then

γ(t+ s) = γ(t)γ(s)

for each s, t ∈ R.
(3) Conversely, if γ : R→ G is a smooth curve such that

γ(t+ s) = γ(t)γ(s)

for s, t ∈ R, then γ is the integral curve of some left-invariant vector field.

Proof. The proof is given below:

(1) Let X ∈ XL(G). There exists a maximal integral curve γe : (−ε, ε) → G such that
0 ∈ (a, b), γe(0) = e and γ′e(t) = Xγe(t) and ε > 015. Since

d

dt

∣∣∣∣
t=0

Lg(γ(t)) = d(Lg)e(Xγ(0)) = Xg,

we have that γg := Lg ◦γe is an integral curve of X starting at g ∈ G for each g ∈ G.
Assume ε <∞ and let s = γ(ε/2). Define a curve ϕ : (−ε, 3ε/2)→M by

ϕ(t) =

{
γe(t), for − ε < t < ε,

γg(t− ε/2), for − ε/2 < t < 3ε/2.

These two definitions agree on the overlap. Hence, ϕ(t) is an integral curve starting
at e. Since 3ε/2 > ε, this is a contradiction. Hence X is complete.

(2) Let s ∈ R. The map t 7→ γ(s+ t) is an integral curve16 with initial point g = γ(s).
However by (1), t 7→ Lg ◦ γ(t) is also an integral curve with initial point g = γ(s).
By uniqueness,

γ(s+ t) = Lg ◦ γ(t) = γ(s)γ(t)

(3) Let Xe = dγ(∂t|0) and let X denote the corresponding left-invariant field. The
assumption,

γ(t+ s) = γ(t)γ(s)

for s, t ∈ R implies that
γ ◦ Lt = Lγ(t) ◦ γ

for each t ∈ R. Therefore,
dγ ◦ dLs = dLγ(s) ◦ dγ

For any t0 ∈ R, we have

γ′(t0) = dγ

(
d

dt

∣∣∣∣
t0

)
= dγ

(
dLt0(dγ

(
d

dt

∣∣∣∣
0

)
)

)
= dLγ(t0)

(
dγ

(
d

dt

∣∣∣∣
0

))
= dLγ(t0)(Xe) = Xγ(t0)

so γ is an integral curve of X.

This completes the proof. □

15WLOG, we have assumed the domain of the maximal integral curve is symmetric.
16This follows from the translation lemma. This is covered in [1, Chapter 9].
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Given X ∈ XL(G), the integral curve γ : R → G determined by X such that γ(t + s) =
γ(t)γ(s) for each t, s ∈ R is called the one-parameter subgroup generated of G by X. Thus
there are one-to-one correspondences

{one-parameter subgroups of G} ←→ XL(G)←→ TeG.

Remark 2.5. Note that the correspondence set above is only a bijective correspondence.
We only have a vector space isomorphism between XL(G) and TeG.

2.3. Lie Algebra of a Lie Group. We are now in a position to develop a measure of the
‘non-commutativity’ of a Lie group. LetX,Y ∈ XL(G), and let ϕX , ϕY be the corresponding
one-parameter subgroups (and hence maximal integral curves) of X and Y respectively such
that

ϕX(0) = e = ϕY (0) (ϕX)
′
(0) = Xe, (ϕY )

′
(0) = Ye

for e ∈ G. A heuristic argument suggests that for XY − Y X might be able to measure the
non-commutativity of multiplication and inversion maps. If X and Y are (left-invariant)
smooth vector fields on G, then XY might not be a vector field. However, a remarkable
fact is that the difference

[X,Y ] := XY − Y X

is a vector field. We verify this claim. Recalling that vector fields are in one-to-one cor-
respondence with derivations of C∞(M), it suffices to check that [X,Y ] is a derivation.
Linearity is clear. We verify the Leibniz rule. If f, g ∈ C∞(M), then we have,

[X,Y ](fg) = X(Y (fg))− Y (X(fg))

= X(fY (g) + Y (f)g)− Y (fX(g) +X(f)g)

= f(XY g) + (Xf)(Y g) + (XY f)g + (Y f)(Xg)

− (Y f)(Xg)− f(Y Xg)− (Y Xf)g − (Xf)(Y g)

= f(XY g − Y Xg) + (XY f − Y Xf)g
= f([X,Y ]g) + ([X,Y ]f)g.

In fact, if X,Y are left-invariant vector fields, then [X,Y ] is a left-invariant vector field.
This can be easily checked. It is useful to write [X,Y ] in terms of its components in some
chart. Let (U,φ) be a co-ordinate chart on G. We can write

X = Xi∂i and Y = Y j∂j

Note that

[∂i, ∂j ]f = ∂i∂jf − ∂j∂if =
∂2

∂xi∂xj
(
f ◦ φ−1

)
− ∂2

∂xj∂xi
(
f ◦ φ−1

)
= 0.

Therefore, we have

[X,Y ] = Xi∂iY
j∂j − Y j∂jX

i∂i =

n∑
i,j=1

(
Xi∂iY

j − Y i∂iX
j
)
∂j .

In any case, we can define the notion of a Lie bracket which is a ‘measure this non-
commutativity’ of multiplication in a Lie group.
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Definition 2.6. Let G be a Lie group. The Lie bracket of G is map bilinear map given
by

[·, ·] : XL(G)× XL(G)→ XL(G),

(X,Y ) 7→ XY − Y X.

We can now make the above claim precise by showing that the Lie bracket measures the
extent to which the derivatives in directions X and Y do not commute.

Proposition 2.7. Let G be a Lie group. Let X,Y ∈ XL(G), and let ϕX be the flow of X.
Then

[X,Y ]e =
d

dt

(
d(ϕX−t)ϕX(t)YϕX(t)

)∣∣∣∣
t=0

= lim
t→0

d(ϕX−t)ϕX(t)(YϕX(t))− Ye
t

Here ϕX−t denotes the map ϕX−t : G→ G generated by flowing along integral curve generated
by −X for t units of time.

Proof. Choose any chart ϕ for G about e. In this chart, we can write uniquely X = Xj∂j
and Y = Y k∂k, where the coefficients Xj and Y k are smooth functions on a neighborhood
of e. Working in co-ordinates, we have,

d

dt

(
d(ϕX−t)ϕX(t)YϕX(t)

)j∣∣∣∣
t=0

= (∂t∂kϕ
X,j
−t )

∣∣∣
t=0

Y k
e + (∂kϕ

X,j
−t )∂tY

k
ϕX(t)

∣∣∣
t=0

= (∂k∂tϕ
X,j
−t )

∣∣∣
t=0

Y k
e + δjkX

i
e∂iY

k
e

= −Y k
e ∂kX

j
e +Xi

e∂iY
j
e

= Xi
e∂iY

j
e − Y i

e ∂iX
j
e

= [X,Y ]je.

This completes the proof. □

Definition 2.8. Let G be a Lie group. The Lie algebra of G of G, denoted as g, is TeG
endowed with the Lie bracket as defined in Definition 2.6.

Remark 2.9. Note that dim g = dimG.

Example 2.10. Let G = GL(n,K). Then G is an open subset of Kn2
. Hence, the corre-

sponding Lie algebra is gl(n,K) =M(n,K).

2.4. Abstract Lie Algebras. Let X,Y, Z ∈ XL(G) and a, b ∈ R. We note that the Lie
bracket satisfies the following properties:

(1) [X,Y ] = −[Y,X]
(2) [aX + bY, Z] = a[X,Z] + b[Y,Z]
(3) (Jacobi Identity) [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0

The first two properties are immediate. The Jacobi identity can be verified directly. First
note that we have,

[[X,Y ], Z]f = [X,Y ]Zf − Z[X,Y ]f = XY Zf − Y XZf − ZXY f + ZY Xf
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As a result, we have:

[[X,Y ], Z]f + [[Y, Z], X]f + [[Z,X], Y ]f = XY Zf − Y XZf − ZXY f + ZY Xf

+ Y ZXf − ZY Xf −XY Zf +XZY f

+ ZXY f −XZY f − Y ZXf + Y XZf

= 0.

These observations motivate the following definition of a (finite-dimensional) abstract
real Lie algebra.

Definition 2.11. A (finite-dimensional) Lie algebra is a R-vector space, g, together with
a map [·, ·] : g× g→ g called the Lie bracket with the following properties:

(1) [X,Y ] is R-bilinear,
(2) [X,Y ] = −[Y,X] for all X,Y ∈ g, and
(3) (Jacobi Identity) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ g.

A Lie algebra homomorphism is a linear map T : g→ h that preserves the Lie bracket.

Remark 2.12. If g is a finite-dimensional Lie algebra and T1, . . . , Tn is a vector space basis
for g, then we can write

[Ta, Tb] =

n∑
c=1

f cabTc,

where the coefficients f cab ∈ R are called the structure constants for the given basis {Ta}.
Because of bilinearity, the structure constants determine all commutators between elements
of V . The structure constants satisfy,

f cab = −f cba,

fdabf
e
dc + fdbcf

e
da + fdcaf

e
db = 0.

Here we have used the Einstein summation convention and sum over d. Conversely, every
set of n3 numbers f cab ∈ R satisfying these two conditions defines a Lie algebra structure on
V = Kn.

Example 2.13. The following is a list of examples of Lie algebras.

(1) Let g = GL(n,K) Then g is a Lie algebra with bracket operation given by

[X,Y ] = XY − Y X

The bilinearity and skew symmetry of the bracket are evident. To verify the Jacobi
identity, note that each double bracket generates four terms, for a total of 12 terms.
It can be verified that the product of X, Y , and Z in each of the six possible
orderings occurs twice, once with a plus sign and once with a minus sign.

(2) Let g = R3 and let [·, ·] : R3 × R3 → R3 be given by

[x, y] = x× y

where x× y is the cross product (or vector product). Then g is a Lie algebra. Once
again, the bilinearity and skew symmetry of the bracket are evident. Jacobi identity
can be verified using a tedious computation.
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Let LieAlg denote the category of finite-dimensional real Lie algebras. We note that we
have defined a functor Lie from the category of Lie algebras, associating to each Lie group
its Lie algebra:

Lie : LieGrp→ LieAlg

This is essentially because if F : G→ H is a Lie group homomorphism and X,Y ∈ g, then

dFe[X,Y ]g = [dFe(X), dFe(Y )]h.

Proposition 2.14. Let G,H be Lie groups. If F : G → H is a Lie group homomorphism
and X,Y ∈ g, then

dFeG [X,Y ]g = [dFeG(X), dFeG(Y )]h.

Proof. dFeG is clearly linear. We show that dFeG preserves the Lie bracket. Let X,Y be
left-invariant vector fields on G. For any f ∈ C∞(H), we have

dFeG([X,Y ]eG)f = [X,Y ]eG(f ◦ F ) = XeG(Y (f ◦ F ))− YeG(X(f ◦ F ))

Similarly, we have

[dF (X), dF (Y )]eHf = dFeG(XeG)(dF (Y )f)− dFeG(YeG)(dF (X)f)

= XeG(dF (Y )f ◦ F )− YeG(dF (X)f ◦ F ).

So it is enough to check that, as functions on G, Y (f ◦ F ) = dF (Y )f ◦ F . In fact, for any
g ∈ G, we have

Y (f ◦ F )(a) = Yg(f ◦ F ) = dLg(YeG)(f ◦ F ) = YeG(f ◦ F ◦ Lg) = YeG(f ◦ LF (g) ◦ F ),

Similarly, we have

dF (Y )f ◦ F (g) = dF (Y )(f)(F (g)) = dLF (g) ◦ dFeG(YeG)(f) = YeG(f ◦ LF (g) ◦ F ).

