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2 JUNAID AFTAB

Part 1. Banach Spaces

1. Definitions

We first define normed spaces.

Definition 1.1. A normed space is a pair (X, ∥ · ∥), where X is a K-vector space and

∥ · ∥ : X → [0,∞)

is a norm function with the following properties:

(1) (Non-negative) ∥x∥ = 0 implies x = 0;
(2) (Scalar Homogeneity) ∥cx∥ = |c|∥x∥ for all c ∈ K and x ∈ X;
(3) (Triangle Inequality) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

The triangle inequality implies that every normed space is a metric space with distance
function

d(x, y) := ∥x− y∥

This observation allows us to introduce notions from analysis in our study of infinite
dimensional vector spaces. For instance, we can talk about open sets, closed sets, com-
pact sets, limits, sequences, convergent sequences, continuity etc. In particular, we say
that a sequence (xn)n≥1 in X is said to converge if there exists an element x ∈ X such
that

lim
n→∞

∥xn − x∥ = 0.

It is easy to check that this element, if it exists, is unique and is called the limit of
the sequence (xn)n≥1. We then write limn→∞ xn = x or simply xn → x as n → ∞.
Moreover, given a sequence (xn)n≥1 in a normed space X, the sum

∑∞
n=1 xn is said to

be convergent if there exists x ∈ X such that

lim
N→∞

∥∥∥∥∥x−
N∑

n=1

xn

∥∥∥∥∥ = 0.

The sum
∑∞

n=1 xn is said to be absolutely convergent if
∑∞

n=1 ∥xn∥ < ∞.

Remark 1.2. We use the notation

B(x0, r) := {x ∈ X : ∥x− x0∥ < r}
B(x0, r) := {x ∈ X : ∥x− x0∥ ≤ r}.

Here B(x0, r) the open ball centered at x0 ∈ X with radius r > 0. We shall see in
Proposition 1.3 that B(x0, r) is the closure of B(x0, r).

The geometry of a normed space can be very different from that of the usual Euclidean
geometry. For instance, each B(x0, r) need to be “round” anymore. Nevertheless, some
important important properties still hold.

Proposition 1.3. Let X be a normed space. We have

(1) B(0, 1) = B(0, 1)
(2) Each B(x0, r) and B(x0, r) is a convex set.

We discuss some properties of the norm function.

Proof. The proof is given below:
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(1) The inclusion B(0, 1) ⊆ B(0, 1) is trivial, because B(0, 1) is a closed set that

contains B(0; 1) and B(0, 1) is the smallest closed set that contains B(0, 1). Let
x ∈ B(0, 1) and defines, for each n ∈ N,

xn :=

(
1− 1

n

)
x

The sequence (xn)n≥1 converges to x in the norm ∥ · ∥ since

∥xn − x∥ =

∥∥∥∥(1− 1

n

)
x− x

∥∥∥∥ =
1

n
∥x∥ ≤ 1

n
−→ 0,

It is clear that for all n ∈ N, xn ∈ B(0, 1). Hence, B(0, 1) ⊆ B(0, 1).
(2) We prove the convexity of B(x0, r). Choose arbitrary x, y ∈ B(x0, r), λ ∈ [0, 1].

We have,

∥λx+ (1− λ)y∥ ≤ λ∥x∥+ (1− λ)∥y∥ < λr + (1− λ)r = r.

It follows that λx + (1 − λ)y ∈ B(x0, r) as required. Similarly, B(x0, r) is a
convex set.

This completes the proof. □

The fact that a normed space is a Banach space has a number of consequences. We
state some immediate ones below:

Proposition 1.4. Let (X, ∥ · ∥) be a normed space. Then (X, ∥ · ∥) has the following
properties:

(1) For each x, x′ ∈ X ∣∣∥x∥ − ∥x′∥
∣∣ ≤ ∥x− x′∥

(2) The function x 7→ ∥x∥ is a continuous and convex function.
(3) The addition and scalar multiplication vector space operations are continuous

functions.

Proof. The proof is given below:

(1) Triangle inequality implies that

∥x∥ − ∥x′∥ ≤ ∥x− x′∥
∥x′∥ − ∥x∥ ≤ ∥x′ − x∥

Therefore, ∣∣∥x∥ − ∥x′∥
∣∣ ≤ ∥x− x′∥

(2) Continuity is a straightforward consequence of (1). Convexity of the norm follows
from the norm axioms. Indeed, for every x, y ∈ X and λ ∈ [0, 1] we have

∥λx+ (1− λ)y∥ ≤ λ∥x∥+ (1− λ)∥y∥.

(3) Let limn→∞ xn = x and limn→∞ x′n = x′ in X, and k ∈ K. Then

lim
n→∞

∥cxn − cx∥ = |c| lim
n→∞

∥xn − x∥ = 0

Similarly,

lim
n→∞

∥(xn + x′n)− (x− x′)∥ ≤ lim
n→∞

∥xn − x∥+ lim
n→∞

∥x′n − x′∥ = 0

This completes the proof. □
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Remark 1.5. An important observation is that if the sub-level set

{x ∈ X : ∥x∥ ≤ 1}
is convex, then ∥ · ∥ is ea norm on E. Indeed, let x, y ∈ X. We want to show that
∥x+ y∥ ≤ ∥x∥+ ∥y∥. This is equivalent to∥∥∥∥∥ x

∥x∥+ ∥y∥
+

y

∥x∥+ ∥y∥

∥∥∥∥∥ ≤ 1.

The above inequality can be written as∥∥∥∥∥ ∥x∥
∥x∥+ ∥y∥

x

∥x∥
+

∥y∥
∥x∥+ ∥y∥

y

∥y∥

∥∥∥∥∥ ≤ 1.

This is indeed true by assumption.

We can now define Banach spaces.

Definition 1.6. A Banach space is a complete normed space.

The following proposition gives a necessary and sufficient condition for a normed space
to be a Banach space.

Proposition 1.7. A normed space X is a Banach space if and only if every absolutely
convergent sum in X converges in X.

Proof. Suppose that X is complete and let
∑

n≥1 xn be absolutely convergent. If n > m
the triangle inequality implies∥∥∥∥∥

n∑
j=1

xj −
m∑
j=1

xj

∥∥∥∥∥ =

∥∥∥∥∥
n∑

j=m+1

xj

∥∥∥∥∥ ≤
n∑

j=m+1

∥xj∥ → 0

Hence
(∑n

j=1 xj

)
n≥1

is a Cauchy sequence and it converges by completeness. Con-

versely, let (xn)n≥1 be a Cauchy sequence. Choose indices n1 < n2 < . . . in such a way
that

∥xi − xj∥ <
1

2
for all i, j > nk, k = 1, 2, . . .. The sum xn1 +

∑
k≥1(xnk+1

−xnk
) is absolutely convergent

since ∑
k≥1

∥xnk+1
− xnk

∥ ≤
∑
k≥1

1

2k
< ∞.

By assumption it converges to some x ∈ X. Then, by cancellation,

x = lim
m→∞

(
xn1 +

m∑
k=1

(xnk+1
− xnk

)

)
= lim

m→∞
xnm+1.

Therefore, the subsequence (xnm)m>1 is convergent. It is a standard fact from analysis
that a Cauchy sequence with a convergent subsequence is itself convergent. □

Remark 1.8. It turns out that every normed space can be completed to a Banach space.
More precisely, if X is a normed space then there exists a unique Banach space X
containing X isometrically as a dense subspace.

2. Constructing New Banach Spaces

Several abstract constructions enable us to create new Banach spaces from given ones.
We take a brief look at some basic constructions.
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2.1. Subspaces. A subspace Y of a normed space X is a normed space with respect to
the norm inherited from X.

Proposition 2.1. A subspace Y of a Banach space X is a Banach pace with respect to
the norm inherited from X if and only if Y is closed in X.

Proof. Assume that Y ⊆ X is a closed subspace of X. Suppose (yn)n≥1 is a Cauchy
sequence in Y . Then it has a limit in X, by the completeness of X, and this limit belongs
to Y , since Y is closed. Conversely, assume that Y is a Banach space. Let x ∈ X such
that there is a sequence (yn)n≥1 in Y such that yn → x. Since Y is complete, we have
that yn → y for some y ∈ Y . It follows from uniqueness of limits that x = y ∈ Y .
Hence, x ∈ Y , and this shows that Y is closed. □

2.2. Quotient Spaces. If Y is a closed subspace of a Banach space X, the quotient
space X/Y can be endowed with a norm by

∥[x]∥ := ∥x+ Y ∥ := inf
y∈Y

∥x− y∥,

This is indeed a norm. If ∥[x]∥ = 0, there is a sequence (yn)n≥1 in Y such that ∥x−yn∥ <
1
n for all n ≥ 1. Then

∥yn − ym∥ ≤ ∥yn − x∥+ ∥x− ym∥ <
1

n
+

1

m
,

So (yn)n≥1 is a Cauchy sequence in X. It has a limit y ∈ X since X is complete, and
we have y ∈ Y since Y is closed. Then

∥x− y∥ = lim
n→∞

∥x− yn∥ = 0

so x = y. This implies that [x] = [y] = [0], the zero element of X/Y . The triangle
inequality and scalar homogenity are trivially verified. In fact, X/Y is a Banach space.

Proposition 2.2. Let X be a Banach space and let Y be a closed subspace of a Banach
space X. The quotient space X/Y is a Banach space with the norm

∥[x]∥ := ∥x+ Y ∥ := inf
y∈Y

∥x− y∥,

Proof. Suppose that
∑

n≥1 ∥[xn]∥ < ∞. Choose yn ∈ Y are such that ∥xn − yn∥ ≤
∥[xn]∥ + 1

n2 . Since X is a Banach space, Proposition 1.7 implies that
∑

n≥1(yn − xn)
converges in X, say to x. Then, for all n ≥ 1,∥∥∥∥∥[x]−

N∑
n=1

[xn]

∥∥∥∥∥ =

∥∥∥∥∥
[
x−

N∑
n=1

xn

]∥∥∥∥∥ ≤

∥∥∥∥∥x−
N∑

n=1

xn +

N∑
n=1

yn

∥∥∥∥∥ =

∥∥∥∥∥x−
N∑

n=1

(xn − yn)

∥∥∥∥∥ .
As N → ∞, the right-hand side tends to 0 and therefore

lim
N→∞

N∑
n=1

[xn] = [x]

in X/Y . By Proposition 1.7, X/Y is a Banach space. □

3. Examples

This section is devoted to looking at a number of examples of Banach spaces.
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3.1. Spaces of Continuous Functions. We discuss the following function spaces:

(1) C(X), the space of continuous functions defined on a compact topological space
X.