This completes the proof. □

Example 2.15. Let G = Rn. For any a ∈ Rn, the left translation La is just the usual
translation map on Rn. So dLa is the identity map, as long as we identify TaRn ∼= Rn. It
follows that any left-invariant vector field is, in fact, a constant vector field, i.e.,

Xv = v1
∂

∂x1
+ · · ·+ vn

∂

∂xn
,

for v = (v1, · · · , vn) ∈ T0Rn. Since ∂i commutes with ∂j for any pair (i, j), the Lie bracket
of any two left-invariant vector fields vanishes. Hence, In other words, the Lie algebra of
G = Rn is g = Rn with a vanishing Lie bracket.

Note that gl(n,K) can be thought of as a Lie algebra in two different ways. First, it is a
Lie algebra identified as the tangent space to GL(n,K), with the Lie bracket given by the
Lie bracket on vector fields. Second, it can be identified as an abstract Lie algebra with the
Lie bracket given by the commutator of matrices. A natural question arises: what is the
relationship between these two Lie algebra structures? In fact, these two notions coincide in
the sense that there is a Lie algebra isomorphism between these two Lie algebra structures
on gl(n,K). We prove the result below for K = R.

Proposition 2.16. The natural map TIn GL(n,R)→ gl(n,R) is a Lie algebra isomorphism.
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Proof. The natural isomorphism takes the form

Ai
j

∂

∂Xi
j

∣∣∣∣
In

7→ Ai
j .

Any matrix A = (Ai
j) ∈ gl(n,R) determines a left-invariant vector field AL ∈ TIn GL(n,R)

AL
∣∣
X

= d(LX)In(A) = d(LX)In

(
Ai

j

∂

∂Xi
j

∣∣∣∣
In

)
= Xi

jA
j
k

∂

∂Xi
k

∣∣∣∣
X

.

Given A,B ∈ gl(n,R), the Lie bracket of the corresponding left-invariant vector fields is
given by

[AL, BL] =

[
Xi

jA
j
k

∂

∂Xi
k

, Xp
qB

q
r

∂

∂Xp
r

]
= Xi

jA
j
k

∂

∂Xi
k

(
Xp

qB
q
r

) ∂

∂Xp
r
−Xp

qB
q
r

∂

∂Xp
r

(
Xi

jA
j
k

) ∂

∂Xi
k

= Xi
jA

j
kB

k
r

∂

∂Xi
r

−Xp
qB

q
rA

r
k

∂

∂Xp
k

=
(
Xi

jA
j
kB

k
r −Xi

jB
j
kA

k
r

) ∂

∂Xi
r

.

Evaluating this last expression when X is equal to the identity matrix, we get

[AL, BL]
∣∣
In

=
(
Ai

kB
k
r −Bi

kA
k
r

) ∂

∂Xi
r

∣∣∣∣
In

.

This is the vector corresponding to the matrix commutator bracket [A,B]. Since the left-
invariant vector field [AL, BL] is determined by its value at the identity, this implies that

[AL, BL] = [A,B]L,

which implies that the natural map is a Lie algebra isomorphism. □

3. Exponential Map

If we have a Lie group G and a Lie algebra TeG, we aim to find a method to map
elements of the algebra back onto the group. This mapping is important because the Lie
algebra provides a linearized approximation of the Lie group near the identity element, and
understanding how to map from the Lie algebra back to the Lie group is crucial for many
applications in differential geometry, representation theory, and physics. Let’s see how to
do this in the case of matrix Lie groups. Let G be a matrix Lie group over K = R,C,H with
associated Lie algebra, g. If X ∈ g, the corresponding one-parameter subgroup satisfies the
initial value problem (IVP):

γ(0) = In, γ′(0) = X.

The solution to this IVP is given by the matrix exponential:

γ(t) = etX :=
∞∑
n=0

tnXn

n!
t ∈ R.

It can be checked that eX converges for all X ∈ M(n,K) and that eX is a continuous
function of X. Thus, the matrix exponential maps the element X of the Lie algebra to a
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one-parameter subgroup of the Lie group, making it a powerful method for understanding
the structure of the Lie group and its algebra.

Example 3.1. We compute the exponential map in some basic cases, using the character-
ization of Lie algebras of certain classical Lie groups, as discussed later in Example 3.23.

(1) We will see later that the Lie algebra of R is R. Hence, we have

exp: R→ U(1,C) ∼= R,
x 7→ ex.

(2) We will see later on that the Lie algebra of U(1,C) is isomorphic iR. Hence, we
have

exp: iR→ U(1,C) ∼= S1,

ix 7→ eix.

(3) We will see later on that the Lie algebra of SO(2,R) is isomorphic R with generator

X =

(
0 −1
1 0

)
.

It is easy to see that

X2n = (−1)nI2,
X2n+1 = (−1)nX.

Hence, we have

etX =
∞∑
n=0

tnXn

n!

=

∞∑
n=0

(−1)nt2n

(2n)!

(
1 0
0 1

)
+

∞∑
n=0

(−1)nt2n+1

(2n+ 1)!

(
0 −1
1 0

)
=

(
cos t − sin t
sin t cos t

)
Example 3.2. The matrix exponential can be computed effectively for certain special 2×2
matrices:

(1) We compute

exp

(
a b
0 d

)
First assume a = d. In this case, an inductive argument shows that(

a b
0 a

)n

=

(
an a−1+nbn
0 an

)
for n ≥ 1. Hence,

exp

(
a b
0 a

)
=

(∑∞
n=0

an

n! b
∑∞

n=1
an−1

(n−1)!

0
∑∞

n=0
an

n!

)
=

(
ea bea

0 ea

)
If a ̸= d, an inductive argument shows that(

a b
0 d

)n

=

(
an b(an−dn)

a−d
0 dn

)
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for n ≥ 1. Hence,

exp

(
a b
0 d

)
=

(∑∞
n=0

an

n!
b

a−d

∑∞
n=1

(an−dn)
n!

0
∑∞

n=0
dn

n!

)
=

(
ea b e

a−ed

a−d

0 ed

)
(2) Let X ∈ M(2,C) such that trace(X) = 0. It is not too hard to check that such a X

satisfies

X2 = −det(X)I.

We have

exp(X) =
∞∑
n=0

Xn

n!

=
∞∑
n=0

X2n

(2n)!
+

∞∑
n=0

X2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)ndet(X)nI

(2n)!
+

∞∑
n=0

(−1)ndet(X)nX

(2n+ 1)!

= cos
(√

det(X)
)
I +

sin
(√

det(X)
)

√
det(X)

X.

Here
√
detX is either of the two (possibly complex) square roots of detX.

More generally, we can define an exponential map for an arbitrary Lie group. The
exponential map provides a natural way of mapping TeG onto G such that exp acts as a
homomorphism when restricted to any line in TeG.

Definition 3.3. Let G be a Lie group with Lie algebra g := TeG. The exponential map
of G is the map

exp : g→ G

X 7→γ(1)

where γ : R→ G is the integral curve associated with the left-invariant vector field, X.

Remark 3.4. We choose γ(1) because we want exp to be its own derivative, similar to eX .

Proposition 3.5. Let G be a Lie group and let g be its Lie algebra. Let exp denote the
exponential map.

(1) For any X ∈ g, γ(t) = exp(tX) is the one-parameter subgroup of G generated by X.
(2) exp is a smooth map.
(3) For any X ∈ g and s, t ∈ R,

exp((s+ t)X) = exp(sX) exp(tX),

(exp(X))−1 = exp(−X)

(4) For any X ∈ g and n ∈ Z, (exp(X))n = exp(nX).
(5) The differential (d exp)0 : g ∼= T0g→ TeG is the identity map.
(6) The exponential map restricts to a diffeomorphism from some neighborhood of 0 in

g to a neighborhood of e in G.
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(7) If H is another Lie group with Lie algebra h and f : G → H is a Lie group homo-
morphism, the following diagram commutes:

g h

G H

exp

f∗

exp

f

That is,

f(eX) = ef∗(X)

Here f∗ = d0f is the map induced by the Lie functor. This shows that exp defines a
natural transformation between the functors Lie and the identity functor.

Proof. The proof is given below:

(1) Let γ : R→ G be the one-parameter subgroup generated by X. For any fixed s ∈ R,
it follows that γs(t) = γ(st) is the integral curve of sX starting at e. Hence,

exp(sX) = γs(1) = γ(s)

(2) Define a map φ : R× (G× g)→ G× g by

φ(t, g,X) = (g · exp(tX), X),

Note that this is the flow of the left-invariant vector field (X, 0) on G× g. Thus, it
is smooth as the flow of a smooth vector field. Now we can decompose exp as

exp = π1 ◦ φ ◦ i = g
i−→ R×G× g

φ−→ G× g
π1−→ G,

because

π1(φ(i(X))) = π1(φ(1, e,X)) = π1(exp(X), X) = exp(X)

for every X ∈ g. We conclude that exp is smooth as a composition of smooth maps.
(3) This follows from (1) since γ is group homomorphism.
(4) This follows from (3) and induction.
(5) Let X ∈ g and let γ : R → g be the curve γ(t) = tX. Then γ′(0) = X, and (1)

implies

(d exp)0(X) = (d exp)0(γ
′(0)) = (exp ◦γ)′(0) = d

dt

∣∣∣∣
t=0

exp(tX) = X.

(6) This follows from (5) and the inverse function theorem.
(7) We will show that for all t ∈ R,

exp(tf∗(X)) = f(exp(tX)).

By (1), the left-hand side is the one-parameter subgroup generated by f∗(X). Thus,
if γ(t) = f(exp(tX)), it suffices to show that γ : R → H is a Lie group homomor-
phism satisfying γ′(0) = f∗(X). It is a Lie group homomorphism because it is the
composition of the homomorphisms f and t 7→ exp(tX). Note that we have:

γ′(0) =
d

dt

∣∣∣∣
t=0

f(exp(tX))

= df0

(
d

dt

∣∣∣∣
t=0

exp(tX)

)
= df0(X) = f∗(X).
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This completes the proof. □

Remark 3.6. Note that Proposition 3.5(3) implies that exp(0) = eG.

The intuition behind Proposition 3.5(6) is that the exponential map can be used to
reconstruct a Lie group from its Lie algebra, at least locally near the identity. We now
make precise this intuition.

Proposition 3.7. Let G be a Lie group with Lie algebra g. The exponential map generates
G0, the connected component of the identity. In particular, if G is connected, every g ∈ G
can be written as

g = exp(X1) · · · exp(Xn)

for some X1, · · · , Xn ∈ g.

Proof. Proposition 3.5(6) implies that there exists open neighbourhods 0 ∈ V ⊆ g and
eG ∈ U ⊆ G such that U = exp(V ) is a diffeomorphism. For any g ∈ G0, choose a
continuous path γ : [0, 1]→ G with γ(0) = eG and γ(1) = g. We can find some δ > 0 such
that if |s− t| < δ, then γ(s)γ(t)−1 ∈ U17. Divide [0, 1] into m pieces, where 1/m < δ. Then,
for j = 1, . . . ,m, we see that γ((j − 1)/m)−1γ(j/m) belongs to U , so that

γ((j − 1)/m)−1γ(j/m) = exp(Xj)

for some elements X1, . . . , Xm of g. Thus,

A = γ(0)−1γ(1)

= γ(0)−1γ(1/m)γ(1/m)−1γ(2/m) · · · γ((m− 1)/m)−1γ(1)

= exp(X1) · · · exp(Xn)

This completes the proof. □

However, it is not true that one can globally recover a Lie group from a Lie algebra via
the exponential map. This is because the exponential map need not be surjective.