(2) Cb(X), the space of continuous functions defined on a locally compact Hausdorff
space X.

(3) C0(X), the space of continuous functions that vanish at infinity defined on locally
compact Hausdorff space X1.

Remark 3.1. We restrict to the case of a locally compact Hausdorff topological space
since then Urysohn’s lemma applies. Hence, there exists an abundance of continuous
functions on X.

Proposition 3.2. Let X be a topological space.

(1) If X is a compact topological space, C(X) is a Banach space with respect to the
supremum norm

∥f∥∞ := sup
x∈X

|f(x)|

(2) If X is a locally compact Hausdorff topological space, Cb(X) is a Banach space
with respect to the supremum norm

∥f∥∞ := sup
x∈X

|f(x)|

(3) If X is a locally compact Hausdorff topological space, C0(X) is a Banach space
with respect to the supremum norm

∥f∥∞ := sup
x∈X

|f(x)|

Proof. Clearly, ∥ · ∥∞ is a norm in all three cases. We check completeness below:

(1) Suppose that (fn)n≥1 is a Cauchy sequence in C(X). Then for each x ∈ X,
(fn(x))n≥1 is a Cauchy sequence in K = R,C and therefore convergent to
some limit in K which we denote by f(x). Hence the pointwise limit f(x) =
limn→∞ fn(x) is a K-valued function. Fix ε > 0 and choose N ∈ N such that

|fn(x)− fm(x)| ≤ ∥fn − fm∥∞ < ε

for all m,n ≥ N and x ∈ X. Passing to the limit m → ∞ while keeping n fixed
we obtain

|fn(x)− f(x)| ≤ ε

for each n ≥ N . Fix x0 ∈ X arbitrarily and let U ⊆ X be an open set containing
x0 such that |fN (x)− fN (x0)| < ε whenever x ∈ U . Then, for x ∈ U ,

|f(x)− f(x0)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)|
< ε+ ε+ ε = 3ε,

This proves the continuity of f at the point x0. Since x0 is arbitrary, f ∈ C(X).
Moreover,

|fn(x)− f(x)| ≤ ∥fn − f∥∞ < ε

Hence, (fn)n≥1 converges to f in C(X).

1We say f ∈ C0(X) if and only if for every ε > 0 there is a compact set Kε such that |f(x)| < ε for
x ∈ Kc

ε .
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(2) The proof is similar to that of (1). Suppose that (fn)n≥1 is a Cauchy sequence in
Cb(X). For fixed x ∈ X, (fn(x))n≥1 is a Cauchy sequence in K and therefore con-
vergent to some limit f(x) in K. Hence the pointwise limit f(x) = limn→∞ fn(x)
is aK-valued function. LetN be such that for n,m ≥ N we have ∥fn−fm∥∞ < 1.
Then for all x ∈ X

|f(x)| ≤ |f(x)− fN (x)|+ |fN (x)|
= | lim

n→∞
fn(x)− fN (x)|+ |fN (x)|

= lim
n→∞

|fn(x)− fN (x)|+ |fN (x)|

≤ 1 + ∥fN∥∞

Hence, ∥f∥∞ ≤ 1 + ∥fN∥∞ implying that f is bounded. Let ε > 0. Let N be
such that for n,m ≥ N we have ∥fn − fm∥∞ < ε. Then for all n ≥ N

|f(x)− fn(x)| = lim
m→∞

|fm(x)− fn(x)| ≤ ε

for all x ∈ X and hence ∥f − fn∥∞ ≤ ε. Hence, (fn)n≥1 converges to f in Cb(X)
is similar to the proof in (1).

(3) We claim that C0(X) is a closed subsapce of Cb(X). Checking that it is a
subspace is a straightforward computation. Let (fn)n≥1 be a sequence in C0(X)
such that (fn)n≥1 converges to some f ∈ Cb(X). Fix ε > 0. There is an N ∈ N
such that ∥f − fN∥∞ < ϵ/2. Moreocer, there is a compact KN ⊆ X such that
|fN (x)| < ϵ/2 for x ∈ X \KN . It follows that

|f(x)| ≤ |f(x)− fN (x)|+ |fN (x)| < ϵ

for x ∈ X \KN . Since ϵ was arbitrary, it follows that f ∈ C0(X). By Proposi-
tion 2.1, C0(X) is a Banach space.

This completes the proof. □

Remark 3.3. If X is a locally compact Hausdorff space, we have the following inclusions
of Banach spaces:

C0(X) ⊂ Cb(X) ⊂ C(X)

Let Cc(X) be the space of continuous functions with compact support. We have,

Cc(X) ⊂ C0(X) ⊂ Cb(X) ⊂ C(X)

However, Cc(X) is not a Banach space. We can show that it is not a Banach space by
showing that Cc(X) is not closed in C0(X). In fact, one can show that Cc(X) is dense
in C0(X)2. If X is a compact Hausdorff space, then

C0(X) = Cb(X) = C(X)

Remark 3.4. If X = N, then Cb(N) can be identified with l∞(N), the space of all
bounded sequences. Hence, we see that l∞(N) is a Banach space. Moreover, C0(N) can
be identified with c0, the space of all seqences converging to zero. Hence, c0 is also a
Banach space.

2This is most easily done by invoking properties about Lebesgue spaces over locally compact Hausdorff
space. We don’t discuss these in these notes so we skip details.
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3.2. Lebesgue Spaces. Lebesgue spaces are function spaces that measure the inter-
grability of a function.

Definition 3.5. Let (X,M , µ) be a measure space and 1 ≤ p < ∞. If f : X → K is a
measurable function, then we define

∥f∥p :=
(∫

X
|f |p dµ

)1/p

For 1 ≤ p < ∞, the space Lp(X,M , µ) is the set

Lp(X,M , µ) = {f : X → R | ∥f∥p < ∞}.

We write Lp(X,M , µ) as Lp(X).

Proposition 3.6. Let (X,M , µ) be a measure space. Let 1 ≤ p ≤ ∞. Then Lp(X) is
a K-vector space.

Proof. Let α ∈ K and f, g ∈ Lp(X). Note that:

∥αf∥p := |α|
(∫

X
|f |p dµ

)1/p

< ∞

Moreover, the elementary estimates

|f(x) + g(x)|p ≤ (2max(|f(x)|, |g(x)|))p

= 2pmax(|f(x)|p, |g(x)|p)
≤ 2p(|f(x)|p + |g(x)|p).

implies that

∥f + g∥pp ≤ 2

(∫
X
|f(x)|pdµ+

∫
X
|g(x)|pdµ

)
< ∞

As a result ∥f + g∥Lp(X) < ∞. This shows that Lp(X) is a K-vector space. □

We wish to show that show that Lp(X) is a Banach space. This poses a problem: for
1 ≤ p < ∞, ∥ · ∥p is not even a norm on Lp(X), because ∥f∥p = 0 only implies that
f = 0 µ-almost everywhere. In spirit of Lebesgue’s philosophy of ignoring whatever is
going on on a set of measure zero, we define an equivalence relation ∼ on Lp(X) by

f ∼ g ⇐⇒ f = g µ-almost everywhere.

The equivalence class of a function f modulo ∼ is denoted by [f ]. On the quotient space

Lp(X) := Lp(X)/ ∼,

we define scalar multiplication and addition in the natural way:

c[f ] := [cf ],

[f ] + [g] := [f + g].

It is easy to check that both operations are well-defined. Following common practice, we
make no distinction between functions in Lp(X) and their equivalence classes in Lp(X),
and call the latter ‘functions’ as well.

Proposition 3.7. Let (X,M , µ) be a measure space. Let 1 ≤ p < ∞. Then Lp(X) is
a normed vector space with the norm:

∥f∥p :=
(∫

X
|f |p dµ

)1/p

Additionally, Lp(X) is a Banach space.
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Proof. It is clear that ∥ · ∥p is non-negative and scalar homogeneous. We prove the
triangle inequality which is referred to as Minkowski’s Inequality. Based on Remark 1.5,
it suffices to check that the sub-level set,

{f ∈ Lp(X) | ∥f∥p ≤ 1},
is a convex set. Let f, g ∈ Lp(X) such that ∥f∥p, ∥g∥p ≤ 1 and λ ∈ [0, 1]. Since the
function x 7→ |x|p is convex on R for p ≥ 1, we have a pointwise inequality

|λf(x) + (1− λ)g(x)|p ≤ λ|f(x)|p + (1− λ)|g(x)|p.
Integrating both sides of this inequality implies∫

X
|λf + (1− λ)g|p dµ ≤ λ

∫
X
|f |p dµ+ (1− λ)

∫
X
|g|p dµ ≤ 1

This shows that the triangle inequality holds in Lp(X). Hence, Lp(X) is a normed vector
space.

We now show that Lp(X) is a Banach space. Suppose (fn)n≥1 is a sequence Lp(X),
and

∑∞
n=1 ∥fn∥p = B < ∞. Let

Gk(x) =
k∑

n=1

|fn(x)|, G =
∞∑
n=1

|fn(x)|

Minkowski’s inequality implies that ∥Gk∥p ≤ B for all n, so by the monotone convergence
theorem, ∫

X
Gpdµ = lim

n→∞

∫
Gp

n ≤ Bp

Hence G ∈ Lp(X). In particular, G < ∞ almost everywhere which implies that the
series

F (x) :=
∞∑
n=1

fn(x)

converges almost everywhere. Hence F ∈ Lp(X). Moreover, |F −
∑k

n=1 fn|p ≤ (2G)p ∈
L1(X). By the dominated convergence theorem,∥∥∥F −

k∑
n=1

fn

∥∥∥p
p
=

∫
X

∣∣∣F −
k∑

n=1

fn

∣∣∣pdµ → 0

Thus the series
∑∞

n=1 fn converges in the Lp(X) norm. □

Remark 3.8. If X = N and µ = # is the counting measures on X, then

Lp(N,P(N),#) = ℓp(N) =

{
(an)n≥1 ∈ K∞ :

∑
n≥1

|an|p
1/p

< ∞

}
for 1 ≤ p < ∞. Here ℓp(N) is the space of p-summable sequences. Hence, ℓp(N) is a
Banach space.