Example 3.8. Let G = SL(2,R). Consider the matrix:

A =

(
−1 1

0 −1

)
We claim that we cannot find X ∈ sl(2,R) such that A = eX . Assume to the contrary that
there is a trace zero matrix X such that,

B =

(
−1 1

0 −1

)
= eX = eX/2eX/2 = (eX/2)2

However, we show that A doesn’t have a square root in GL(2,R). Assume this is not the
case. Then we have,

A =

(−1 1

0 −1

)
=

(
a b

c d

)2

=

(
a2 + bc ab+ bd

ac+ cd bc+ d2

)
, ad− bc ̸= 0.

17This follows from a compactness argument.
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Comparing coefficients, we have the system of equations,

a2 + bc = −1,
ab+ bd = 1,

ac+ cd = 0,

bc+ d2 = −1.

Note that we can’t have c = 0 or else this would imply that we have a2 = −1 by the first
equation. Hence c ̸= 0 implies that we have d = −a by the third equation. But then the
second equation implies we have,

1 = ab+ bd = ab− ba = 0,

a contradiction. However, Proposition 3.7 implies that each G = SL(2,R) can be written
as a product of finitely many expressions in exp(g).

Remark 3.9. Later on, we will see that a sufficient condition for the exponential map to
be surjective is that G is a compact, connected Lie group.

Remark 3.10. If G is a matrix Lie group, we could also have that eX ∈ G but X /∈ g.
Indeed, let G = SL(n,C), with Lie algebra g = sl(n,C). Then X := 2πiIn does not lie in
sl(n,C), but eX = In ∈ SL(n,C).

Example 3.11. The exponential map can be onto but not one-to-one. Let G = U(n,C)
and g = u(n). We first show that it is surjective. Let U ∈ U(n,C). By the spectral theorem
for normal matrices, there exists a unitary matrix V such that U = V DUV

∗, where D is
diagonal with

DU = diag(eiθ1 , · · · , eiθn)
We have DU = exp(DX) where

DX = i diag(θ1, · · · , θn)

Now, let X = V DXV
∗. We have

exp(X) = exp(V DXV
∗) = V exp(DX)V ∗ = V DUV

∗ = U

Moreover, X ∈ u(n) since

X∗ = (V DXV
∗)∗ = V D∗

XV
∗ = −V DXV

∗ = −X

However, exp is not injective. This follows because exp(diag(2πim, · · · , 2πim)) = In for
m ∈ Z.

We conclude with an important characterization of the Lie bracket in terms of the differen-
tials of the conjugation map. This identification follows from the formula in Proposition 2.7,
now made precise by expressing the integral curves explicitly using the exponential map.

Proposition 3.12. Let G be a Lie group with Lie algebra g. For X,Y ∈ g, we have

[X,Y ]e =
d

dt

(
dCexp(tX)(Y )

)∣∣∣∣
t=0

Here C(·) denotes the conjugation map.
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Proof. For g ∈ G, note that left multiplication map by Lg takes integral curves of X to
integral curves of X. Thus, the map γ(t) = Lg(exp tX) is the integral curve such that
γ(0) = g and γ′(0) = Xg. It follows that

Rexp tX(g) = g exp tX = Lg(exp tX) = γ(t).

Recall from Proposition 2.7 that we have

[X,Y ]e =
d

dt

(
d(ϕX−t)ϕX(t)(YϕX(t))

)∣∣∣∣
t=0

.

We have YϕX(t) = Yexp(tX) and Rexp(−tX)(exp(tX)) is the integral curve starting at exp(tX)
and generated by −X for time t. Hence, we have

d(ϕX−t)ϕX(t)(YϕX(t)) = dRexp(−tX)(Yexp(tX))

= dRexp(−tX)(dLexp(tX)(Y ))

= d(Rexp(−tX) ◦ Lexp(tX))(Y ) = dCexp(tX)(Y )

Therefore, we have

[X,Y ]e =
d

dt

(
d(ϕX−t)ϕX(t)YϕX(t)

)∣∣∣∣
t=0

=
d

dt

(
dCexp(tX)(Y )

)∣∣∣∣
t=0

This completes the proof. □

3.1. Abelian Lie Groups. We can use the exponential map, along with the fact that it
can be used to construct a Lie group from its Lie algebra locally, to classify abelian Lie
groups. We first prove a lemma which we state for a general Lie group.

Lemma 3.13. Let G be a connected Lie group with Lie algebra g.

(1) If X,Y ∈ g, then

exp(tX) exp(sY ) = exp(sY ) exp(tX) ⇐⇒ [X,Y ] = 0

for all t, s ∈ R.
(2) G is abelian if and only if g is abelian. That is, [X,Y ] = 0 for all X,Y ∈ g.
(3) We have

exp(X) exp(Y ) = exp(X + Y )

for all X,Y ∈ g if and only if G is abelian.
(4) If G is abelian, then the exponential map is surjective that is a group homomorphism

of abelian groups.

Proof. The proof is given below:

(1) We first prove the forward implication. Since G is connected, the assumption implies
that Cg(h) = h for all g, h ∈ G. Hence, [X,Y ] = 0 for all X,Y ∈ g by Proposi-
tion 3.12 since the differential is of Cg is zero for all g ∈ G. The converse follows
similarly.

(2) If G is abelian, the equation in (1) is true. Hence, g is abelian. Conversely, if g is
abelian, then (1) implies that we have

exp(tX) exp(sY ) = exp(sY ) exp(tX)

for all X,Y ∈ g and t, s ∈ R. Since G is connected, As this implies that Cg(h) = h
for all g, h ∈ G. Hence, G is abelian.
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(3) The forward implication is clear from (1) and (2). Conversely, assume that G is
abelian. Consider the map:

γ(t) = (exp(tX))(exp(tY ))

We have

γ(t+ s) = (exp((t+ s)X))(exp((t+ s)Y ))

= (exp(tX))(exp(sX))(exp(tY ))(exp(sY ))

= (exp(tX))(exp(tY ))(exp(sX))(exp(sY ))

= γ(t)γ(s).

Hence, γ is a 1-parameter subgroup. Note that γ(0) = e and γ′(0) = X + Y Hence,

γ(t) = (exp(tX))(exp(tY )) = exp(t(X + Y ))

Plug in t = 1 now.
(4) Consider the exponential map:

exp : g→ G.

Since G is connected and abelian if g ∈ G

g = exp(X1) · · · exp(Xn) = exp(X1 + · · ·+Xn) ∈ exp(R)

for Xi ∈ g. The last equality follows from (3). Thus, exp is surjective. Clearly, exp
is a group homomorphism of abelian groups.

This completes the proof. □

Proposition 3.14. Let G be a connected Lie group.

(1) If G is 1-dimensional, then G is isomorphic to R or S1.
(2) If dimG = n and G is abelian, then

G ∼= (S1)s × Rn−k

for some 0 ≤ s ≤ n.

Proof. The proof is given below:

(1) Since G is one-dimensional, g ∼= R is an abelian Lie algebra. By Lemma 3.13, G
is abelian. Since G is connected as well, the exponential map is a surjective group
homomorphism. We can think of R as a smooth manifold/Lie group. Hence, exp is
a surjective Lie group homomorphism. If ker exp = {0}, exp is a bijective Lie group
homomorphism. Hence, it is a Lie group isomorphism18. Hence,

G ∼= R.

Otherwise, assume that ker exp ̸= {0}. We claim that ker exp = rZ for some r > 0.
Indeed, Let

r = inf{a ∈ A : a > 0}
Since exp is injective on some neighborhood of 0, we have r > 0. Moreover, r ∈ A
since A is closed. Thus, rZ ⊆ A since A is a group. We now show that A ⊆ rZ. Let
a ∈ A and suppose that a /∈ rZ. Then, there exists k ∈ Z such that 0 < a− kr < r.

18A bijective Lie group homomorphism is a Lie group isomorphism.
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But a − kr ∈ A since r ∈ A, which contradicts the definition of r. Thus, A = rZ.
In this case S1 ∼= R/rZ. The exp descends to a bijective group homomorphism:

ẽxp : S1 ∼=
R

ker exp
→ G

This is a smooth map since R→ S1 is a smooth submersion. Hence, ẽxp is a bijective
Lie group homomorphism. Hence,

G ∼= S1

(2) Consider the exponential map:

exp : g→ G

Since dimG = n and G is abelian, g is also abelian. Hence, g ∼= Rn with the
trivial Lie bracket. Since G is connected, the exponential map is surjective group
homomorphism. Since exp is a local diffeomorphism, exp has discrete kernel. This
follows because Rn is a Lie group and it is homogenous. Using the general fact that
a discrete subgroup of Rn is isomorphic to Zs for some 0 ≤ s ≤ n. Hence, as in (1)
we have

G ∼=
Rn

Zs
∼= (S1)s × Rn−s.

This completes the proof. □

3.2. Lie Subalgebras & Lie Subgroups. We have defined Lie groups and Lie algebras.
We would now like to define sub-objects for Lie groups and Lie algebras. In this section,
we define subobjects of a Lie algebra.

Definition 3.15. Let g be a Lie algebra. A Lie subalgebra, h, is a vector subspace of g
such that [X,Y ] ∈ h holds for all X,Y ∈ h.

Example 3.16. The simplest example is g = R2, endowed with the trivial Lie algebra
[·, ·] ≡ 0. Then any vector subspace of Rn is a Lie subalgebra of g.

Many standard linear algebra facts carry over to the setting of Lie algebras and Lie
subalgebras.

Lemma 3.17. Let A : g → h be a Lie algebra homomorphism. Then kerA ⊆ g and
imA ⊆ h are Lie subalgebras.

Proof. The kernel and image of A are linear subspaces for algebraic reasons, so it suffices to
check that they are closed under the brackets on g and h, respectively. For any X,Y ∈ kerA
we have

A([X,Y ]) = [A(X), A(Y )] = [0, 0] = 0

so [X,Y ] ∈ kerA and the kernel is closed under brackets. Similarly, for any u, v ∈ g the
equation

[A(X), A(Y )] = A([X,Y ])

implies that [A(X), A(Y )] ∈ ImA. Hence the image is closed under brackets. □

Remark 3.18. In fact, kerA is an ideal. That is, [X,Y ] ∈ kerA if X ∈ g and Y ∈ kerA.
This is easily seen to be true since

A[X,Y ] = [A(X), A(Y )] = [A(X), 0] = 0.
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The matrix Lie groups discussed before are all examples of (closed) Lie subgroups, to
be defined shortly. In fact, these are embedded submanifolds of the general linear group.
Should we require a Lie subgroup to be an embedded manifold? The answer is no.

Let g = R2. We consider Lie subalgebras of g that are 1-dimensional subspaces of R2.
All such Lie subalgebras are of the form:

hα = the line passing through the origin in R2 whose slope equals α.

If α = p
q , where p, q are co-prime integers, then

Gp,q =

{(
eipt 0
0 eiqt

)
: t ∈ R

}
⊆ GL(2,C)

can be easily seen to be a matrix Lie group of GL(2,C) such that the Lie algebra of Gp,q

is hα. All such Gp,q are difeomorphic to S1 and are all embedded submanifolds in S1 × S1.
However, if α is irrational, then

Gα =

{(
eit 0
0 eiαt

)
: t ∈ R

}
⊆ GL(2,C)

is a (non-matrix) Lie group with Lie algebra hα. Note that Gα is an immersed manifold of
S1 × S1 such that Gα = S1 × S1.

Definition 3.19. Let G be a Lie group. A Lie subgroup, H, is a subgroup of G that is
also an immersed submanifold such that mH×H and iH : H → H are smooth maps. That
is, ι : H ↪→ G is a Lie group homomorphism that is a smooth immersion.

Note that we identify and define TeH as a subspace of TeG. Hence, if H is a Lie subgroup
of G, then the Lie algebra of H is a Lie subalgebra of the Lie algebra of G.

Remark 3.20. According to the discussion above, a Lie subgroup of a compact Lie group
could be a non-compact Lie subgroup!