In fact, the Lebesgue spaces make sense for p = ∞.

Definition 3.9. Let (X,M , µ) be a measure space. If f : X → K is a measurable
function, then we define

∥f∥∞ ≡ inf{C ≥ 0 : |f(x)| ≤ C for almost every x}.
The space L∞(X,M , µ) is the set

L∞(X) = {f : X → R | ∥f∥∞ < ∞}.
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Once again, we define
L∞(X) := L∞(X)/ ∼,

where equivalence relation ∼ on L∞(X) by

f ∼ g ⇐⇒ f = g µ-almost everywhere.

Addition and scalar multiplication on L∞(X) is defined as before. Once again, we make
no distinction between functions in L∞(X) and their equivalence classes in Lp(X), and
call the latter ‘functions’ as well.

Proposition 3.10. Let (X,M , µ) be a measure space. Then L∞(X) is a Banach space.

Proof. It is clear that ∥ · ∥∞ is a norm. We first claim that ∥fn − f∥∞ → 0 if and
only if there exists E ⊆ X such that µ(Ec) = 0 and fn → f uniformly on E. Suppose
∥fn − f∥∞ → 0. Given ϵ > 0, there exists an N ∈ N such that for n ≥ N

∥fn − f∥∞ < ϵ

Thus for any n ≥ N , we have

|fn(x)− f(x)| ≤ ∥fn − f∥∞ < ϵ (1)

a.e. on X. Let Mn = ∥fn − f∥∞ for all n ≥ N and set

An = {x ∈ X : |fn(x)− f(x)| > Mn}
Then we have µ(An) = 0. Now, let A =

⋃
n≥N An then µ(A) = 0. Let E = Ac Then for

x ∈ E we have from (1)

|fn(x)− f(x)| ≤ ∥fn − f∥∞ < ϵ

for all n ≥ N . Thus,
|fn(x)− f(x)| < ϵ

for all n ≥ N . So fn → f uniformly on E and clearly µ(Ec) = 0. Conversely, suppose
E ⊆ M and µ(Ec) = 0 and fn → f uniformly on E. Then for each ϵ > 0 there exists
an N ∈ N such that

|fn(x)− f(x)| < ϵ

for all n ≥ N and x ∈ E. Hence we also have

|fn(x)− f(x)| < ϵ a.e. on X

Thus by definition of the∥ · ∥∞ we have

∥fn − f∥∞ < ϵ

We now show that L∞(X) is a completed normed vector space. Let {fn}n∈N be a Cauchy
sequence in L∞(X). Thus given ϵ > 0, there exists an N ∈ N such that

∥fm − fn∥∞ < ϵ

for all m,n ≥ N . For each m,n ∈ N, set
Fm,n = {x ∈ X : |fm(x)− fn(x)| > ∥fm − fn∥∞}

Then clearly µ(Fm,n) = 0 for all m,n ∈ N. Set F =
⋃

m,n∈N Fm,n and E = F c. Note

that µ(Ec) = µ(F ) = 0. Moreover,

E =
⋂

m,n∈N
{x ∈ X : |fm(x)− fn(x)| ≤ ∥fm − fn∥∞}

= {x ∈ X : |fm(x)− fn(x) ≤ ∥fm − fn∥∞ for all m,n ≥ N}
Let ϵ > 0. Then for x ∈ E and for all m,n ≥ N we have

|fm(x)− fn(x)| ≤ ∥fn − fm∥ < ϵ (2)
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This shows that for every x ∈ E, {fn(x)} is a Cauchy sequence in K. Since K is complete,
there exists a limit

f(x) = lim
n→∞

fn(x)

Note f(x) is defined in E (i.e. outside of F ). Thus for x ∈ F , f(x) = 0. Note that
f = limn→∞ fn(x)χE is measurable. We have

|fn(x)− f(x)| ≤ ϵ

for x ∈ E. Thus for n ≥ N
∥fn − f∥∞ ≤ ϵ

This shows that fn → f in L∞ norm. Finally, we note that f ∈ L∞ from the triangle
inequality:

∥f∥∞ ≤ ∥fN∥∞ + ∥fN − f∥∞ ≤ ∥fN∥∞ + ϵ < ∞
Hence, L∞(X) is a Banach space. □

Remark 3.11. If X = N and µ = # is the counting measures on X, then

ℓ∞(N) := L∞(N,P(N),#) = {(an)n≥1 ∈ K∞ : sup
n∈N

|an| < ∞ < ∞}

Here ℓ∞(N) is the space of bounded sequences. Hence, ℓp(N) is a Banach space.

4. Operators on Banach Spaces

Let X,Y be normed spaces. Linear operators respect the underlying vector space
structure of X and Y . Since X and Y are normed spaces, continuous linear operators
form the right class of operators to study between X and Y . We first define bounded
operators between X and Y .

Definition 4.1. Let X an Y be normed spaces A linear operator T : X → Y is bounded
if there exists a finite constant C > 0 such that

∥Tx∥Y ≤ C∥x∥X
for all x ∈ X. The operator norm, ∥T∥, is defined as

∥T∥ = inf{C : ∥Tx∥Y ≤ C∥x∥X for all x ∈ X}

Remark 4.2. In what follows, we will write a norm ∥ · ∥X , ∥ · ∥Y as simply ∥ · ∥.

Surprisingly, it turns out that continuous operators between X and Y and bounded
operators (to be defined below) between X and Y define the same class of operators.

We now provide alternative characterizations of the operator norm of a bounded linear
operator.

Proposition 4.3. Let X and Y be normed spaces and let T : X → Y be a linear
operator. The following are equivalent:

(1) T is bounded
(2) T is continuous
(3) T is continuous at some point x0 ∈ X

Proof. The implication (1) ⇒ (2) follows from the observation that

∥Tx− Tx0∥ = ∥T (x− x0)∥ ≤ ∥T∥∥x− x0∥
and the implication (2) ⇒ (3) is trivial. To prove implication (3) ⇒ (1), suppose that
T is continuous at x0. Then there exists a δ > 0 such that

∥x0 − y∥ < δ ⇒ ∥Tx0 − Ty∥ < 1

Since every x ∈ X with ∥x∥ < δ is of the form x = x0 − y with ∥x0 − y∥ < δ (take
y = x0 − x) and T is linear, it follows that ∥x∥ < δ implies ∥Tx∥ < 1. By scalar



12 JUNAID AFTAB

homogeneity and the linearity of T , we may scale both sides with a factor δ, and obtain
that ∥x∥ < 1 implies ∥Tx∥ < 1/δ. Hence, T is bounded and ∥T∥ ≤ 1/δ. □

Proposition 4.4. Let X an Y be normed spaces and let T : X → Y be a bounded
operator. Then:

∥T∥ = sup
x ̸=0

∥Tx∥
∥x∥

= sup
∥x∥≤1

∥Tx∥ = sup
∥x∥=1

∥Tx∥| = sup
∥x∥<1

∥Tx∥

Proof. For each x ∈ X

∥Tx∥ ≤ sup
∥x∥≠0

∥Tx∥
∥x∥

∥x∥

Therefore

∥T∥ ≤ sup
∥x∥≠0

∥Tx∥
∥x∥

Let C > 0 such that ∥Tx∥ ≤ C∥x∥ for all x ∈ X. Then ∥Tx∥ ≤ C for each x ∈ X such
that ∥x∥ ≤ 1. Hence, sup∥x∥≤1 ∥Tx∥ ≤ C. Moreover if C > 0 in the definition of ∥T∥,
then

∥Tx∥
∥x∥

≤ C∥x∥
∥x∥

= C

for each x ̸= 0. Hence

sup
x ̸=0

∥Tx∥
∥x∥

≤ ∥T∥

Clearly,

sup
∥x∥=1

∥Tx∥ ≤ sup
∥x∥≤1

∥Tx∥ ≤ sup
x ̸=0

∥Tx∥
∥x∥

≤ sup
∥x∥=1

∥Tx∥

The last inequality follows from the observation that ∥Tx∥
∥x∥ = T

(
x

∥x∥

)
for each x ̸= 0.

This proves that

∥T∥ = sup
x ̸=0

∥Tx∥
∥x∥

= sup
∥x∥≤1

∥Tx∥ = sup
∥x∥=1

∥Tx∥

Note that
sup
∥x∥<1

∥Tx∥ ≤ sup
∥x∥≤1

∥Tx∥

If ∥x∥ = 1, then there is a sequence (xn)n≥1 such that ∥xn∥ < 1 and xn → x. Since T
is continuous (see Proposition 4.3), we have Txn → Tx. This implies that

sup
∥x∥≤1

∥Tx∥ ≤ sup
∥x∥<1

∥Tx∥

Hence,
∥T∥ = sup

∥x∥<1
∥Tx∥

This completes the proof. □

Remark 4.5. Here is a cute observation:

sup{∥Tx∥ : ∥x∥ ≤ r} = r∥T∥
Indeed, let x∗ such that ∥x∗∥ ≤ 1 and ∥T∥ = ∥T (x∗)∥. It is clear that

sup{∥Tx∥ : ∥x∥ ≤ r} = ∥T (rx∗)∥ = r∥T (x∗)∥ = r∥T∥

The set of all bounded operators from X to Y is a vector space in a natural way
with respect to pointwise scalar multiplication and addition. This vector space will be
denoted by B(X,Y ). In fact, it is a Banach space.
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Proposition 4.6. Let X and Y be normed spaces. If Y is a Banach space, then B(X,Y )
is a Banach space.