Proposition 3.21. Let G be a Lie group with Lie algebra g. Let H be a Lie subgroup of G
with Lie algebra h.

(1) The one-parameter subgroups of H are precisely those one-parameter subgroups of
G whose initial velocities lie in TeH.

(2) The exponential map of H is the restriction to h of the exponential map of G.
(3) We have then

h = {X ∈ g | expG(tX) ∈ H for all t ∈ R}.

Proof. The proof is given below:

(1) Let γ : R→ H be a one-parameter subgroup. Then the composite map

R φ−→ H ↪→ G

is a one-parameter subgroup of G, which clearly satisfies γ′(0) ∈ TeH. Conversely,
suppose γ : R→ G is a one-parameter subgroup whose initial velocity lies in TeH.
Let γ̃ : R→ H be the one-parameter subgroup of H with the same initial velocity.
By composing with the inclusion map, we can also consider γ̃ as a one-parameter
subgroup of G. Since γ and γ̃ are both one-parameter subgroups of G with the same
initial velocity, they are equal.

(2) This follows from (1).
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(3) If X ∈ h, then (1) implies that expG(tX) ∈ H for all t ∈ R. Now assume that
expG(tX) ∈ H for all t ∈ R. It can be shown that expG(tX) is a smooth map into
H [1, Theorem 19.25]. Hence, expG(tX) is a one-parameter subgroup of H. By (1),
expG(tX) is a one-parameter subgroup of G such that X ∈ TeH = h.

This completes the proof. □

We can now compute the Lie algebras of some classical matrix Lie groups for K = R,C,H.
Note that Proposition 3.21 and the fact that the Lie algebra of GL(n,K) is M(n,K) implies
that elements in the Lie algebra of a matrix Lie group are contained in M(n,K). We first
prove an important lemma.

Lemma 3.22. Let K = R,C and let X ∈M(n,K). We have

det eX = eTrX

Proof. Consider the Lie group homomorphism: det : GL(n,K) → K× We know that
d(det)In(X) = Tr(X). Proposition 3.5(7) then implies that

det eX = eTrX .

This completes the proof. □

We can now compute the Lie algebras of some matrix Lie groups:

Example 3.23. Let K = R,C,H.

(1) Assume that K ̸= H. Let G = SL(n,K). If X ∈ sl(n,K), then consider γ(t) = etX .
Since γ(t) ∈ SL(n,K), we must have that

1 = det γ(t) = det etX = etTrX .

Hence, we have

0 =
d

dt
etTrX

∣∣∣∣∣
t=0

= TrX
d

dt
etTrX

∣∣∣∣∣
t=0

= TrX.

Hence, the Lie algebra sl(n,K) of SL(n,K) is given by

sl(n,K) = {X ∈M(n, k) | TrX = 0}.
(2) Let G = O(n,R). Consider γ(t) = etX ∈ O(n,R). Differentiating the equation

γ(t)Tγ(t) = In at the identity t = 0, we have

0 =
d

dt

(
γ(t)Tγ(t)

)
=

d

dt

(
(etX)T etX

) ∣∣∣∣
t=0

=
(
XT etX + (etX)TX

) ∣∣∣∣
t=0

= XT +X

Hence, the Lie algebra o(n,R) of O(n,R) is given by

o(n,R) = {X ∈M(n,R) : XT = −X}.
(3) Using (3), we can obtain the Lie algebra su(n,R) of G = SO(n,R). We observe that

γ(t) as in (3) additionally satisfies the constraint:

1 = det γ(t) = det etX = etTrX for all t ∈ R.
Therefore, we have

so(n,R) = {X ∈ o(n,R) : TrX = 0} = o(n,R)
The last equality follows since each matrix in o(n,R) already has zero trace.
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(4) Let G = U(n,C). Consider γ(t) = etX ∈ U(n,C). Differentiating the equation
γ(t)∗γ(t) = In at the identity t = 0, we have

0 =
d

dt
(γ(t)∗γ(t)) =

d

dt

(
(etX)∗etX

) ∣∣∣∣
t=0

=
(
X∗etX + (etX)∗X

) ∣∣∣∣
t=0

= X∗ +X

Hence, the Lie algebra u(n,C) of U(n,C) is given by

u(n,C) = {X ∈M(n,C) : X∗ = −X}.

It is easy to check that u(n,C) is not a complex Lie algebra. Hence, U(n,C) is not
a complex Lie group.

(5) Using (5), we can obtain the Lie algebra su(n,C) of G = SU(n,C). We observe that
γ(t) as in (5) additionally satisfies the constraint:

1 = det γ(t) = det etX = etTrX for all t ∈ R.

Therefore, we have

su(n,C) = {X ∈ u(n,C) : TrX = 0}.

It is easy to check that su(n,C) is not a complex Lie algebra. Hence, SU(n,C) is
not a complex Lie group.

(6) Let G = U(n,H). A similar argument as in (5) shows that the Lie algebra u(n,H)
of U(n,H) is given by

u(n,H) = {X ∈M(n,H) : XH = −X}.

(7) Let G = Sp(n,R). Consider γ(t) = etX ∈ Sp(n,R). Differentiating the equation
γ(t)TJγ(t) = J at the identity t = 0, we have

0 =
d

dt

(
γ(t)TJγ(t)

)
=

d

dt

(
(etX)TJetX

) ∣∣∣∣
t=0

=
(
XT etXJ + (etX)TJX

) ∣∣∣∣
t=0

= XTJ + JX

Hence, the Lie algebra sp(n,R) of Sp(n,R) is given by

sp(n,R) = {X ∈M(2n,R) : XTJ = −JX}.

A simple counting argument shows that dim sp(n,R) = n(2n+ 1).
(8) Let G = Sp(n,C). An argument as in (8) shows that the Lie algebra sp(n,C) of

Sp(n,C) is given by

sp(n,C) = {X ∈M(2n,C) : XTJ = −JX}.

A simple counting argument shows that dim sp(n,C) = 2n(2n+ 1).
(9) Let G = O(p, q). An argument as in (8) shows that the Lie algebra o(p, q) of O(p, q)

is given by

o(p, q) = {X ∈M(n,C) : XT gp,q = −gp,qX}.

A simple counting argument shows that dim o(p, q) = n(n− 1)/2.
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3.3. Cartan’s Theorem. Note that all matrix Lie groups discussed thus far are embedded
submanifolds of GL(n,K) which are closed. Cartan’s theorem states the converse is true in
general: any closed subgroup of a Lie group is a Lie subgroup that is also an embedded
submanifold. Before proving Cartan’s theorem, we prove a key lemma first. The result
effectively states that group multiplication in G is reflected to first order in the vector space
structure of its Lie algebra.

Lemma 3.24. Let G be a Lie group and let g be its Lie algebra and let X,Y ∈ g.
(1) There is a smooth function Z : (−δ, δ)→ g for some ε > 0 such that

exp(tX) exp(tY ) = exp
(
t(X + Y ) + t2Z(t)

)
for all t ∈ (−ε, ε).

(2) (Lie-Trotter Product Formula) We have

lim
n→∞

(
exp

(
t

n
X

)
exp

(
t

n
Y

))n

= exp(t(X + Y ))

Proof. The proof is given below:

(1) Let 0 ∈ U ⊆ g be neighbourhood such that that exp |U : U → exp(U) is a diffeomor-
phism. If X,Y ∈ g, we can find an ε sufficiently small so that exp(tX) exp(tY ) ∈ U
for all |t| < ε. Define f : (−ε, ε) → g by f(t) = exp−1(exp(tX) exp(tY )). The map
f is smooth as it is the composition of

(−ε, ε) expX × expY−−−−−−−−→ exp(U)× exp(U)
m−→ exp(U)

exp−1

−−−−→ U

where expX(t) = exp(tX) and expY (t) = exp(tY ) Taking the differential at zero
yields

f ′(0) = (d exp)−1
0 (d(expX)0(∂t|t=0) + d(expX)0∂t|t=0)) = X + Y.

Therefore, Taylor’s theorem yields

f(t) = f(0) + tf ′(0) + t2Z(t) = 0 + t(X + Y ) + t2Z(t)

for some smooth function Z.
(2) For any t ∈ R and any sufficiently large n ∈ Z, (1) implies that

exp

(
t

n
X

)
exp

(
t

n
Y

)
= exp

(
t

n
(X + Y ) +

t2

n2
Z

(
t

n

))
Using properties of the exponential map, we have

lim
n→∞

(
exp

(
t

n
X

)
exp

(
t

n
Y

))n

= lim
n→∞

exp

(
t

n
(X + Y ) +

t2

n2
Z

(
t

n

))n

= lim
n→∞

exp

(
t(X + Y ) +

t2

n
Z

(
t

n

))
= exp

(
t(X + Y ) + lim

n→∞

t2

n
Z

(
t

n

))
= exp (t(X + Y ))

This completes the proof. □

We will discuss results similar to that of Lemma 3.24 later on.
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Proposition 3.25. (Cartan’s Closed Subgroup Theorem) Let G be a Lie group and
let H be a closed subgroup. Then H is a Lie subgroup of G that is an embedded submanifold
of G.

Proof. The proof has been commented out from the note for brevity. □

Example 3.26. Consider the group:

H =


1 x y
0 1 z
0 0 1

 ∈M(3,R)

∣∣∣∣∣∣ x, y, z ∈ R


It is easily checked that H is a closed subgroup under matrix multiplication of GL(3,R).
Hence, Proposition 3.25 implies that H is a Lie subgroup of GL(3,R). It is a non-abelian
Lie group group called the Heisenberg group. We denote the Lie algebra of H as heis. We
have

heis = {X ∈M(3,R) : etX ∈ H for all t ∈ R}
= {X ∈M(3,R) : X is strictly upper triangular}

This is because if X is strictly upper triangular, Xm will be strictly upper triangular for
m ∈ N. Thus, for any such X we will have etX ∈ H. Conversely, if etX ∈ H for all real t,
then all of the entries of etX on or below the diagonal are independent of t. Thus, X will
be strictly upper triangular. Clearly, dim heis = 3 as expected.

4. Baker-Campbell-Hausdorff Formula

The starting point for the Baker-Campbell-Hausdorff (BCH) formula can be considered
to be the formula in Lemma 3.24, which loosely states that

exp(tX) exp(tY ) = exp (t(X + Y ) + higher-order terms) .

The BCH formula provides the solution for the nature of these higher-order terms. One of
the main applications of the BCH formula is to prove Lie’s Third Theorem, which will be
covered in the next section. To simplify the expression of nested commutators appearing in
the BCH formula, we introduce the adjoint operator.

Definition 4.1. For an element X in a Lie algebra g, define the map

adX : g→ g,

Y 7→ [X,Y ].

That is, adX is the linear map given by taking the Lie bracket with X. This notation is
particularly useful when writing series expansions involving iterated commutators, such as
those that appear in the BCH formula. We have the following result.

Lemma 4.2. Let G be a Lie group with Lie algebra g. The conjugation map Cg : G → G
defined by Cg(h) = ghg−1 is such that

adX =
d

dt

∣∣∣∣
t=0

Adexp(tX).

where dCg := Adg and X ∈ g.
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Proof. Let X ∈ g. By Proposition 3.12, we have

[X,Y ]e =
d

dt

∣∣∣∣
t=0

(
dCexp(tX)(Y )

)
:=

d

dt

∣∣∣∣
t=0

(
Adexp(tX)(Y )

)
for each Y ∈ g. The claim follows by invoking the definition of adX . □

4.1. Motivation. Before we state and prove the BCH formula, we first examine the struc-
ture of the higher-order terms by analyzing the expression to first order in t. This pre-
liminary discussion provides insight into the nature of the corrections beyond the linear
approximation and offers a glimpse into the structure of the full BCH formula. This will
be a consequence of Taylor’s expansion formula.