Proof. For all T, T ′ ∈ B(X,Y ). We show that

∥T + T ′∥ ≤ ∥T∥+ ∥T ′∥

For all x ∈ X, the triangle inequality gives

∥(T + T ′)x∥ ≤ ∥Tx∥+ ∥T ′x∥ ≤ (∥T∥+ ∥T ′∥)∥x∥,

and the result follows by taking the supremum over all x ∈ X with ∥x∥ ≤ 1. Similarly,
∥cT∥ = |c|∥T∥ for c ∈ K. Noting that ∥T∥ = 0 implies T = 0, it follows that T 7→ ∥T∥
is a norm on B(X,Y ) and B(X,Y ) is a normed space. We now show that B(X,Y ) is
a Banach space. Let (Tn)n≥1 be a Cauchy sequence in B(X,Y ). From

∥Tnx− Tmx∥ ≤ ∥Tn − Tm∥∥x∥

we see that (Tnx)n≥1 is a Cauchy sequence in Y for every x ∈ X. Let Tx denote its
limit. The linearity of each of the operators Tn implies that the mapping T : x 7→ Tx is
linear and we have

∥Tx∥ = lim
n→∞

∥Tnx∥ ≤ M∥x∥,

where M := lim supn→∞ ∥Tn∥ is finite since Cauchy sequences in normed spaces are
bounded. This shows that the linear operator T is bounded, so it is an element of
B(X,Y ). Fix ε > 0 and let N ∈ N such that ∥Tn − Tm∥ < ε for all m,n > N . Then,
for m,n ≥ N , from ∥Tnx− Tmx∥ ≤ ε∥x it follows, upon letting m → ∞, that

∥Tnx− Tx∥ ≤ ε∥x∥

This being true for all x ∈ X and n > N , it follows that ∥Tn−T∥ ≤ ε for all n ≥ N . □

Example 4.7. (Evaluation Operator) Let X be a compact topological space. For each
x0 ∈ X, we define the point evaluation map.

Ex0 : C(X) → K
f 7→ f(x0)

Clearly, Ex0 is a linear map. Moreover, it is a bounded linear map with norm ∥Ex0∥ = 1.
Boundedness with norm ∥Ex0∥ ≤ 1 follows from

|Ex0f | = |f(x0)| ≤ sup
x∈X

|f(x)| = ∥f∥∞.

By considering f = 1, the constant-one function on K, it is seen that ∥Ex0∥ = 1. As an
application of the use of the evaluation map, we claim that

A = {f ∈ C(X) : f(x) ≥ 0 for all x ∈ X}

is a closed set. Indeed,

A =
⋂
x∈X

E−1
x [0,∞)

Hence, A is closed.

Remark 4.8. The set

B = {f ∈ C(X) : f(x) > 0 for all x ∈ X}

can be shown to be an open set using the definition of the supremum norm.
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Example 4.9. (Integration) Let (X,M , µ) be a measure space. We can define the
integration map.

Iµ : L1(X) → X

f 7→
∫
X
f dµ

Clearly, Iµ is a linear map. Moreover, it is a bounded linear map with norm ∥Iµ∥ = 1.
Boundedness with norm ∥Iµ∥ ≤ 1 follows from

|Iµf | =
∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤ ∫
X
|f | dµ = ∥f∥1.

By considering non-negative functions it is seen that ∥Iµ∥ = 1.

Example 4.10. We can similarly define an integration operator on C(X) where X
is a topological space. As an application of the integration operator, we show that a
bounded operator need not attain their norm3. Consider

X = {f ∈ C[0, 1] : f(0) = 0}

A simple argument shows that X is a closed subspace of C([0, 1]). Hence, X is a Banach
space. Consider the integration map on X:

T : X → K

f 7→
∫ 1

0
f(t) dt

It is easy to check that that T is bounded with norm ∥T∥ = 1. If f ∈ X such that
∥f∥∞ ≤ 1, then a simple geometric argument4 shows that the graph of |f | is strictly
contained in [0, 1]× [0, 1]. Hence, |Tf | < 1 for each such f .

Example 4.11. (Integral Operators) Let (X,µ) be a compact metric space with a finite
Borel measure. Then X × X is a compact metric space with the product metric. Let
k(s, t) ∈ C(X ×X) and define, for f ∈ C(X), the function

T : C(X) → C(X)

f 7→
(
s 7→

∫
X
k(s, t)f(t) dµ(t)

)
It is easy to see that Tf ∈ C(X) for each f ∈ C(X). Indeed, given ε > 0, choose δ > 0
so small that d((s, t), (s′, t′)) < δ implies |k(s, t)−k(s′, t′)| < ε. Then d(s, s′) < δ implies

|Tf(s)− Tf(s′)| ≤ ε

∫
X
|f(t)| dµ(t) ≤ εµ(X)∥f∥∞.

Hence, T is is a linear operator on C(X). To prove boundedness, we estimate

|Tf(s)| ≤
∫
X
|k(s, t)||f(t)| dµ(t) ≤ µ(X)∥k∥∞∥f∥∞.

Taking the supremum over s ∈ X, this results in

∥Tf∥∞ ≤ µ(X)∥k∥∞∥f∥∞.

It follows that T is bounded and ∥T∥ ≤ µ(X)∥k∥∞.

3This is because in general the unit ball is not a compact set in a Banach space.
4Which can be made rigorous
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Example 4.12. If k ∈ L2(K × K,µ × µ), then the same formula for T yields a
bounded operator T : L2(K,µ) → L2(K,µ) satisfying ∥T∥ ≤ ∥k∥2. Indeed, by the
Cauchy–Schwarz inequality (to be proven for Hilbert spaces later on) in and Fubini’s
theorem we obtain∫

K

∣∣∣∣∫
K
k(s, t)f(t) dµ(t)

∣∣∣∣2 dµ(s) ≤ ∫
K

(∫
K
|k(s, t)|2dµ(t)

)(∫
K
|f(t)|2dµ(t)

)
dµ(s)

= ∥k∥22∥f∥22

We consider an example of an integral operator called the Volterra integral operator
operator. Consider the integral operator T : L2[0, 1] → L2[0, 1]

Tf(s) :=

∫ 1

0
k(s, t)f(t) dt =

∫ 1

0
1(0,s)(t)f(t) dt =

∫ s

0
f(t) dt, s ∈ [0, 1],

For all f ∈ L2(0, 1), the Cauchy–Schwarz inequality implies that the indefinite integral
is well defined and that

|Tf(s)− Tf(s′)| ≤ |s− s′|1/2∥f∥2 for all s, s′ ∈ [0, 1].

From this, we infer that Tf ∈ C[0, 1]. Hence, the Volterra integral operator is actually
an integral operator from L2[0, 1]) to C[0, 1]. A bound on the norm of the Volterra
integral operator is obtained by applying the bound of the preceding example:

∥T∥ ≤ ∥k∥2 =
1√
2
≈ 0.7071 . . .

5. Finite-Dimensional Spaces

Linear algebra studies finite dimensional vector spaces. We now discuss some basic
properties of finite dimensional vector spaces. In particular, we show that every finite
dimensional vector space is a Banach space. Therefore, linear algebra can be thought of
as the study of finite dimensional Banach spaces.

Remark 5.1. It is well-known that every finite dimensional vector space admits an inner
product. Therefore, linear algebra can be thought of as the study of finite dimensional
Hilbert spaces. Hilbert spaces will be discussed later on.

Example 5.2. It is well-know that any finite dimensional vector space is isometrically
isomorphic to Kn for some n ≥ 1. Moreover, it is a standard fact that any two norms
on Kn are equivalent. Therefore, we can think of Kn as being endowed with the norm

∥a∥2 :=

(
n∑

k=1

|ak|2
)1/2

With this norm, Kn is a Banach space. This follows from the observation that if Sn =
{1, · · · , n} and µ = # is the counting measures on X, then

L2(Sn,P(Sn),#) = Kn

Finite-dimensional Banach spaces have properties that are not automatically carried
over to infinite-dimensional Banach spaces. We discuss two such properties below:

Proposition 5.3. Every linear operator from a finite-dimensional normed space X into
a normed space Y is bounded.
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Proof. Let (xj)
d
j=1 be a basis for X. If T : X → Y is linear, for x =

∑d
j=1 cjxj we

obtain, by the Cauchy–Schwarz inequality for Kn

∥Tx∥ =

∥∥∥∥∥∥
d∑

j=1

cjTxj

∥∥∥∥∥∥
≤

d∑
j=1

|cj |∥Txj∥ ≤ Md1/2∥x∥2,

where ∥x∥2 :=
(∑d

j=1 |cj |2
)1/2

and M := max1≤n≤d ∥Txn∥. Since all norms are equiv-

alent on X, there exists a constant K > 0 such that ∥x∥2 ≤ K∥x∥ for all x ∈ X.
Combining this with the preceding estimate we obtain

∥Tx∥ ≤ Md1/2∥x∥2 ≤ KMd1/2∥x∥.

This shows that that T is bounded with norm at most KMd1/2. □

Remark 5.4. If X is an infinite-dimensional Banach space, discotinuous linear func-
tionals can be produced on X using Zorn’s lemma and the Hahn-Banah theorem.

Proposition 5.5. Let X be a normed space.

(1) (Riesz’s Lemma) If Y is a proper closed subspace of a normed space X, then
for every ϵ > 0 there exists a norm one vector x ∈ X with d(x, Y ) ≥ 1− ϵ.

(2) The unit ball of a normed space X is relatively compact if and only if X is
finite-dimensional.

Proof. The proof is given below:

(1) Fix any x0 ∈ X \ Y ; such x0 exists since Y is a proper subspace of X. Fix ϵ > 0
and choose y0 ∈ Y such that

∥x0 − y0∥ ≤ (1 + ϵ)d(x0, Y )

The vector (x0 − y0)/∥x0 − y0∥ has norm one, and for all y ∈ Y we have∥∥∥∥ x0 − y0
∥x0 − y0∥

− y

∥∥∥∥ =
∥x0 − y0 − y∥
∥x0 − y0∥

≥ d(x0, Y )

(1 + ϵ)d(x0, Y )

=
1

1 + ϵ
.

It follows that

d

(
x0 − y0

∥x0 − y0∥
, Y

)
≥ 1

1 + ϵ
.

Since (1 + ϵ)−1 → 1 as ϵ ↓ 0, this completes the proof.
(2) Clearly, every bounded subset of a finite-dimensional normed space X is rela-

tively compact. Conversely, suppose that X is infinite-dimensional and pick an
arbitrary norm one vector x1 ∈ X. Proceeding by induction, suppose that norm
one vectors x1, . . . , xn ∈ X have been chosen such that ∥xk − xj∥ ≥ 1

2 for all
1 ≤ j ̸= k ≤ n. Choose a norm one vector xn+1 ∈ X by applying (1) to the
proper closed subspace5

Yn = span{x1, . . . , xn}

5A finite-dimensional subspace of a Banach space is closed.
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and ϵ = 1
2 Then ∥xn+1 − xj∥ ≥ 1

2 for all 1 ≤ j ≤ n. The resulting sequence
(xn)n≥1 is contained in the closed unit ball of X and satisfies

∥xj − xk∥ ≥ 1

2

for all j ̸= k ≥ 1, so (xn)n≥1 has no convergent subsequence. It follows that the
closed unit ball of X is not compact.

This completes the proof. □
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Part 2. Hilbert Spaces

Arguably the most significant examples of Banach spaces are the Hilbert spaces.
These spaces provide the fundamental framework for many areas of mathematics and
physics, particularly in quantum mechanics and functional analysis.

6. Definitions & Examples

We define Hilbert spaces and discuss several important examples. Along the way, we
highlight key features of Hilbert spaces that are absent in general Banach spaces.

Definition 6.1. Let X be a K-vector space. X is an inner product space is there is a
map

⟨, ⟩ : H ×H → K
having the following properties:

(1) (Bilinearity): For x, x′, y ∈ X and λ ∈ K
⟨x+ x′, y⟩ = ⟨x, y⟩+ ⟨x′, y⟩

⟨λx, y⟩ = λ⟨x, y⟩

(2) (Skew-Symmetry): ⟨y, x⟩ = ⟨x, y⟩
(3) (Positivity): ⟨x, x⟩ > 0 for x ̸= 0 and ⟨x, x⟩ = 0 if and only if x = 0.

Remark 6.2. A simple observation shows that we must have

⟨x, λ(y + y′)⟩ = λ⟨x, y⟩+ λ⟨x, y′⟩
To equip inner product spaces with the structure of normed vector spaces, the follow-

ing inequality is essential.

Theorem 6.3. (Cauchy-Schwarz) If X is an inner product space with inner product
⟨·, ·⟩, then

|⟨x, y⟩|2 ≤ ⟨x, x⟩⟨y, y⟩
for all x and y in X. Moreover, equality occurs if and only if x and y are linearly
dependent.

Proof. If α ∈ K and x, y ∈ X, then

0 ≤ ⟨x− αy, x− αy⟩ = ⟨x, x⟩ − α⟨y, x⟩ − ᾱ⟨x, y⟩+ |α|2⟨y, y⟩.
Suppose ⟨y, x⟩ = beiθ, b ̸= 0, and let α = te−iθ, t ∈ R. The above inequality becomes

0 ≤ ⟨x, x⟩ − 2bt+ t2⟨y, y⟩ = c− 2bt+ at2 ≡ q(t),

where c = ⟨x, x⟩ and a = ⟨y, y⟩. Thus, q(t) is a quadratic polynomial in the real variable
t, and q(t) ≥ 0 for all t. This implies that the equation q(t) = 0 has at most one real
solution t. From the quadratic formula, we find that the discriminant is non-positive,
i.e., 4b2 − 4ac ≤ 0. Hence,

b2 − ac = |⟨x, y⟩|2 − ⟨x, x⟩⟨y, y⟩ ≤ 0

proving the inequality. It is clear that the equality holds if x and y are linearly dependent.
If x and y are not linearly dependent, then there must be a vector z ⊥ y and a non-zero
scalar a such that x = ay + z6, in which case

⟨x, x⟩⟨y, y⟩ = (a2⟨y, y⟩+ ⟨z, z⟩) · ⟨y, y⟩ = a2⟨y, y⟩2 + ⟨z, z⟩⟨y, y⟩
whereas

|⟨x, y⟩|2 = a2⟨y, y⟩2

so strict inequality holds. □

6By Gram-Schmidt for finite-dimensional inner product spaces.
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Corollary 6.4. If X is an inner product space with an inner product ⟨·, ·⟩ and if we
define

∥x∥ =
√

⟨x, x⟩
for all x ∈ X, then:

(1) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X,
(2) ∥αx∥ = |α|∥x∥ for α ∈ k and x ∈ X.
(c) ∥x∥ = 0 implies x = 0.

Hence, X is in particular a normed space with norm ∥ · ∥.

Proof. (2) and (3) are clear. To see (1), note that for x, y ∈ X,

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ∥x∥2 + ⟨y, x⟩+ ⟨x, y⟩+ ∥y∥2

= ∥x∥2 + 2Re(⟨x, y⟩) + ∥y∥2

≤ ∥x∥22∥x∥∥y∥+ ∥y∥2

= (∥x∥+ ∥y∥)2.
The inequality now follows by taking the square root. □

Inner product spaces possess properties that are not shared by every normed vector
space, or even by all Banach spaces. It is these special characteristics that distinguish
Hilbert spaces and form the basis of their rich structure. In particular, we will discuss
the parallelogram law and the notion of strict convexity, which highlight some of these
unique features.

Proposition 6.5. Let X be an inner product space.

(1) (Parallelogram Law) If x and y ∈ X, then

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).
(2) (Strict Convexity) X is strictly convex. That is, For x, y ∈ X such that

∥x∥ = ∥y∥ = 1 with x ̸= y and 0 < λ < 1 we have

∥(1− λ)x+ λy∥ < 1

Proof. The proof is given below:

(1) For any x and y in X, we have:

∥x+ y∥2 = ∥x∥2 + 2Re⟨x, y⟩+ ∥y∥2,
∥x− y∥2 = ∥x∥2 − 2Re⟨x, y⟩+ ∥y∥2.

Adding the two equations yields the desired result.
(2) Note that

λ∥x∥2 + (1− λ)∥y∥2 − ∥λx+ (1− λ)y∥2

=λ∥x∥2 + (1− λ)∥y∥2 −
(
λ2∥x∥2 + (1− λ)2∥y∥2 + 2λ(1− λ)Re⟨x, y⟩

)
=(λ− λ2)∥x∥2 +

(
(1− λ)− (1− λ)2

)︸ ︷︷ ︸
=λ−λ2

∥y∥2 − 2λ(1− λ)Re⟨x, y⟩

=λ(1− λ)
(
∥x∥2 + ∥y∥2 − 2Re⟨x, y⟩

)
=λ(1− λ) ∥x− y∥2︸ ︷︷ ︸

̸=0

> 0

That is
∥λx+ (1− λ)y∥2 < λ∥x∥2 + (1− λ)∥y∥2 = 1,
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Hence, X is strictly convex.

This completes the proof. □

Remark 6.6. If (X, ∥·∥) is a Banach space, then the associated norm ∥·∥ need not satisfy
the parallelogram law7. Consider X = C([0, 1]) Consider the functions f(x) = 1−x and
g(x) = x. We have

∥f − g∥2∞ + ∥f + g∥2∞ = ∥1− 2x∥2∞ + ∥1∥2∞ = 1 + 1 = 2

but
2(∥f∥2∞ + ∥g∥2∞) = 2 ∥1− x∥2∞ + 2 ∥x∥2∞ = 2 + 2 = 4

Similarly, a Banach space need not be strictly convex. Consider X = l1(R) and consider

x = (1, 0, 0, · · · , ) y = (0, 1, 0, · · · , )
Then ∥x∥1 = ∥y∥1 = 1 but for each 0 < λ < 1, we have

∥(1− λ)x+ λy∥1 = ∥(1− λ, λ, 0, · · · , )∥1 = 1

We are now in a position to define Hilbert spaces.

Definition 6.7. A Hilbert space, H, is a Banach space together with an inner product
⟨·, ·⟩.

Thus, Hilbert spaces are special Banach spaces endowed with an inner product that
induces their norm. We now examine examples of Hilbert spaces, many of which arise
from Banach spaces considered previously.

Example 6.8. The following is a list of examples of Hilbert spaces.

(1) Kn is a Hilbert space. Indeed, we can define an inner product on Kn as:

⟨x, y⟩ =
n∑

i=1

xiyi

It quite easy to verify that properties in Definition 6.1 are satisfied. It is a
standard fact that Kn is a complete normed space under the norm induced by
⟨, ⟩ is complete.

(2) Consider
ℓ2(N) = {(xn)n≥1 ∈ K∞ : ∥x∥2 < ∞}

Then, ℓ2(N) is a Hilbert space. Indeed, we can define an inner product on ℓ2(N)
as:

⟨x, y⟩ =
∑
n≥1

xnyn

We claim the expression above is finite. Since Kn is an inner product space,
Theorem 6.3 implies that:

M∑
n=1

xnyn ≤

(
M∑
n=1

|xn|2
)1/2( M∑

n=1

|yn|2
)1/2

≤

( ∞∑
n=0

|xn|2
)( ∞∑

n=0

|yn|2
)

< ∞

Letting M → +∞, we get:∑
n≥1

xnyn ≤

( ∞∑
n=0

|xn|2
)( ∞∑

n=0

|yn|2
)

< ∞

7In fact, it can be proved that a normed vector space is an inner product space if and only if the norm
satisfies the parallelogram law.
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It quite easy to verify that properties in Definition 6.1 are satisfied.
(3) Let (X,M , µ) be a measurable space. Then

L2(X) =

{
f : X → K : f is measurable and ∥f∥2 < ∞

}
is a Hilbert space. Indeed, we can define an inner product on L2(X) as:

⟨f, g⟩ =
∫
X
fgdµ < ∞

The expression above is finite. Indeed, since f, g and f + g belong to L2(X), we
have that |f |2, |g|2 and

(f + g)2 = f2 + 2fg + g2

Hence, fg is integrable, as required. It quite easy to verify that properties in
Definition 6.1 are satisfied. The norm induced by ⟨, ⟩ is the one discussed above.
Hence, ℓ2(N) is a Hilbert space. The norm induced by ⟨, ⟩ is the one discussed
above. Hence, L2(X) is a Hilbert space.

(4) We can generalize Example 6.8(2). Let A be a possibly uncountable set. Let
M = P(A) and µ = # be the counting measure. In this case, recall that

∥f∥22 =
∫
X
|f |2dµ =

∑
x∈A

|f(x)|2

where the summation over a possibly uncountable set can be thought of as8∑
x∈A

|f(x)|2 = sup

{∑
i∈F

|xi|2 : F ⊆ A, F finite

}
It can be checked that

L2(A) = {f : A → K : ∥f∥2 < ∞}

=

{
(xi)i∈A : sup

{∑
i∈F

|xi|2 : F ⊆ A, F finite

}
< ∞

}

is a Hilbert space. We label this Hilbert space as l2(A).

Remark 6.9. The Cauchy-Schwartz inequality for L2(X) states that:

|⟨f, g⟩| =

∣∣∣∣∣
∫
X
fgdµ

∣∣∣∣∣ ≤ (
∫

|f |2 dµ
)1/2(∫

|g|2 dµ
)1/2

= ∥f∥2∥g∥2

In particular, applying the Cauchy-Schwartz inequality to |f | and |g|, we have,

∥fg∥1 ≤ ∥f∥2∥g∥2

This is a special case Holder’s inequality (proof omitted) which states that

∥fg∥1 ≤ ∥f∥p∥g∥q

if f ∈ Lp(X), g ∈ Lq(X) and 1/p+ 1/q = 1.