Proposition 4.3. Let G be a Lie group and let f ∈ C∞(G). For X1, X2 ∈ g, we have

f(exp(tX1) exp(tX2)) = f(e) + t(X1 +X2)f(e) +
t2

2

(
X2

1 +X2
2 + 2X1X2

)
f(e) +O(t3).

Proof. For each g ∈ G, we have:

(Xf)(g) = (Xgf) = (dLg(Xe))f = Xe(f ◦ Lg) =
d

dt

∣∣∣∣
t=0

f(g exp(tX)).

More generally, for any t ∈ R, we compute:

(Xf)(g exp(tX)) =
d

ds

∣∣∣∣
s=0

f(g exp(tX) exp(sX))

=
d

ds

∣∣∣∣
s=0

f(g exp((t+ s)X)) =
d

dt
f(g exp(tX)).

Using this identity and induction, one obtains that for any k ≥ 0,

Xkf(g exp(tX)) =
dk

dtk
f(g exp(tX)).

In particular,

Xkf(g) =
dk

dtk

∣∣∣∣
t=0

f(g exp(tX)).

The formulae above can be generalized to the bivariate case:

(X1X2f)(g) =
d

dt1

∣∣∣∣
t1=0

(X2f)(g exp(t1X1))

=
d

dt1

∣∣∣∣
t1=0

d

dt2

∣∣∣∣
t2=0

f(g exp(t1X1) exp(t2X2)).

More generally,

(Xα(1) · · ·Xα(k)f)(g) =
∂k

∂t1 · · · ∂tk

∣∣∣∣
t1=···=tk=0

f
(
g exp

(
t1Xα(1)

)
· · · exp

(
tkXα(k)

))
.

Here each Xα(i) is either X1 or X2. The claim follows. □

We can now use the computation above to derive the BCH formula up to first order.

Corollary 4.4. Let G be a Lie group. For X1, X2 ∈ g and |t| sufficiently small, we have

exp(tX1) exp(tX2) = exp

(
t(X1 +X2) +

t2

2
[X1, X2] +O(t3)

)
.
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Proof. We apply Proposition 4.3 to the inverse of the exponential map near the identity
element e, that is, the map f given by f(exp(tX)) = tX for t sufficiently small. We have
f(e) = 0. For any X ∈ g, we have

(Xf)(e) =
d

dt

∣∣∣∣
t=0

f(exp(tX)) =
d

dt

∣∣∣∣
t=0

(tX) = X,

(Xnf)(e) =
dn

dtn

∣∣∣∣
t=0

f(exp(tX)) =
dn

dtn

∣∣∣∣
t=0

(tX) = 0 for n ≥ 2.

The claim follows upon making the observation that

X2
1 +X2

2 + 2X1X2 = (X1 +X2)
2 + [X1, X2],

exp(tX1) exp(tX2) = exp (f (exp(tX1) exp(tX2))) .

This completes the proof. □

Hence, we see that beyond the sum X1 +X2, the BCH formula includes terms involving
the Lie bracket [X1, X2], reflecting the non-commutativity of the underlying Lie algebra
structure.

4.2. General BCH Formula. We now derive the general BCH formula. For simplicity,
we denote by log the inverse of exp near 0 ∈ g.The trick is to consider the formula:

Z(t) = log(exp(X) exp(tY )).

Clearly, Z(0) = X and Z(1) is the element satisfying

eZ(1) = exp(X) exp(Y ).

The idea is to find an analytic expression for the derivative Z ′(t), and then integrate this
derivative from 0 to 1 to compute Z(1). We will make use of the fact that that if γ1(t),
γ2(t) are smooth curves in a Lie group, G, and γ(t) = γ1(t)γ2(t). Then

γ̇(t) = dLγ1(t) (γ̇2(t)) + dRγ2(t) (γ̇1(t)) .

Notice the fact that γ(t) = m(γ1(t), γ2(t)), where m is the multiplication operation on G.
The formula above follows from the differential of the multiplication map at an arbitrary
point (a, b):

dma,b(Xa, Yb) = (dLa)b(Ya) + (dRb)a(Xa).

More generally, by using induction one can easily see that if γ(t) = γ1(t) · · · γm(t) where
each γi(t) is a smooth curve, then

γ̇(t) =

m∑
k=1

(
dLγ1(t) · · · dLγk−1(t) dRγk+1(t) · · · dRγm(t)

)
(γ̇k(t)).

We can now use these formulas to compute the derivative of the exponential map.

Lemma 4.5. Let G be a Lie group. For all X,Y ∈ g, we have

∆(X,Y ) :=
d

dt
eX+tY

∣∣∣∣
t=0

= (dLexpX)e ◦ ϕ(adX)(Y ),

where ϕ is the function

ϕ(z) =
1− e−z

z
=

∞∑
m=0

(−1)m

(m+ 1)!
zm.
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More generally, if Z(t) is a smooth Lie-algebra valued function, then

d

dt
eZ(t) =

(
dLexp(Z(t))

)
e
ϕ(adZ(t))

(
dZ

dt

)
,

Proof. For each m ∈ N, we have

∆(X,Y ) =
d

dt

∣∣∣∣
t=0

(exp(X/m+ tY/m))m

=

m−1∑
k=0

(dLexpX/m)m−k−1(dRexpX/m)k ∆(X/m, Y/m)

=
1

m
(dLexpX)m−1

m−1∑
k=0

(dLexpX/m)−k(dRexpX/m)k ∆(X/m, Y ).

Here we have used that ∆(X,Y ) is R-linear in Y . Since the differential of the conjugation
map Cg = LgRg−1 is the map Adg, we have

(dLexpX/m)−k(dRexpX/m)k =
(
dCexp(−X/m)

)k
=
(
Adexp(−X/m)

)k
= exp

(
−
(
adX
m

))k

.

Hence, we have

∆(X,Y ) = (dLexpX/m)m−1 1

m

m−1∑
k=0

(
exp
(
−adX/m

))k
∆(X/m, Y )

As m→∞, we have

(dLexpX/m)m−1 → dLexp((m−1)X/m) → dLexpX ,

∆(X/m, Y )→ ∆(0, Y ) = Y.

Moreover, since adX ∈ End(g) is a linear operator (i.e., a matrix), we have the following:

1

m

m−1∑
k=0

exp

(
−adX

m

)k

=
1

m

m−1∑
k=0

∞∑
n=0

1

n!

(
−k adX

m

)n

=
∞∑
n=0

[
1

m

m−1∑
k=0

(
k

m

)n
]
(−1)n

n!
(adX)n

→
∞∑
n=0

[∫ 1

0
xndx

]
(−1)n

n!
(adX)n

=
∞∑
n=0

(−1)n

(n+ 1)!
(adX)n = ϕ(adX)

This proves the formula for ∆(X,Y ). The formula for the derivative of exp(Z(t)) follows
from the chain rule. □

We are now in a position to prove the Baker–Campbell–Hausdorff (BCH) formula.
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Proposition 4.6. Let G be a Lie group. For X,Y ∈ g such that ∥X∥, ∥Y ∥ and t are
sufficiently small (here ∥ · ∥ is any norm on g), we have

log
(
eXeY

)
= X +

∫ 1

0
g(eadXet adY )(Y ) dt,

Proof. Consider the expression:

Z(t) = log(exp(X) exp(tY ))⇐⇒ exp(Z(t)) = exp(X) exp(tY )

We have
d

dt
exp(Z(t)) = dLexpX

d

dt
(exp tY )

= dLexpX dLexp tY ϕ(adtY )(Y )

= dLexpZ(t)(Y )

On the other hand, Lemma 4.5 implies that

d

dt
exp(Z(t)) = dLexpZ(t) ϕ(adZ(t))

dZ

dt

Since ∥X∥, ∥Y ∥ are sufficiently small, then ∥Z(t)∥ will also be small, so that the operator

I − e− adZ(t) is close to zero, making

I − e− adZ(t)

adZ(t)

close to the identity and therefore invertible. Hence,

dZ

dt
= ϕ(adZ(t))

−1(Y ) :=

(
I − e− adZ(t)

adZ(t)

)−1

(Y )

Since Z(t) = exp(t) exp(tY ), we have the following relationships:

AdZ(t) = AdX AdetY

eadZ(t) = eadXet adY

adZ(t) = log
(
eadXet adY

)
Therefore, we have

dZ

dt
=

(
I − (eadXet adY )−1

log (eadXet adY )

)−1

(Y ) := g(eadXeadtY )(Y ),

where g(·) is the function g(z) = (1− z−1/ log z)−1. Noting that Z(0) = X gives

log
(
eXeY

)
= Z(1) = X +

∫ 1

0
g(eadXet adY )(Y ) dt

This completes the proof. □

One can expand the integrand as a power series in terms of iterated commutators; how-
ever, we will not perform that expansion here.

5. Lie Group-Lie Algebra Correspondence
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Part 2. Representations of Compact Lie Groups

Representation theory is the study of group actions on vector spaces. It lies at the inter-
section of group theory and linear algebra and serves as a foundational tool in many areas of
mathematics, including number theory, algebraic geometry, and harmonic analysis. It also
has profound applications outside of mathematics, such as in quantum mechanics (e.g., the
simple harmonic oscillator) and chemistry (e.g., the analysis of atomic spectra like that of
hydrogen). We begin with the basic theory of group representations, then specializes to the
case of compact Lie groups. We explore examples of finite group and compact Lie group
representations and gradually build toward the structural theory, including fundamental
results such as the Peter–Weyl Theorem.

Remark 5.1. As before, all Lie groups are assumed to be finite-dimensional.

6. General Theory

Studying Lie groups (and Lie algebras) through their representations provides a powerful
way to understand their structure. Representations allow us to translate abstract group
elements into linear transformations, facilitating easier computation and insight into the
group’s properties.

6.1. Definitions & Examples. We discuss basic definitions and examples in this section.
Let K = R,C.

Definition 6.1. Let G be a Lie group. A Lie group representation is a K-vector space
V with a Lie group homomorphism Π : G→ GL(V ).

Remark 6.2. If V is finite-dimensional, it is customary to write GL(n,K) instead of GL(V ).
In this case, we say that the representation is a linear representation. The choice of the
base field is usually left implicit in the discussion. It is also customary to refer to either the
vector space V or the homomorphism Π as a representation. However, note that it is the
pair (Π, V ) that constitutes the representation.

Note that for each g ∈ G, we have

Π(g−1) ◦Π(g) = Π(g) ◦Π(g−1) = Π(e) = IdV

Hence, each Π(g) is a linear isomorphism of V .

Definition 6.3. Let G be a Lie group and let (Π1, V1) and (Π2, V2) be two representations
over K. A morphism between the representations is a linear map T : V1 → V2 such that

Π2(g) ◦ T = T ◦Π1(g) for all g ∈ G.

We call T an intertwining map.

V1 V2

V1 V2

T

Π1(g) Π2(g)

T

We now observe that group representations naturally organize into a mathematical struc-
ture called a category. This viewpoint allows us to use the language and tools of category
theory to study representations more systematically.
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Proposition 6.4. Let K be a field and G be a group. The class of representations of G
over K, written as RepK(G), forms a category.