8One can also use the the concept of nets from general topology to make sense of a sum over a possibly
uncountable set. We shall not delve in these details.
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Definition 6.10. Let H and K be Hilbert space. A linear operator T : H → K is
bounded if it is bounded as a linear operator on the underlying Banach spaces. Moreover,
T is an isomorphism if T is a bijective linear map and that

⟨x, y⟩H = ⟨Tx, Ty⟩K
for each x, y ∈ H9.

As in the case of Banach spaces, one can make analytic arguments in infinite-dimensional
Hilbert spaces since it is a complete metric space. Here is a sample analytic argument
we can make:

Theorem 6.11. Let H be a Hilbert space with an inner product ⟨, ⟩ Then ⟨x, y⟩ is jointly
continuous as a function of x and y.

Proof. It suffices to show that if xn → x and yn → y, then ⟨xn, yn⟩ → ⟨x, y⟩. We have

|⟨xn, yn⟩ − ⟨x, y⟩| ≤ |⟨xn, yn⟩ − ⟨xn, y⟩|+ |⟨xn, y⟩ − ⟨x, y⟩|
= |⟨xn, yn − y⟩|+ |⟨xn − x, y⟩|
≤ ∥xn∥∥yn − y∥+ ∥xn − x∥∥y∥.

Since convergent sequences are bounded, the number M := supn>1 ∥xn∥ is finite, and
we find

|⟨xn, yn⟩ − ⟨x, y⟩| ≤ M∥yn − y∥+ ∥xn − x∥∥y∥.
Both terms on the right-hand side tend to 0 as n → ∞. □

7. Orthogonality, Best Approximation & Projections

We explore the geometric structure of Hilbert spaces through the notions of orthog-
onality and projection. These concepts play a fundamental role in understanding best
approximation problems and the decomposition of elements in Hilbert spaces.

7.1. Orthogonality. The greatest advantage of a Hilbert space is its underlying con-
cept of orthogonality which is induced by its underlying inner product.

Definition 7.1. If H is a Hilbert space and x, y ∈ H, then x and y are orthogonal if
⟨x, y⟩ = 0. We write x ⊥ y.

Here are some consequences of the notion of orthogonality which are similar to notions
in classical Euclidean geometry.

Proposition 7.2. (Pythagorean Theorem)10 Let H be a Hilbert space. If x1, · · · , xn
are pairwise orthogonal vectors in H, then

∥x1 + · · ·+ xn∥2 = ∥x1∥2 + · · ·+ ∥xn∥2

Proof. If x1, x2 ∈ H, then

∥x1 + x2∥2 = ⟨x1 + x2, x1 + x2⟩ = ∥x1∥2 + 2Re⟨x1, x2⟩+ ∥x2∥2

Since x1 ⊥ x2, this implies the result for n = 2. The general case follows by an easy
inductive argument. □

9Note that the condition ⟨x, y⟩H = ⟨Tx, Ty⟩K actually implies that T is injective. Moreover, it turns out
that T is an isomorphism if and only if T is ∥Tx∥K = ∥x∥H for each x ∈ H. Moreover, this definition
will be sufficient for our purposes by now because we later on we shall show that T is bijective if and only
if T−1 is a bijective, bounded linear map. This will be a consequence of the Open Mapping Theorem.
10The proof doesn’t use the completeness of the underlying Hilbert space. It only uses the properties
of the inner product.
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Definition 7.3. The orthogonal complement of a subset A of H is the set

A⊥ := {x ∈ H : x ⊥ a for all a ∈ A}

The orthogonal complement A⊥ of a subset A is a closed subspace of H. Indeed, it
is trivially checked that A⊥ is a vector space. To prove its closedness, let xn → x in H
with xn ∈ A⊥. By Theorem 6.11, we obtain

⟨x, a⟩ = lim
n→∞

⟨xn, a⟩ = 0.

for all a ∈ A.

Example 7.4. The following are some computations of orthogonal complements:

(1) Let

Y := {f ∈ L2(0, 1) : f(t) = 0 for almost all t ∈ (0, 1/2)}
We compute Y ⊥. If g ∈ Y ⊥, then∫ 1

1
2

f(t)g(t)dt = 0

for each f ∈ Y . In particular, if f(t) = χA(t) for each Borel set in [1/2, 1), then∫
A
g(t)dt = 0

for each Borel set in [1/2, 1). Hence g(t) = 0 for almost all t ∈ [1/2, 1). Con-
versely, every such function is in Y ⊥. Hence, Y ⊥ consists of all functions g such
that g(t) = 0 for almost all t ∈ [1/2, 1)}.

(2) Let

Y := {f ∈ L2(0, 1) :

∫ 1

0
f(t) dt = 0}

Take any g ∈ Y ⊥. Set g =
∫ 1
0 g(t)dt, and take

f(x) = g(x)− g

We have f ∈ Y and so

0 = ⟨f, g⟩ = ⟨f, g⟩ − ⟨f, g⟩ = ⟨f, g − g⟩ = ⟨g − g, g − g⟩ = ∥g − g∥22.

Thus g = g, and so g is constant. Thus Y ⊥ contains all constant functions.
The argument seems a bit artificial, but the conclusion follows naturally once
we know that complex exponentials form an orthonormal basis for L2(0, 1).

7.2. Best Approximation. The most important result on orthogonality is certainly
the fact that every closed subspace Y of a Hilbert space is orthogonally complemented
by Y ⊥. For its proof, we need the the approximation theorem for convex closed sets in
Hilbert space, which is of independent interest.

Proposition 7.5. (Best Approximation) Let C be a non-empty convex closed subset
of H. Then, for all x ∈ H, there exists a unique c ∈ C that minimizes the distance from
x to the points of C:

∥x− c∥ = min
y∈C

∥x− y∥.

Proof. By considering C − x = {c − x : c ∈ K} instead of C, it suffices to assume that
x = 0. We how there is a unique vector c in C such that

∥c∥ = inf{∥c∥ : c ∈ C} := d.
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By definition, there is a sequence {cn} in C such that ∥cn∥ → d. Proposition 6.5 implies:∥∥∥cn − cm
2

∥∥∥2 = ∥cn∥2 + ∥cm∥2

2
−
∥∥∥cn + cm

2

∥∥∥2.
Since C is convex, 1

2(cn + cm) ∈ K. Hence,∥∥∥1
2
(cn + cm)

∥∥∥2 ≤ d2.

If ε > 0, choose N such that for n ≥ N ,

∥cn∥2 < d2 +
ε2

4
.

If n,m ≥ N , then ∥∥∥cn − cm
2

∥∥∥2 < 1

2

(
2d2 +

ε2

2

)
− d2 =

ε2

4
.

Thus, ∥cn− cm∥ < ε for n,m ≥ N , and {cn} is a Cauchy sequence. Since H is complete
and C is closed, there is a c ∈ C such that ∥cn − c∥ → 0. Also, for all cn,

d ≤ ∥c∥ = ∥c− cn + cn∥ ≤ ∥c− cn∥+ ∥cn∥ → d.

Thus, ∥c∥ = d. To prove that c is unique, suppose c′ ∈ K such that ∥c′∥ = d. By
convexity, 1

2(c+ c′) ∈ K. Hence,

d ≤
∥∥∥1
2
(c′ + c)

∥∥∥ ≤ 1

2
∥c′∥+ 1

2
∥c∥ = d.

So, ∥1
2(c

′ + c)∥ = d. Proposition 6.5 implies that:∥∥∥c− c′

2

∥∥∥2 = ∥c∥2 + ∥c′∥2

2
−
∥∥∥c+ c′

2

∥∥∥2 = d2 − d2 = 0.

Hence,
∥c− c′∥ = 0,

implying that c′ = c. □

Remark 7.6. Proposition 7.5 can fail for Banach spaces. Consider X = l∞(R) and
consider the convex set.

C = {(x, 1, 0, · · · , ) : x ∈ [−1, 1]}
Let x = (0, 0, · · · ) Each element in C has norm 1. Hence,

{c ∈ C : ∥c∥ = min
y∈C

∥y∥∥ = C

If the closed, convex set in Proposition 7.5 is in fact a closed linear subspace of H,
more can be said. For x ∈ H, let x0 ∈ C such that

∥x− x0∥ = min
y∈C

∥x− y∥

We claim that x− x0 ∈ C⊥. Fix a nonzero c ∈ C. For any λ ∈ k we have,

∥x− x0∥2 ≤ ∥x− (x0 − λc)∥2

= ∥λc− (x− x0)∥2

= |λ|2∥c∥2 + 2Re(λc, x− x0) + ∥x− x0∥2.

Taking λ = − ⟨c,x−x0⟩
∥c∥2 , this gives

0 ≤ |(c, x− x0)|2

∥y∥2
− 2

|(c, x− x0)|2

∥y∥2
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which is only possible if ⟨x− x0, c⟩. This shows that x− x0 ∈ C⊥. Conversely, suppose
c ∈ C such that x− c ∈ C⊥. If c′ ∈ C, then x− c ⊥ x− c′ so that

∥x− c′∥2 = ∥(x− c) + (c− c′)∥2 = ∥x− c∥2 + ∥c− c′∥2 ≥ ∥x− c∥2.
Thus

∥x− c∥ = min
c′∈C

∥x− y∥

7.3. Projections. The discussion above allows us to define a projection operator on a
closed subspace, M , in a Hilbert space. This projection operator minimizes the distance
from x ∈ H to M .

Proposition 7.7. Let H be a Hilbert space and let M be a closed linear subspace of M .
Define a map

πM : H → M

such that πM (x) is the unique point in M such that x− πM (x) ⊥ M . Then

(1) πM is a linear transformation on H,
(2) ∥πM (x)∥ ≤ ∥x∥ for every x ∈ H,
(3) π2

M = πM ,

(4) kerπM = M⊥ and ranπM = M .

πM is the projection map onto M .

Proof. The proof is given below:

(1) Let x1, x2 ∈ H and α1, α2 ∈ K. If f ∈ M , then

⟨(α1x1 + α2x2)− (α1πM (x1) + α2πM (x2)), f⟩ = α1(x1 − πM (x1), f) + α2(x2 − πM (x2), f)

= 0.

By uniqueness, we have that

πM (α1x1 + α2x2) = α1πM (x1) + α2πM (x2)

(2) If x ∈ X, then x = (x − πM (x)) + πM (x), πM (x) ∈ M , and h − πM (x) ∈ M⊥.
Thus

∥x∥2 = ∥x− πM (x)∥2 + ∥πM (x)∥2 ≥ ∥πM (x)∥2.
(3) If x ∈ M , then πM (x) = x. Hence π2

M = πM .

(4) If πM (x) = 0, then x = x− πM (x) ∈ M⊥. Conversely, if x ∈ M⊥, then 0 is the
unique vector in M such that x− 0 = x ∈ M⊥. Therefore πM (x) = 0. Clearly,
ranπM = M .

This completes the proof. □

Corollary 7.8. Let H be a Hilbert space and let M be a closed subspace of H. Then

(1) H = M ⊕M⊥

(2) (M⊥)⊥ = M
(3) More generally, if M is any subspace of H, then (M⊥)⊥ = M .
(4) M is dense in H if and only if M⊥ = {0}

Proof. The proof is given below:

(1) Let x ∈ H and write x as x = πM (x)+ (x−πM (x)). We know that πM (x) ∈ M .
Moreover,

πM (x− πM (x)) = πM (x)− π2
M (x) = πM (x)− πM (x) = 0

Hence x− πM (x) ∈ M⊥. It is clear that M ∩M⊥ = {0}. Hence, H = M ⊕M⊥.
(2) Note that I − πM is an orthogonal projection onto M⊥. By part (d) of the

preceding theorem, (M⊥)⊥ = ker(I − πM ). But 0 = (I − πM )x if and only if
x = πMx. Thus (M⊥)⊥ = ker(I − πM ) = ranπM = M .
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(3) Note that (M⊥)⊥ is a closed subspace containing M . Hence, M ⊆ (M⊥)⊥. If C
is any closed subspace of H containing M , we have

M ⊆ C ⇐⇒ C⊥ ⊆ M⊥ ⇐⇒ (M⊥)⊥ ⊆ (C⊥)⊥ = C

Hence, M⊥)⊥ is the smallest closed subspace of H containing M . Hence,
(M⊥)⊥ = M .

(4) Simply note that

M = H ⇐⇒ {0} = H⊥ = (M)⊥ = ((M⊥)⊥)⊥ = M⊥

This completes the proof. □

8. Orthornormal Systems

Just as in the finite-dimensional setting of Euclidean space, every Hilbert space admits
a notion of coordinatization. This is achieved through the use of orthonormal sets,
which serve as a foundation for representing elements in terms of scalar components.
Orthonormal systems not only facilitate the construction of orthogonal projections but
also enable the expansion of vectors in terms of basis elements in infinite-dimensional
settings.

Definition 8.1. Let I be a non-empty set. A family (hi)i∈I in H is called an orthonor-
mal system if

⟨hi, hj⟩ = δij =

{
1 if i = j

0 otherwise

An orthonormal system is a maximal orthonormal system if M is the linear span of
(hi)i∈I , then M = H. That is, every x ∈ H can be represented as a convergent series

x =
∑
i∈I

cihi

for suitable coefficients ci ∈ k.

Remark 8.2. Recall from Corollary 7.8 that M = H if and only if M⊥ = {0}. There-
fore, an orthonormal system is a maximal orthonormal system if and only if

⟨h, hi⟩ = 0 for all i ∈ I implies that h = 0 .

Proposition 8.3. Let H be a non-zero Hilbert space. Then H has an maximal or-
thonormal system.

Proof. (Sketch) This follows by Zorn’s Lemma. Partially order the set of all orthonor-
mal systems in the nonzero Hilbert space H by set inclusion. By Zorn’s lemma, this set
has a maximal element, say (hi)i∈I , where I is some index set. It is clear that this set
is an orthonormal set. If there were a nonzero h ∈ H such that ⟨h, hi⟩ = 0, then after
normalizing h to unit length, we obtain a new orthonormal system (hi)i∈I∪{h} properly
containing (hi)i∈I , contradicting the maximality of (hi)i∈I . Therefore, the orthonormal
system is a maximal orthonormal system. □

A countable maximal orthonormal set is also called an orthonormal basis. Intuitively,
Hilbert spaces that admit an orthonormal basis are of the form ‘K∞.’ We shall make
this intuition precise in Corollary 8.6. Orthonormal sets are quite tractable since they
have a number of simple properties. All of these properties fundamentally arise from the
ability to define projection operators onto subspaces determined by finite subsets of an
orthonormal system. By employing such projections, one can systematically construct
elements of the Hilbert space H as limits of these finite approximations.
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Proposition 8.4. Let H be a Hilbert space and let (hn)n≥1 be an orthonormal sequence
in H. Let (cn)n≥1 be a sequence of scalars in K. Then:

(1)
∑

n≥1 cnhn converges in H if and only if
∑

n≥1 |cn|2 < ∞.

(2) (Bessel’s Inequality) For x ∈ H,

∥x∥2 ≥
∑
n≥1

|⟨x, hn⟩|

(3) Let M be the closed linear span of (hn)n≥1. Then for each x ∈ H

πM (x) =
∑
n≥1

⟨x, hn⟩hn

(4) (Parseval’s Identity) If (hn)n≥1 is an orthonormal basis, then

∥x∥2 =
∑
n≥1

|⟨x, hn⟩|

Proof. The proof is given below:

(1) If
∑

n≥1 cnhn converges in H, say to x, then x = limN→∞
∑N

n=1 cnhn in H and
therefore

∞ > ∥x∥2 = lim
N→∞

N∑
n=1

∥hn∥2 = lim
N→∞

N∑
n=1

∥cn∥2 =
∑
n≥1

|cn|

Conversely, suppose that
∑

n≥1 |cn| < ∞. Then

lim
M,N→∞
N>M

1

2

∥∥∥∥∥
N∑

n=1

cnhn −
M∑
n=1

cnhn

∥∥∥∥∥
2

= lim
M,N→∞
N>M

1

2

∥∥∥∥∥
N∑

n=M+1

cnhn

∥∥∥∥∥
2

= lim
M,N→∞
N>M

1

2

N∑
n=M+1

|cn|2 = 0.

It follows that
∑

n≥1 cnhn is Cauchy, and hence convergent.

(2) Let xn = x−
∑n

k=1(x, hk)ek. Then hn ⊥ ek for 1 ≤ k ≤ n. By the Pythagorean
Theorem (Proposition 7.2),

∞ > ∥x∥2 = ∥xn∥2 +
n∑

k=1

|⟨x, hk⟩|2 ≤
n∑

k=1

|⟨x, hk⟩|2 ≤
∞∑
n≥1

|⟨x, hn⟩|2

(3) By (1) and (2), ∑
n≥1

⟨x, hn⟩hn

is finite and well-defined. Call this expression πM (x). We have

⟨x− πM (x), πM (x)⟩ = lim
N,M→∞

〈
x−

N∑
n=1

⟨x, hn⟩hn,
M∑

m=1

⟨x, hm⟩hn
〉

= lim
N,M→∞

M∑
m=1

⟨x, hm⟩
〈
x−

N∑
n=1

⟨x, hn⟩hn, hm
〉

= lim
N,M→∞

0 = 0

because〈
x−

N∑
n=1

⟨x, hn⟩hn, hm
〉

= ⟨x, hm⟩ −
〈 N∑

n=1

⟨x, hn⟩hn, hm
〉

= ⟨x, hm⟩ − ⟨x, hm⟩ = 0

Hence,

πM (x) =
∑
n≥1

⟨x, hn⟩hn
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(4) Assume (hn)n≥1 is an orthonormal basis of H. Let M is the linear span of
(hn)n≥1. Then M = H. Corollary 7.8 implies that M⊥ = {0}. Therefore,

x− πM (x) = 0

Hence,

x = πM (x) =
∑
n≥1

⟨x, hn⟩hn

The claim now follows from this observation.

This completes the proof. □

Using Proposition 8.4, we can now establish two key results. First, a Hilbert space is
separable if and only if it admits a countable orthonormal basis. Second, this allows us
to conclude that every separable Hilbert space is isometrically isomorphic to ℓ2(N).

Proposition 8.5. A Hilbert space, H, has an orthonormal basis if and only if it is
separable.

Proof. Assume H is seperable and let (hi)i∈I be a maximal orthonormal set for some
index set I. If hi, hj are elements in the maximal orthonormal set, then

∥hi − hj∥22 = ∥hi∥22 + ∥hj∥22 = 2

Hence C = {B(hi; 1/
√
2)}i∈I is a collection of pairwise disjoint open balls in H. Since

H is separable, the collection C must be a countable collection. Hence, the maximal
orthonormal set is in fact an orthonormal basis. Conversely, if H has an orthonormal
basis then its linear span is dense in H and is generated by countably many elements.
This is sufficient to conclude that H is seperable. □

Corollary 8.6. Every non-zero separable Hilbert space, H, is isomorphic to ℓ2(N). In
this case, we say that dim = |N | = ∞.11.

Proof. Let H be a non-zero separable Hilbert space with orthonormal basis (hn)n≥1.
Let T : H → ℓ2(N) be defined for each x ∈ H by:

T (x) = (⟨hn, x⟩)n≥1

By Bessel’s inequality in Proposition 8.4, we have:

∥Tx∥22 = ∥(⟨xn, h⟩)∥22 =
∑
n≥1

|⟨hn, x⟩2| ≤ ∥x∥2 < ∞

Hence, T is well-defined. It is clear that T is a linear operator. Moreover, we have that

⟨x, y⟩H =

〈∑
n≥1

⟨hn, x⟩hn,
∑
m≥1

⟨hm, y⟩hm

〉
=
∑
n≥1

∑
m≥1

⟨hn, x⟩⟨hm, y⟩⟨en, em⟩

=
∑
n≥1

⟨hn, x⟩⟨hn, y⟩

= ⟨Tx, Ty⟩ℓ2(N)

11This statement justifies the intuition that every Hilbert spaces that admit an orthonormal basis is of
the form ”k∞.”
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for each x, y ∈ H. Hence, T is inner-product preserving. Lastly, we show that T is
surjective. Let (xn)n≥1 and consider

x =
∑
n≥1

xnhn

Note that x converges by Proposition 8.4(a) and we have

∥x∥22 =
∑
n≥1

|xn|2 < ∞

We see that:

T (x) = (⟨en, x⟩)n≥1 =

〈en,∑
n≥1

xnen

〉 = (xn∥en∥2)n≥1 = (xn)n≥1

So T is surjective. Hence, T is an isomorphism. □

Note that every non-zero Hilbert space is not a separable space. Consider the Hilbert
space:

l2(R) =

{
(xi)i∈R : sup

{∑
i∈F

|xi|2 : F ⊂ R, F finite

}
< ∞

}
The functions fy defined by

fy(x) =

{
1 if x = y

0 else

are an uncountable set of elements with distance
√
2, hence l2(R) is not separable. More

generally, we have the following generalization of Corollary 8.6.