Proof. Objects and morphisms RepK(G) have been defined above. Let HomG(V1, V2) denote
the set of all such morphisms between (V1,Π1) and (V2,Π2). The identity morphism in
HomG(V, V ) is simply the identity morphism of the underlying vector spaces. If T ∈
HomG(V1, V2) and S ∈ HomG(V2, V3), then S ◦ T ∈ HomG(V1, V3) is defined such that the
following diagram commutes

V1 V2 V3

V1 V2 V3

T

Π1(g)

S◦T

Π2(g)

S

Π3(g)

T

S◦T

S

for all g ∈ G. The identity and associativity axioms are easy to verify. □

We have the notion of an isomorphism, which is a morphism with an inverse, in RepK(G).
Isomorphic representations are also called equivalent representations. Let’s present a few
basic examples:

Example 6.5. Let G be a Lie group with Lie algebra g. The following is a basic list of
examples of representations of Lie groups and Lie algebras:

(1) Let K = R,C. The trivial representation of G is

Π : G→ GL(V )

g 7→ IdV

(2) Let K = C. If G ⊆ GL(n,C) is a matrix Lie group, the standard representation of
G is

Π : G→ GL(n,C)
g 7→ g

(3) Let K = R. The adjoint representation of G is

Ad : G→ GL(g)

g 7→ Adg

Here Adg is the differential of the conjugation map, Cg.
(4) Let K = R. Assume G acts on a smooth manifold M , and let F (M) be the space of

complex-valued functions onM . The action induces a representation of G on F (M)
by

Π : G→ GL(F (M))

(Π(g)f) (x) = f(g−1x)

The Lie algebra representations are defined by the same way:

Definition 6.6. Let g be a Lie algebra. A Lie algebra representation is a K-vector
space V with a Lie algebra homomorphism π : G→ gl(V )
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We have the following important proposition:

Proposition 6.7. Let G be a Lie group with Lie algebra g. Let Π : G → V be a (finite-
dimensional) representation of G over K.

(1) Then there is a unique representation π of g acting on the same space such that

Π(eX) = eπ(X)

The representation Π can be computed as

π(X) =
d

dt

∣∣∣∣
t=0

Π
(
etX
)
.

(2) If G is connected and simply connected, then any representation of g can be uniquely
lifted to a representation of G.

Proof. The proof is given below:

(1) Consider the diagram:

G GL(V )

g gl(V )

Π

π

exp exp

Commutativity of the diagram shows that we have

etπ(X) = Π(etX)

for t ∈ R and X ∈ g. Hence, we have,

π(X) =
d

dt

∣∣∣∣
t=0

etπ(X) =
d

dt

∣∣∣∣
t=0

Π
(
etX
)

(2) Simply apply the Lie group-Lie algebra correspondence.

This completes the proof. □

Remark 6.8. In the discussion that follows, the base field is usually left implicit. If not
otherwise specified, we assume K = R or C. When we specialize to either R or C, this will
be explicitly indicated.

6.2. Operations on Representations. We can construct a broader class of examples of
representations by extending the standard linear algebraic constructions. We discuss some
constructions in this section. Let G be a Lie group with Lie algebra g.

6.2.1. Subrepresentations and Quotient representations. Let (V,Π) be a finite-dimensional
representation of G. A subrepresentation of V is a G-invariant linear subspace W ⊆ V
together with the restriction of Π toW,Π|W . SupposeW is a subrepresentation of V . Then
since W is a linear subspace of V , one can form the quotient space V/W . It follows from
the G-invariance of W that the G-action on V descends to a G-action on V/W by

Π(g) · (v +W ) = Π(g) · v +W.

This gives a representation of G on the quotient V/W , and is called the quotient represen-
tation of V under W .

Remark 6.9. The quotient space construction also works for possibly infinite-dimensional
representations. In this case, one usually works with V a Banach or Hilbert space, and the
subspace W is additionally assumed to be closed.
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Remark 6.10. It is easy to check that if G is a connected Lie group, and V a representation
of G, then W ⊆ V is a subrepresentation of V if and only if it is a subrepresentation of g.

6.2.2. Direct Sums. Let Π1 : G→ GL(V1) and Π2 : G→ GL(V2) be two finite-dimensional
representations. The direct sum representation is defined as

Π1 ⊕Π2 : G→ GL(V1 ⊕ V2)
g 7→ Π1(g)⊕Π2(g)

Remark 6.11. The direct sum construction also works for possibly infinite-dimensional
representations. In this case, one usually works with V as a Hilbert space, and the direct
sum is then considered as a Hilbert space.

6.2.3. Tensor Products. Let Π1 : G → GL(V1) and Π2 : G → GL(V2) be two finite-
dimensional representations. The tensor product representation

Π1 ⊗Π2 : G→ GL(V1 ⊗ V2)
g 7→ Π1(g)⊗Π2(g)

What Lie algebra representation does Π1 ⊗ Π2 induce? If X ∈ g and v1 ∈ V1 and v2 ∈ V2,
note that we have

X · (v ⊗ w) = d

dt

∣∣∣∣
t=0

(
etXv ⊗ etXw

)
= (X · v)⊗ w + v ⊗ (X · w).

Therefore, we can make the following construction. Let π1 : g→ gl(V1) and π2 : g→ gl(V2)
be two Lie algebra. The tensor product representation of Lie algebras is defined

π1 ⊗ π2 : g→ gl(V1 ⊗ V2)
X 7→ π1(X)⊗ IdV2 +IdV1 ⊗π2(X)

Remark 6.12. The tensor product construction also works for possibly infinite-dimensional
representations. In this case, one usually works with V as a Hilbert space, and the tensor
product is then considered as a Hilbert space.

6.3. Irreducible Representations.

Definition 6.13. Let G be a Lie group and let Π : G→ GL(V ) be a representation. Then
Π is irreducible if it has no non-trivial G-invariant subspace. That is, there exists no
subspace 0 ⊊W ⊊ V such that Π(g)W ⊊W for each g ∈ G.

Remark 6.14. A representation which is not irreducible is called reducible.

Example 6.15. The following is a list of irreducible representations:

(1) Any 1-dimensional representation of a group is irreducible since there is no non-
trivial proper subspace of a 1-dimensional vector space.

(2) If G = {1}, the trivial group, then the only irreducible representation is a 1-
dimensional representation. Indeed, any representation G → GL(V ) just maps 1
to IdV . Since every subspace of V is G-invariant, the representation is irreducible
if and only if dimV = 1.

(3) Let K = C.
Consider the standard representation of GL(n,C). The fact that GL(n,C) acts

transitively on Cn \ {0} implies that the standard representation of GL(n,C) is
irreducible.
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(4) Let K = C. Consider the standard representation of SO(n,R). The fact that
SO(n,R) acts transitively on Sn is implies that the standard representation SO(n,R)
is irreducible.

(5) Let K = C. Consider the standard representation of SU(n,C). An argument similar
to (2) shows that the standard representation of SU(n,R) is irreducible.

Proposition 6.16. Let G be a connected Lie group with (finite-dimensional) representation
Π : G→ GL(V ) and let π : g→ gl(V ) denote the induced representation. Π is irreducible if
and only if π is irreducible.

Proof. Suppose first that Π is irreducible. LetW ⊆ V be an invariant subspace for π. Since
G is connected, Proposition 3.7 states that any g ∈ G can be written as

g = eX1 · · · eXm

for some X1, . . . , Xm ∈ g. Since W is invariant under π(Xj), it will also be invariant under

exp(π(Xj)) = I + π(Xj) +
π(Xj)

2

2
+ · · · ,

and hence under

Π(g) = Π(eX1 · · · eXm) = Π(eX1) · · ·Φ(eXm) = eπ(X1) · · · eπ(Xm).

Since Π is irreducible andW is invariant under each Π(g), W must be either {0} or V . This
shows that π is irreducible. Now suppose that π is irreducible. Let W ⊆ V be an invariant
subspace for Π. Then W is invariant under Φ(exp(tX)) for all X ∈ g and, hence, under

π(X) =
d

dt
Φ(exp(tX))

∣∣∣∣
t=0

.

Thus, since πi is irreducible,W is either {0} or V , and we conclude that Π is irreducible. □

Remark 6.17. A similar argument shows that if (Π1, V1) and (Π2, V2) are two (finite-
dimensional) Lie group representations, then Π1 and Π2 are isomorphic if and only if π1
and π2 are isomorphic, where π1 and π2 are the induced representations.

The next proposition is an extremely useful tool in the theory of representations

Proposition 6.18. (Schur’s Lemma). Let G be (a compact Lie) group and let (Π1, V1)
and Π, V2 be finite-dimensional irreducible representations . Then:

(1) A morphism T : V1 → V2 is either zero or an isomorphism.
(2) If K = C, every morphism T : V1 → V1 has the form f(v) = λv for some λ ∈ C.
(3) If K = C, we have

dimHomG(V1, V2) =

{
1 if V1 ∼= V2

0 if V1 ̸∼= V2

Proof. The proof is given below:

(1) Since V is irreducible, the kernel of T is either {0} or V . In the latter case, T is
zero, and in the former, T is injective. If T is injective, its image is a non-zero
G-invariant subspace of W , and hence is all of W by assumption. We conclude that
T is an isomorphism.
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(2) Assume that T is non-trivial and let λ be any eigenvalue of T , and W the corre-
sponding eigenspace. Thus,

W = {v ∈ V1 | T (v) = λv}
and one easily checks that W is G-invariant. Hence W = V1. Hence, T = λ IdV1 .

(3) The follows directly from (1) and (2).

This completes the proof. □

The following fact is quite useful:

Proposition 6.19. Let G be an abelian (Lie) group. An irreducible (finite-dimensional)
representation Π : G→ GL(V ) G over C is one-dimensional.

Proof. Since G is abelian, Π(g) is a morphism of Π(g) : V → V of representations for each
g ∈ G. By Proposition 6.18(ii), every Π(g) is multiplication by λ(g) ∈ C. This implies that
any subspace of V is G-invariant. The result follows, since if dimV > 1, V would have
a one-dimensional subspace, and since all subspaces are G-invariant, this would contradict
the irreducibility of V . □

7. Haar Measure

We want to study the representations of compact Lie groups. It will be shown that the
representation theory of compact Lie groups closely parallels that of finite groups. The key
tool underpinning this similarity is the existence of a G-invariant measure on every compact
Lie group, called the Haar measure, which serves as the foundation for many of the results
in this theory. Recall that to integrate a function on a manifold, one typically begins with a
fixed volume form, which requires the manifold to be orientable. Suppose G is a Lie group.
Since any Lie group is orientable (as the tangent bundle is trivial), volume forms always
exist on G. Naturally, we would like to select a volume form that behaves well under the
group operations.

Definition 7.1. Let G be a Lie group. A volume form ω on a Lie group G is called
left-invariant if L∗

gω = ω for all g ∈ G, where Lg denotes the left multiplication map.

Proposition 7.2. Let G be a Lie group. G admits a left-invariant volume form that is
unique up to a multiplicative constant.

Proof. Let dimG = n. Take any basis of T∗
eG and let ω a non-zero element ωe ∈ ΛnT∗

eG.
Then define an n-form ω on G by letting ωg = L∗

g−1ωe, where Lg denotes the left multipli-

cation map. This is left-invariant since

(L∗
gω)h = L∗

gωgh = L∗
gL

∗
h−1g−1ωe = (Lh−1g−1 ◦ Lg)

∗ωe = L∗
h−1ωe = ωh.

Moreover, suppose ω′ is any left-invariant volume form on G. Since dimΛnT∗
eG = 1, there

exists some non-zero constant C such that ω′
e = Cωe. It follows from left-invariance that

for any g,
ω′
g = L∗

g−1ω
′
e = CL∗

g−1ωe = Cωg.

Thus, the left-invariant volume form is unique up to a multiplicative constant. □

Definition 7.3. Let G be a Lie group. A left-invariant measure is called a left-invariant
Haar measure.

Corollary 7.4. Let G be a connected Lie group.
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(1) There exists a left-invariant Haar measure on any compact Lie group.
(2) If G is compact, the Haar measure can be taken to be normalized and is unique.

Proof. The proof is given below:

(1) Suppose ω is a left-invariant volume form on G. Replacing ω by −ω if necessary,
we may assume ω is positive with respect to the orientation of G. We have a linear
map

I : Cc(G)→ R

f 7→
∫
G
f(g)ω(g)

For any h ∈ G, note that we have

I(f) =

∫
G
fω =

∫
G
L∗
h(fω) =

∫
G
(L∗

hf)ω = I(L∗
hf).