Proposition 8.7. Let H be a non-zero Hilbert space.

(1) H is isomorphic to l2(A) for some possibly uncountable set A. We say that
dim = |A|.

(2) l2(A) and l2(B) are isomorphic if and only if |A| = |B|. Hence, two Hilbert
spaces are isomorphic if and only if they have the same dimension.

Proof. The proof is given below:

(1) (Sketch) By Proposition 8.3, there is a maximal orthonormal system {hα}α∈A.
Choose A to be the index set. Fix x ∈ H. By Remark 8.2, x can be represented
as

x =
∑
a∈A

cαhα

for cα ∈ K. In fact, cα = ⟨x, hα⟩. We claim that the number of terms in the
summation above are at most countable. Consider the set

E = {α ∈ A : ⟨x, hα⟩ ≠ 0} =
⋃
n≥1

{α ∈ A : |⟨x, hα⟩| ≥ 1/n} :=
⋃
n≥1

En

Assume En is an infinite set. Pick a countably infinite sequence (βi)i≥1 in En.
Fix any N ∈ N. Then:

x =

(
x−

N∑
n=1

(x, hβi
)hβi

)
+

N∑
n=1

(x, hβi
)hβi



30 JUNAID AFTAB

is an orthogonal decomposition. Therefore,

∥x∥2 =

∥∥∥∥∥x−
N∑
i=1

(x, hβi
)hβi

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑
i=1

(x, hβi
)hβi

∥∥∥∥∥
2

≥

∥∥∥∥∥
N∑

n=1

(x, hβi
)hβi

∥∥∥∥∥
2

=

N∑
i=1

|(x, hβi
)|2 ≥

N∑
i=1

1

n

Letting N → ∞ yields a contradiction since ∥x∥ < ∞. Hence, each En is at most
finite implying that E is at most countable. Let {αn} be an enumeration of the
α ∈ A for which (x, en) ̸= 0. We have

∥x∥2 =

∥∥∥∥∥x−
N∑

n=1

(x, hαn)hαn

∥∥∥∥∥
2

+

N∑
n=1

∥(x, hαn)∥2.

Based on Remark 8.2, we have

∥x∥2 = lim
N→∞

∥∥∥∥∥x−
N∑

n=1

(x, hαn)hαn

∥∥∥∥∥
2

+ lim
N→∞

N∑
n=1

∥(x, hαn)∥2 =
∑
n≥1

∥(x, hαn)∥2

Let T : H → l2(A) be defined for each x ∈ H by:

T (x) = (⟨hα, x⟩)α∈A
Our discussion above implies that T is well-define since (⟨hα, x⟩)α∈A ∈ l2(A) for
each fixed x ∈ H. As in Corollary 8.6, one can check that T is a linear map that
preserves the inner product and T is surjective12.

(2) This is a straightforward consequence of (1).

This completes the proof. □

9. Hilbert Dual Space

We investigate the dual space of a Hilbert space. Unlike the general setting of Ba-
nach spaces, the presence of an inner product allows for a more concrete and elegant
characterization of the dual space of a Hilbert space. This culminates in the Riesz Rep-
resentation Theorem, which establishes a natural isomorphism between a Hilbert space
and its dual.

Definition 9.1. Let H be a Hilbert space over the field K. The (Hilbert) dual space of
H, denoted by H∗, is the set of all continuous/bounded linear functionals ℓ : H → K.
That is,

H∗ = {ℓ : H → K | ℓ is linear and bounded} .

The dual space H∗, equipped with the operator norm, is a Banach space. More-
over, the inner product structure on H enables a more explicit description and a full
characterization of H∗, as established by the Riesz Representation Theorem below.

Proposition 9.2. (Riesz Representation Theorem) Let H be a Hilbert space. Then
for every continuous linear functional ℓ ∈ H∗, there exists a unique element h ∈ H such
that

ℓ(x) = ⟨h, x⟩ for all x ∈ H.

12We will have to repeatedly use the observation that the norm of each element in l2(A) is determined
by a sum over countably many indices. This argument is similar to what we have given above.
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Moreover, the mapping

H → H∗,

h 7→ ⟨h, ·⟩

is an isometric isomorphism.

Proof. Let ℓ ∈ H∗, where we may assume WLOG that ℓ ̸= 0. It is clear that ker(ℓ) is a
proper closed subspace of H: Corollary 7.8 implies that H = ker(ℓ)⊕ ker(ℓ)⊥. Let z be
a non-zero element in ker(ℓ)⊥. Consider the element

h :=
ℓ(z)z

∥z∥2
∈ H

We now show that ℓ = ⟨h, ·⟩. Fix any x ∈ H, and define

w := x− ℓ(x)

ℓ(z)
z.

Note that ℓ(w) = 0. Hence, w ∈ ker(ℓ) and ⟨w, z⟩ = 0 implying that ⟨w, h⟩ = 0. We
have

⟨x, h⟩ =
〈
w +

ℓ(x)

ℓ(z)
z, h

〉
= ⟨w, h⟩+

〈
ℓ(x)

ℓ(z)
z, h

〉
=

ℓ(x)

ℓ(z)
⟨z, h⟩ = ℓ(x)

ℓ(z)

〈
ℓ(z)z

∥z∥2
, z

〉
= ℓ(x).

We now show uniqueness. Suppose ℓ = ⟨h, ·⟩ = ⟨h′, ·⟩ for some h, h′ ∈ H. We then have

⟨h, h− h′⟩ = ⟨h′, h− h′⟩ =⇒ ⟨h− h′, h− h′⟩ = 0 =⇒ ∥h− h′∥ = 0

Hence, h = h′. This shows that the map

H → H∗,

h 7→ ⟨h, ·⟩

is a bijection. It is clear that the map is linear. We claim that the map is an isometry
as well. By Cauchy-Schwartz, ∥⟨h, ·⟩∥ ≤ ∥h∥. But the bound is attained with the input
h/∥h∥. □

Remark 9.3. It is important to observe that this correspondence is linear if K = R,
but conjugate-linear if K = C. This is a consequence of the conjugate-linearity of inner
products with respect to their second variable.

9.1. Hilbert Space Adjoint. The Riesz Representation Theorem (??) allows us to
define the adjoint of a bounded linear operator on a Hilbert space in a natural and elegant
way. This concept, known as the Hilbert space adjoint, has important applications in
spectral theory and quantum mechanics.

Proposition 9.4. Let H and K be Hilbert spaces, and let T : H → K be a bounded
linear operator. Then there exists a unique bounded linear operator T ∗ : K → H, called
the adjoint of T , such that

⟨Tx, y⟩K = ⟨x, T ∗y⟩H .

for all x ∈ H and y ∈ K.
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Proof. Fix y ∈ K and consider the map:

Ly : H → K
x 7→ ⟨Tx, y⟩

The map Ly defines a bounded linear functional on H. By the Riesz Representation
Theorem (??) there exists a unique h ∈ H such that

⟨Tx, y⟩ = Ly(x) = ⟨h, x⟩.

Define T ∗y = h. It is clear that T ∗ is a linear map. To see that it is bounded, observe
that

∥T ∗y∥H = ∥h∥H
= sup

∥x∥=1
|⟨h, x⟩H |

= sup
∥x∥=1

|⟨Tx, y⟩K |

≤ sup
∥x∥=1

∥Tx∥K · ∥y∥K

≤ sup
∥x∥=1

∥T∥ · ∥x∥ · ∥y∥ = ∥T∥ · ∥y∥.

We conclude that T ∗ is bounded, and that ∥T ∗∥ ≤ ∥T∥. We now show that T ∗ is unique.
Suppose that S ∈ B(K,H) also satisfies

⟨Tx, y⟩K = ⟨x, Sy⟩H .

for all x ∈ H and y ∈ K Then, for each fixed y ∈ K, we have

⟨x, Sy − T ∗y⟩H = 0

for all x ∈ H and y ∈ K. This implies Sy − T ∗y = 0 for all y ∈ K. Hence, S = T ∗,
proving uniqueness. □

We now discuss various properties of the adjoint operator.

Proposition 9.5. Let H,K,L be Hilbert space.

(1) If T ∈ B(H,K), then (T ∗)∗ = T .
(2) If A,B ∈ B(H,K) and α, β ∈ K, then

(αT + βS)∗ = αT ∗ + βS∗.

(3) If A ∈ B(H,K) and B ∈ B(K,L), then

(S ◦ T )∗ = T ∗ ◦ S∗.

(4) If A ∈ B(H) is invertible in B(H), then A∗ is invertible in B(H) and

(A−1)∗ = (A∗)−1.

Proof. The proof is given below:

(1) Let x ∈ H, y ∈ K. We have that

⟨Tx, y⟩K = ⟨x, T ∗y⟩H = ⟨T ∗y, x⟩H = ⟨y, T ∗∗x⟩K = ⟨T ∗∗x, y⟩K
This shows that T = T ∗∗.

(2) Let x ∈ H, y ∈ K. We have that

⟨(αT + βS)x, y⟩H = ⟨x, (αT + βS)∗y⟩K = ⟨x, (αT ∗ + βS∗)y⟩K

This shows that (αT + βS)∗ = αT ∗ + βS∗.



FUNCTIONAL ANALYSIS 33

(3) Let x ∈ H, z ∈ L.

⟨x, (S ◦ T )∗z⟩H = ⟨(S ◦ T )x, z⟩L = ⟨S(Tx), z⟩L = ⟨Tx, S∗z⟩K = ⟨x, T ∗S∗z⟩H
This shows that (S ◦ T )∗ = T ∗ ◦ S∗.

(4) Skipped.

This completes the proof. □
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