Let σ(G) denote the Borel sigma algebra. We can define a map,

µ : σ(G)→ [0,∞]

E 7→ I(χE)

This defines a left-invariant measure on G.
(2) If G is compact, we can replace ω by 1/Vol(G)ω where

Vol(G) =

∫
G
ω

This is well-defined since the volume of a compact Lie group is always finite. Since
any two volume forms differ by a multiplicative constant, the claim follows.

This completes the proof. □

Remark 7.5. We usually write ω = dg. Note that the left invariance means

d(hg) = dg,

or equivalently, ∫
G
f(hg) dg =

∫
G
f(g) dg.

Remark 7.6. Similarly one can define the right invariant volume forms and right Haar
measures on a Lie group, and prove their existence and uniqueness (up to a constant)

Remark 7.7. In what follows we will not distinguish this measure and the corresponding
positive volume form.

In general a left Haar measure need not be a right Haar measure.

Example 7.8. (Sketch) Consider

G =

{[
y x
0 1

] ∣∣∣∣x, y ∈ R, y > 0

}
,

One can check that G is a compact Lie group. One can also check that, up to a multiplicative
constant ωL = y−2 dx dy is the left Haar measure on G, and ωR = y−1 dx dy is the right
Haar measure on G.
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Proposition 7.9. Let G be a Lie group and ω a left Haar measure on G. Let i : G → G
denote the inversion map.

(1) i∗ω is a right-invariant Haar measure on G.
(2) For any g ∈ G and any left Haar measure ω, R∗

gω is also left-invariant.

Proof. The proof is given below:

(1) Using the relation i ◦Rg = Lg−1 ◦ i, we get

R∗
g(i

∗ω) = (i ◦Rg)
∗ω = (Lg−1 ◦ i)∗ω = i∗L∗

g−1ω = i∗ω.

(2) This follows from the fact that any left multiplication commutes with any right
multiplication:

L∗
h(R

∗
gω) = (Rg ◦ Lh)

∗ω = (Lh ◦Rg)
∗ω = R∗

gL
∗
hω = R∗

gω.

This completes the proof. □

It follows that there exists a positive constant, ∆(g), such that

ω = ∆(g)R∗
gω.

Note that the number ∆(g) is independent of the choice of a left Haar measure ω, since any
two left Haar measures differ only by a constant.

Definition 7.10. The function ∆ : G→ R+ is called the modular function of G.

Proposition 7.11. Let G be a Lie group and let ω be a left-invariant Haar measure.

(1) The modular function ∆ : G→ R+ is a Lie group homomorphism.
(2) (i∗ω)g = ∆(g)ωg.

Proof. The proof is given below:

(1) Obviously, ∆ is continuous. Moreover, by definition,

ω = ∆(g1g2)R
∗
g1g2ω = ∆(g1g2)(Rg2 ◦Rg1)

∗ω = ∆(g1g2)R
∗
g1R

∗
g2ω.

On the other hand, we have

R∗
g2ω = ∆(g1)R

∗
g1R

∗
g2ω,

and thus

ω = ∆(g2)R
∗
g2ω = ∆(g2)∆(g1)R

∗
g1R

∗
g2ω.

It follows that ∆(g1g2) = ∆(g1)∆(g2).
(2) We first prove that ∆(g)ω(g) is right-invariant:

R∗
h(∆(g)ωg) = ∆(gh)(R∗

hω)g = ∆(g)∆(h)(R∗
hω)g = ∆(g)ωg.

It follows that there exists a positive constant C such that

∆(g)ωg = C(i∗ω)g.

It remains to show that C = 1. This follows from the fact

ωg = ∆(g−1)C(i∗ω)g = Ci∗(∆ω)g = C2(i∗(i∗ω))g = C2ωg.

This completes the proof. □
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As a consequence, we see that for any f ∈ Cc(G) and any left Haar measure,∫
G
f(g−1)dg =

∫
G
f(g)∆(g)dg.

We are interested in those Lie groups whose left Haar measure are also right-invariant.

Definition 7.12. Let G be a Lie group. G is called unimodular if ∆(g) ≡ 1 for any
g ∈ G.

Note that by definition, a Lie group is unimodular if and only if every left Haar measure
is also a right Haar measure. So we can speak of “Haar measure” on unimodular Lie groups,
without indicating left or right.

Proposition 7.13. Let G be a compact Lie group.

(1) Then G is unimodular.
(2) The normalized Haar measure dg on a compact Lie group is left invariant, right

invariant and invariant under inversion:∫
G
f(hg) dg =

∫
G
f(gh) dg =

∫
G
f(g−1) dg =

∫
G
f(g) dg.

Corollary 7.14. The proof is given below:

(1) Let G be a compact, the image ∆(G) of G is a compact subgroup of R+. However,
the only compact subgroup of R+ is {1}.

(2) This is clear.

8. Unitary Representations

The representation theory of compact Lie groups resembles that of finite groups in that
finite-dimensional representations decompose into irreducibles, and characters form an or-
thonormal basis for class functions. A key ingredient is the Haar measure, which enables
averaging similar to the finite case.

Proposition 8.1. Let G be a compact Lie group. Any finite-dimensional representation
(V,Π) of G admits a G-invariant inner product.

Proof. Let ⟨, ⟩ be any inner product on V . We define a new inner product by

⟨v, w⟩G :=

∫
G
⟨g · v, g · w⟩ dg,

where dg is the Haar measure on G. It is straightforward to verify that ⟨·, ·⟩G is an inner
product on V and is invariant under the G-action:

⟨g · v, g · w⟩new = ⟨v, w⟩new.
This follows from the left-invariance of the Haar meausure on G. □

We immediately get the following result:

Proposition 8.2. (Maschke’s Theorem) Let G be a compact Lie group and let (V,Π) be
a finite-dimensional representation.

(1) If (W,Π|W ) is a subrepresentation, then there is a complementary subrepresentation
(W ′,Π|W ′) such that

V =W ⊕W ′.
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(2) (V,Π) is completely reducible.

Proof. The proof is given below:

(1) Choose a G-invariant inner product on V and let W ′ be the orthogonal complement
of W in V . It is easy to check that (W ′,ΠW ′) is a subrepresentation. Clearly, V is
a direct sum of W and W ′.

(2) WLOG, assume that V ̸= {0}. This follows by induction on dimV . If U ̸= {0} is
reducible, then V = W ′ ⊕W ′ with 0 < dimW < dimV . We can now proceed by
induction.

This completes the proof. □

Remark 8.3. Proposition 8.2(1) fails in general if G is not a compact Lie group. Let
G = R. Consider the representation

ρ : R→ GL(2,R)

t 7→
(
1 t
0 1

)
ρ leaves the x-axis fixed, so the x-axis is an invariant subspace. However, there is no
complementary subspace since ρ(t) is not diagonalizable for each t ∈ R×.

Definition 8.4. Let G be a Lie group.

(1) Let K = C. A unitary representation is a vector space V with a Lie group
homomorphism Π : G→ U(V ).

(2) Let K = R. An orthogonal representation is a vector space V with a Lie group
homomorphism Π : G→ O(V ).

Proposition 8.2 implies that any finite-dimensional representation of a compact Lie group
is equivalent to a unitary (K = C) or orthogonal (K = R) representation.

Remark 8.5. A non-compact Lie group might have no non-trivial finite-dimensional uni-
tary representation. Consider G = SL(2,R). Let Π : SL(2,R) → U(n) be a representation
of SL(2,R). For m ∈ N, in SL(2,R) we have that(

m 0
0 m−1

)
At

(
m 0
0 m−1

)−1

= Am2t = Am2

t ,

where At is the matrix as in Remark 8.3. Therefore, we have,

Π

(
m 0
0 m−1

)
Π(At)Π

(
m 0
0 m−1

)−1

= Π(Am2t) = Π(At)
m2

If λ is an eigenvalue of Π(At), the computation above implies that for every positive integer

λm
2
is an eigenvalue of Π(At). Since the number of the eigenvalues of Π(At) is finite, there

exists n ̸= m such that λn
2
= λm

2
. Hence, the order of λ is finite and is a root of unity. Let

N be a multiple of the order of the eigenvalues of Π(At). The eigenvalues of Π(At)
N2

are

the eigenvalues of Π(At). But the eigenvalues of Π(At)
N2

are all 1. Hence, all eigenvalues
of Π(At) are 1. This implies that Π(At) = In for each At. By the classification of normal
subgroups of SL(2,R), the only normal subgroups of SL(2,R) are the trivial group, the whole
group, and {±I2}. Thus, the normal subgroup generated by At is SL(2,R). This readily
implies that Π(g) = In. Hence, Π is trivial.
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9. Character Theory

Let K = C in this section. We now develop an analogue of character theory for finite
groups in the context of compact Lie groups. We start off with the some observations. Let
(V,Π) be a representation of a (compact Lie) group, G. If we choose a basis e1, . . . , en of
V , we can identify V with Cn, and represent any g ∈ G by a matrix:

Π(g)v =

Π11(g) · · · Π1n(g)
...

. . .
...

Πn1(g) · · · Πnn(g)


v1...
vn

 ,

for v =
∑n

i=1 viei. If e
∗
1, . . . , e

∗
n is the dual basis of V ∗, we have

Πij(g) = e∗i (Π(g)ej).

This motivates the following definition:

Definition 9.1. Let G be a (compact Lie) group and let (V,Π) be a finite-dimensional
representation of G. For any v ∈ V and ψ ∈ V ∗, the map

φ : G→ C,
g 7→ ψ(Π(g)v),

is called a matrix coefficient of G.

Clearly any matrix coefficients of G is a continuous function on G. In fact, they form a
subring of C(G):

Lemma 9.2. Let G be a (compact Lie) group and φ1, φ2 ∈ C(G) be matrix coefficients of
G. Then φ1 + φ2 and φ1 · φ2 are also matrix coefficients for G.

Proof. Let (Πi, Vi) be (finite-dimensional) representations of G, vi ∈ Vi, and ψi ∈ V ∗
i such

that φi(g) = ψi(Πi(g)vi). Then (Π1 ⊕ Π2, V1 ⊕ V2) is a representation of G, ψ1 ⊕ ψ2 ∈
V ∗
1 ⊕ V ∗

2 = (V1 ⊕ V2)∗, and
(ψ1 ⊕ ψ2)((Π1 ⊕Π2)(g)(v1, v2)) = φ1(g) + φ2(g).

Similarly, we have a linear functional ψ1 ⊗ ψ2 on V1 ⊗ V2 satisfying

(ψ1 ⊗ ψ2)(v1 ⊗ v2) = ψ1(v1)ψ2(v2),

and thus
(ψ1 ⊗ ψ2)((Π1 ⊗Π2)(g)(v1 ⊗ v2)) = φ1(g)φ2(g).

This completes the proof. □

Now assume that G is a compact Lie group. Recall that L2(G), the space of square-
integrable functions with respect to the Haar measure, is the completion of the space of
continuous functions on G with respect to the inner product

⟨f1, f2⟩L2(G) =

∫
G
f1(g)f2(g) dg.

Proposition 9.3. (Schur Orthogonality) Let G be a compact Lie group and let (Vi,Πi)
for i = 1, 2 be two non-isomorphic finite-dimensional irreducible representations of G. Fix
G-invariant inner products on V1 and V2 respectively.

(1) Every matrix coefficient of Π1 is orthogonal in L2(G) to every matrix coefficient of
Π2.
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(2) We have∫
G
⟨Π(g)w1, v1⟩1 ⟨Π(g)w2, v2⟩1 dg =

1

dimV
⟨w1, w2⟩1⟨v1, v2⟩1

Proof. The proof is given below:

(1) Suppose

φi(g) = ⟨Πi(g)vi, wi⟩2, i = 1, 2

are matrix coefficients for Πi, where vi, wi ∈ Vi. Every matrix coefficient is of the
form by the Riesz Representation Theorem. We show that∫

G
φ1(g)φ2(g) dg =

∫
G
⟨Π1(g)v1, w1⟩2 ⟨Π2(g)v2, w2⟩2 dg

=

∫
G
⟨w1,Π1(g)v1⟩2 ⟨Π2(g)v2, w2⟩2 dg

=

∫
G
⟨Π1(g

−1)w1, v1⟩2 ⟨Π2(g)v2, w2⟩2 dg = 0

Fix a basis of V1 such that e1 = v1. Define a linear map f : V1 → V2 by f(v1) = v2
and f(ek) = 0 for all k ≥ 2. Consider the map

F : V1 → V2

v 7→
∫
G
Π2(g) f

(
Π1(g

−1)v
)
dg

It is clear that F is linear and G-invariant. By Schur’s Lemma (Proposition 6.18),
F (v) = 0 for any v ∈ V1, and in particular,

⟨F (v), w2⟩ = 0.

On the other hand, for any j, we have

Π2(g)f
(
Π1(g

−1)ej
)
= Π2(g)f

(∑
k

Π1(g
−1)kjek

)
=
∑
k

Π1(g
−1)kjΠ2(g)f(ek)

= Π1(g
−1)1jΠ2(g)(v2),

where Π1(g
−1)kj = ⟨Π1(g

−1)ej , ek⟩ are the matrix coefficients of Π1 with respect to
the basis {e1, . . . , en}. It follows that

0 = ⟨F (v2), w2⟩ =
∫
G
⟨Π1(g

−1)ej , e1⟩2⟨Π2(g)v2, w2⟩2 dg

for any j. By linearity and that e1 = v1, we have∫
G
⟨Π1(g

−1)w1, v1⟩2⟨Π2(g)v2, w2⟩2 dg = 0.

(2) Skipped.

This completes the proof. □

We now introduce characters of representations.
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Definition 9.4. Let G be a compact Lie group and let (V,Π) be a finite-dimensional
representation of. The character of Π is the function

χΠ : G→ C
g 7→ Tr(Π(g))

Remark 9.5. The character is a class function. Recall that a class function on a group G
is a function f : G→ C that is invariant under conjugation; that is, for all g, h ∈ G,

f(hgh−1) = f(g).

This means that f is constant on conjugacy classes of G, depending only on the equiva-
lence class of elements under conjugation. Moreover, one can easily check the character of
representations ssatisfies the following properties:

(1) χΠ(e) = dimV.
(2) χΠ1⊕Π2 = χΠ1 + χΠ2 .
(3) χΠ1⊗Π2 = χΠ1 · χΠ2 .

Note that the character of a representation is determined by specific matrix coefficients.
In particular, the character

χΠ(g) =
∑
i

Πi,i(g)

is a linear combination of matrix coefficients. Therefore, Schur orthogonality (cf.Proposition 9.3)
applies to characters as well.

Corollary 9.6. Let G be a compact Lie group.

(1) If (V,Π) is a finite-dimensional irreducible representation of G, then

⟨χΠ, χΠ⟩ =
∫
G
|χΠ(g)|2 dg = 1.

(2) If (V1,Π1) and (V2,Π2) are non-isomorphic finite-dimensional irreducible represen-
tations, then

⟨χΠ1 , χΠ2⟩ =
∫
G
χΠ1(g)χΠ2(g) dg = 0.

Proof. This follows at once from Proposition 9.3. □

We can now show that the character of a representation completely determines the rep-
resentation itself. This is a fundamental result in representation theory of compact Lie
groups because characters encode essential information about representations in a highly
efficient way. Since characters are class functions—meaning they are constant on conjugacy
classes—they reduce the complexity of studying representations by focusing on conjugacy-
invariant data rather than the full action of the group. The remarkable fact that two
irreducible representations with the same character must be equivalent implies that the
character serves as a powerful invariant, classifying irreducible representations up to iso-
morphism.

Proposition 9.7. Let G be a compact Lie group. Two finite-dimensional representations
(V1,Π1) and (V2,Π2) of G are isomorphic if and only if their characters coincide:

χΠ1 = χΠ2 .
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Proof. Since G is compact, any finite-dimensional representation of G is completely re-
ducible (Proposition 8.2). Hence, we can decompose (V1,Π1) and (V2,Π2) into irreducible
representations as

(V1,Π1) =
⊕
i

mi(Wi, ρi),

(V2,Π2) =
⊕
i

ni(Wi, ρi).

where (Wi, ρi) are pairwise non-isomorphic irreducible representations of G, and mi, ni are
nonnegative integers. We have,

χΠ1 =
∑
i

miχρi ,

χΠ2 =
∑
i

niχρi .

Suppose χΠ1 = χΠ2 . Taking inner products with χρi and using the orthogonality relations
(Proposition 9.7), we get

mi = ⟨χΠ1 , χρi⟩ = ⟨χΠ2 , χρi⟩ = ni.

It follows that (V1,Π1) is isomorphic to (V2,Π2). The converse is clear. □

The argument in Proposition 9.7 implies that for any finite-dimensional representation,
of a compact Lie group, there is a unique way to decompose it into irreducible ones:

(V,Π) =
⊕
ρ∈Ĝ

⟨χΠ, χρ⟩ (Wρ, ρ),

where Ĝ is the set of equivalence classes of all irreducible representations of G.

Corollary 9.8. Let G be a compact Lie group and (V,Π) be a finite-dimensional represen-
tation of G. Then (V,Π) is irreducible if and only if

⟨χΠ, χΠ⟩ =
∫
G
|χΠ(g)|2 dg = 1.

Proof. Let (V,Π) =
⊕

i ni(Wi, ρi) be the decomposition as above. Then∫
G
|χΠ(g)|2 dg =

∑
i

n2i .

The representation is irreducible if and only in
∑

i n
2
i = 1. The claim follows. □

10. Finite Groups

The representations theory of finite groups can be viewed as a special case of the rep-
resentation theory of compact Lie groups, where the group is endowed with the discrete
topology. We discuss basic examples and constructions for finite groups. We first discuss
an alternative way to describe a representation of a finite group.

Remark 10.1. Let K = R,C. We specialize to K = C as necessary.
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Definition 10.2. Let G be a finite group and let K be a field. The group algebra, denoted
K[G], is the set,

K[G] =

{
n∑

i=1

aigi : n ≥ 0, ai ∈ K, gi ∈ G

}
,

with addition and multiplication defined by(
n∑

i=1

aigi

)
+

(
n∑

i=1

bigi

)
=

n∑
i=1

(ai + bi)gi,

(
m∑
i=1

aigi

)
∗

 n∑
j=1

bjhj

 =
m∑
i=1

n∑
j=1

aibjgihj .

One can verify that the elements of G form a basis for K[G] as a K-vector space. Conse-
quently, if G is a finite group, then K[G] is a finite-dimensional vector space over K, with
dimKK[G] = |G|.

Example 10.3. Let K be a field, and let G = Z. Consider the group algebra K[Z]. If g is
a generator of Z, then elements of K[Z] are of the form

N∑
i=−N

aig
i,

where ai ∈ k for all i. Hence, we have K[Z] ∼= k[g, g−1], the Laurent polynomial ring in one
variable.

If (V,Π) is a linear representation of a finite group G, then Π induces an action of the
group algebra K[G] on V , defined by the rule

g · v = Π(g)(v), for all g ∈ G, v ∈ V.
In other words, any representation (V,Π) of G naturally gives rise to a K[G]-module struc-
ture on V . That is, Π can be regarded as a homomorphism of K-algebras:

Π : K[G]→ EndK(V ).

Remark 10.4. We will freely identify a representation (V,Π) of a group G with the cor-
responding K[G]-module structure on V , using whichever perspective is more convenient in
context.

10.1. Basic Examples. We now discuss some basic examples of representations of finite
groups. These examples illustrate how abstract definitions manifest concretely and provide
a testing ground for many of the concepts introduced earlier.

Example 10.5. Let G finite group and K be a field. The following are some basic examples
of representations:

(1) (Permutation Representation) Let X be a set such that G acts on X by per-
mutations. Assume that |X| = n < ∞ and let V = K[X] ∼= Kn be the free vector
space over X with basis given by elements of X. The permutation representation
of G on X is a map

ρ : G→ GL(n,K)

such that ρ(g) is defined by the action of G on X and extended linearly.
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(2) (Left Regular Representation) Let X = G above and let G act on X by left
multiplication. The left regular representation of G on X = K[G] is a map

ρ : G→ GL(K[G])

such that ρ(g) is defined by left multiplication of G on G and extended linearly.

Example 10.6. The following is a basic list of 1-dimensional representations for some
concrete groups. Since GL(1,K) ∼= K×, a 1-dimensional representation is simply a group
homomorphism from G into K×.

(1) Let K = C and let G = Zn be the cyclic group of order n. Note that a homomor-
phism

ρ : Z/nZ→ C×

is determined by mapping the generator [1] to an element ζ ∈ C× such that ζn = 1.
Hence, all such representations of Zn are of the form.

Πk : Z/nZ→ C×

[1] 7→ ωk
n

for k = 0, 1, · · · , n − 1. All these representations of Zn are inequivalent because
χk([1]) ̸= χk′([1]) for k ̸= k (Proposition 9.7). Hence, there are exactly n one-
dimensional representations of Zn.

(2) Let G = Z. Note that giving a homomorphism

Π : Z→ K×

is the same as giving an element of K×. Hence if K is infinite, we have uncountably
many distinct representations of Z.

(3) (Sign Representation) Let G = Sn. Consider a representation

Π : Sn → K×

Sn is generated by transpositions. Since ρ is a group homomorphism, it suffices
to determine Π on transpositions. Since a transposition has order 2, we have they
Π(g) = ±1. Since all transpositions are conjugates, Π is constant on the set of all
transpositions. If Π(σ) = +1 on a transposition, then Π corresponds to the trivial
representation. On the other hand, if Π(σ) = −1 on a transposition, then Π is −1 on
all transpositions. In this case, Π can be identified with the group homomorphism

Π : Sn → K×

σ 7→ sgn(σ)

Here sgn(σ) is the sign of the permutation σ.

Remark 10.7. Let G be a non-abelian group, and let Π : G → K× be a one-dimensional
representation. Noting that K× is abelian, we see that the ker ρ must contain the (normal)
commutator subgroup [G,G]. Thus, it must factor through the quotient as follows:

G K×

G/[G,G]

ρ

π
ρ̃

In other words, if G is a non-abelian group it then suffices to study the degree one repre-
sentations of the abelian group G/[G,G].
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Remark 10.8. Let K = C. Using the structure theorem of finite abelian groups, we know
that G ∼= G1 × · · · ×Gn for some finite cyclic groups G1, . . . , Gn. We have

HomKG(G,C×) ∼= HomCG(G1 × · · · ×Gn,C×)

∼= HomCG(G1,C×)× · · · ×HomCG(Gn,C×)

By Example 10.6(1), |HomCG(Gi,C×)| = |Gi| for each i = 1, · · · , n. Hence, there are |G|
in inequivalent representations for a finite abelian group G.

10.2. Irreducible Representations. W We have already seen that any finite-dimensional
representation of a finite group can be decomposed as a direct sum of irreducible represen-
tations. Additionally, we have established that the character of a representation uniquely
determines the representation itself (see Proposition 9.7). Building on these results, we
now focus on classifying the irreducible representations of finite groups. This classification
provides a foundational toolkit that enables us to understand and decompose any represen-
tation of a finite group into its irreducible components.
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